matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,842 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from dataclasses import dataclass, field
20
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
21
+
22
+
23
+ @dataclass
24
+ class AgeDetectionConfig(BaseConfig):
25
+ """Configuration for age detection use case."""
26
+ # Smoothing configuration
27
+ enable_smoothing: bool = True
28
+ smoothing_algorithm: str = "observability" # "window" or "observability"
29
+ smoothing_window_size: int = 20
30
+ smoothing_cooldown_frames: int = 5
31
+ smoothing_confidence_range_factor: float = 0.5
32
+
33
+ #confidence thresholds
34
+ confidence_threshold: float = 0.5
35
+
36
+ usecase_categories: List[str] = field(
37
+ default_factory=lambda: ['AGE- 0-20 FEMALE', 'AGE- 0-20 MALE', 'AGE- 20-30 FEMALE', 'AGE- 20-30 MALE', 'AGE- 30-50 FEMALE', 'AGE- 30-50 MALE', 'AGE- 50- FEMALE', 'AGE- 50- MALE']
38
+ )
39
+
40
+ target_categories: List[str] = field(
41
+ default_factory=lambda: ['AGE- 0-20 FEMALE', 'AGE- 0-20 MALE', 'AGE- 20-30 FEMALE', 'AGE- 20-30 MALE', 'AGE- 30-50 FEMALE', 'AGE- 30-50 MALE', 'AGE- 50- FEMALE', 'AGE- 50- MALE']
42
+ )
43
+
44
+ alert_config: Optional[AlertConfig] = None
45
+
46
+ index_to_category: Optional[Dict[int, str]] = field(
47
+ default_factory=lambda: {
48
+ 0: 'AGE- 0-20 FEMALE',
49
+ 1: 'AGE- 0-20 MALE',
50
+ 2: 'AGE- 20-30 FEMALE',
51
+ 3: 'AGE- 20-30 MALE',
52
+ 4: 'AGE- 30-50 FEMALE',
53
+ 5: 'AGE- 30-50 MALE',
54
+ 6: 'AGE- 50- FEMALE',
55
+ 7: 'AGE- 50- MALE'
56
+ }
57
+ )
58
+
59
+
60
+ class AgeDetectionUseCase(BaseProcessor):
61
+ # Human-friendly display names for categories
62
+ CATEGORY_DISPLAY = {
63
+ 'AGE- 0-20 FEMALE': 'AGE- 0-20 FEMALE',
64
+ 'AGE- 0-20 MALE': 'AGE- 0-20 MALE',
65
+ 'AGE- 20-30 FEMALE': 'AGE- 20-30 FEMALE',
66
+ 'AGE- 20-30 MALE': 'AGE- 20-30 MALE',
67
+ 'AGE- 30-50 FEMALE': 'AGE- 30-50 FEMALE',
68
+ 'AGE- 30-50 MALE': 'AGE- 30-50 MALE',
69
+ 'AGE- 50- FEMALE': 'AGE- 50- FEMALE',
70
+ 'AGE- 50- MALE': 'AGE- 50- MALE'
71
+ }
72
+
73
+
74
+ def __init__(self):
75
+ super().__init__("age_detection")
76
+ self.category = "general"
77
+
78
+ self.CASE_TYPE: Optional[str] = 'age_detection'
79
+ self.CASE_VERSION: Optional[str] = '1.2'
80
+ # List of categories to track
81
+ self.target_categories = ['AGE- 0-20 FEMALE', 'AGE- 0-20 MALE', 'AGE- 20-30 FEMALE', 'AGE- 20-30 MALE', 'AGE- 30-50 FEMALE', 'AGE- 30-50 MALE', 'AGE- 50- FEMALE', 'AGE- 50- MALE']
82
+
83
+
84
+ # Initialize smoothing tracker
85
+ self.smoothing_tracker = None
86
+
87
+ # Initialize advanced tracker (will be created on first use)
88
+ self.tracker = None
89
+ # Initialize tracking state variables
90
+ self._total_frame_counter = 0
91
+ self._global_frame_offset = 0
92
+
93
+ # Track start time for "TOTAL SINCE" calculation
94
+ self._tracking_start_time = None
95
+
96
+ self._track_aliases: Dict[Any, Any] = {}
97
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
98
+ # Tunable parameters – adjust if necessary for specific scenarios
99
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
100
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
101
+
102
+ self._ascending_alert_list: List[int] = []
103
+ self.current_incident_end_timestamp: str = "N/A"
104
+
105
+
106
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
107
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
108
+ """
109
+ Main entry point for post-processing.
110
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
111
+ Returns a ProcessingResult with all relevant outputs.
112
+ """
113
+ start_time = time.time()
114
+ # Ensure config is correct type
115
+ if not isinstance(config, AgeDetectionConfig):
116
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
117
+ context=context)
118
+ if context is None:
119
+ context = ProcessingContext()
120
+
121
+ # Detect input format and store in context
122
+ input_format = match_results_structure(data)
123
+ context.input_format = input_format
124
+ context.confidence_threshold = config.confidence_threshold
125
+
126
+ if config.confidence_threshold is not None:
127
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
128
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
129
+ else:
130
+ processed_data = data
131
+
132
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
133
+
134
+ # Step 2: Apply category mapping if provided
135
+ if config.index_to_category:
136
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
137
+ self.logger.debug("Applied category mapping")
138
+
139
+ if config.target_categories:
140
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
141
+ self.logger.debug(f"Applied category filtering")
142
+
143
+ # Apply bbox smoothing if enabled
144
+ if config.enable_smoothing:
145
+ if self.smoothing_tracker is None:
146
+ smoothing_config = BBoxSmoothingConfig(
147
+ smoothing_algorithm=config.smoothing_algorithm,
148
+ window_size=config.smoothing_window_size,
149
+ cooldown_frames=config.smoothing_cooldown_frames,
150
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
151
+ confidence_range_factor=config.smoothing_confidence_range_factor,
152
+ enable_smoothing=True
153
+ )
154
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
155
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
156
+
157
+ # Advanced tracking (BYTETracker-like)
158
+ try:
159
+ from ..advanced_tracker import AdvancedTracker
160
+ from ..advanced_tracker.config import TrackerConfig
161
+
162
+ # Create tracker instance if it doesn't exist (preserves state across frames)
163
+ if self.tracker is None:
164
+ # Configure tracker thresholds based on the use-case confidence threshold so that
165
+ # low-confidence detections (e.g. < 0.7) can still be initialised as tracks when
166
+ # the user passes a lower `confidence_threshold` in the post-processing config.
167
+ if config.confidence_threshold is not None:
168
+ tracker_config = TrackerConfig(
169
+ track_high_thresh=float(config.confidence_threshold),
170
+ # Allow even lower detections to participate in secondary association
171
+ track_low_thresh=max(0.05, float(config.confidence_threshold) / 2),
172
+ new_track_thresh=float(config.confidence_threshold)
173
+ )
174
+ else:
175
+ tracker_config = TrackerConfig()
176
+ self.tracker = AdvancedTracker(tracker_config)
177
+ self.logger.info(
178
+ "Initialized AdvancedTracker for Monitoring and tracking with thresholds: "
179
+ f"high={tracker_config.track_high_thresh}, "
180
+ f"low={tracker_config.track_low_thresh}, "
181
+ f"new={tracker_config.new_track_thresh}"
182
+ )
183
+
184
+ # The tracker expects the data in the same format as input
185
+ # It will add track_id and frame_id to each detection
186
+ processed_data = self.tracker.update(processed_data)
187
+
188
+ except Exception as e:
189
+ # If advanced tracker fails, fallback to unsmoothed detections
190
+ self.logger.warning(f"AdvancedTracker failed: {e}")
191
+
192
+ # Update tracking state for total count per label
193
+ self._update_tracking_state(processed_data)
194
+
195
+ # Update frame counter
196
+ self._total_frame_counter += 1
197
+
198
+ # Extract frame information from stream_info
199
+ frame_number = None
200
+ if stream_info:
201
+ input_settings = stream_info.get("input_settings", {})
202
+ start_frame = input_settings.get("start_frame")
203
+ end_frame = input_settings.get("end_frame")
204
+ # If start and end frame are the same, it's a single frame
205
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
206
+ frame_number = start_frame
207
+
208
+ # Compute summaries and alerts
209
+ general_counting_summary = calculate_counting_summary(data)
210
+ counting_summary = self._count_categories(processed_data, config)
211
+ # Add total unique counts after tracking using only local state
212
+ print(counting_summary)
213
+ total_counts = self.get_total_counts()
214
+ counting_summary['total_counts'] = total_counts
215
+
216
+ alerts = self._check_alerts(counting_summary, frame_number, config)
217
+ predictions = self._extract_predictions(processed_data)
218
+
219
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
220
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
221
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
222
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
223
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
224
+
225
+ # Extract frame-based dictionaries from the lists
226
+ incidents = incidents_list[0] if incidents_list else {}
227
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
228
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
229
+ summary = summary_list[0] if summary_list else {}
230
+ agg_summary = {str(frame_number): {
231
+ "incidents": incidents,
232
+ "tracking_stats": tracking_stats,
233
+ "business_analytics": business_analytics,
234
+ "alerts": alerts,
235
+ "human_text": summary}
236
+ }
237
+
238
+
239
+ context.mark_completed()
240
+
241
+ # Build result object following the new pattern
242
+
243
+ result = self.create_result(
244
+ data={"agg_summary": agg_summary},
245
+ usecase=self.name,
246
+ category=self.category,
247
+ context=context
248
+ )
249
+
250
+ return result
251
+
252
+ def _check_alerts(self, summary: dict, frame_number:Any, config: AgeDetectionConfig) -> List[Dict]:
253
+ """
254
+ Check if any alert thresholds are exceeded and return alert dicts.
255
+ """
256
+ def get_trend(data, lookback=900, threshold=0.6):
257
+ '''
258
+ Determine if the trend is ascending or descending based on actual value progression.
259
+ Now works with values 0,1,2,3 (not just binary).
260
+ '''
261
+ window = data[-lookback:] if len(data) >= lookback else data
262
+ if len(window) < 2:
263
+ return True # not enough data to determine trend
264
+ increasing = 0
265
+ total = 0
266
+ for i in range(1, len(window)):
267
+ if window[i] >= window[i - 1]:
268
+ increasing += 1
269
+ total += 1
270
+ ratio = increasing / total
271
+ if ratio >= threshold:
272
+ return True
273
+ elif ratio <= (1 - threshold):
274
+ return False
275
+
276
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
277
+ alerts = []
278
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
279
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
280
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
281
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
282
+
283
+ if not config.alert_config:
284
+ return alerts
285
+
286
+ total = summary.get("total_count", 0)
287
+ #self._ascending_alert_list
288
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
289
+
290
+ for category, threshold in config.alert_config.count_thresholds.items():
291
+ if category == "all" and total > threshold:
292
+
293
+ alerts.append({
294
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
295
+ "alert_id": "alert_"+category+'_'+frame_key,
296
+ "incident_category": self.CASE_TYPE,
297
+ "threshold_level": threshold,
298
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
299
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
300
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
301
+ }
302
+ })
303
+ elif category in summary.get("per_category_count", {}):
304
+ count = summary.get("per_category_count", {})[category]
305
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
306
+ alerts.append({
307
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
308
+ "alert_id": "alert_"+category+'_'+frame_key,
309
+ "incident_category": self.CASE_TYPE,
310
+ "threshold_level": threshold,
311
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
312
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
313
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
314
+ }
315
+ })
316
+ else:
317
+ pass
318
+ return alerts
319
+
320
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: AgeDetectionConfig,
321
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
322
+ Dict]:
323
+ """Generate structured incidents for the output format with frame-based keys."""
324
+
325
+ incidents = []
326
+ total_detections = counting_summary.get("total_count", 0)
327
+ current_timestamp = self._get_current_timestamp_str(stream_info)
328
+ camera_info = self.get_camera_info_from_stream(stream_info)
329
+
330
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
331
+
332
+ if total_detections > 0:
333
+ # Determine event level based on thresholds
334
+ level = "low"
335
+ intensity = 5.0
336
+ start_timestamp = self._get_start_timestamp_str(stream_info)
337
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
338
+ self.current_incident_end_timestamp = 'Incident still active'
339
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
340
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
341
+ self.current_incident_end_timestamp = current_timestamp
342
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
343
+ self.current_incident_end_timestamp = 'N/A'
344
+
345
+ if config.alert_config and config.alert_config.count_thresholds:
346
+ threshold = config.alert_config.count_thresholds.get("all", 15)
347
+ intensity = min(10.0, (total_detections / threshold) * 10)
348
+
349
+ if intensity >= 9:
350
+ level = "critical"
351
+ self._ascending_alert_list.append(3)
352
+ elif intensity >= 7:
353
+ level = "significant"
354
+ self._ascending_alert_list.append(2)
355
+ elif intensity >= 5:
356
+ level = "medium"
357
+ self._ascending_alert_list.append(1)
358
+ else:
359
+ level = "low"
360
+ self._ascending_alert_list.append(0)
361
+ else:
362
+ if total_detections > 30:
363
+ level = "critical"
364
+ intensity = 10.0
365
+ self._ascending_alert_list.append(3)
366
+ elif total_detections > 25:
367
+ level = "significant"
368
+ intensity = 9.0
369
+ self._ascending_alert_list.append(2)
370
+ elif total_detections > 15:
371
+ level = "medium"
372
+ intensity = 7.0
373
+ self._ascending_alert_list.append(1)
374
+ else:
375
+ level = "low"
376
+ intensity = min(10.0, total_detections / 3.0)
377
+ self._ascending_alert_list.append(0)
378
+
379
+ # Generate human text in new format
380
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
381
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
382
+ human_text = "\n".join(human_text_lines)
383
+
384
+ alert_settings=[]
385
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
386
+ alert_settings.append({
387
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
388
+ "incident_category": self.CASE_TYPE,
389
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
390
+ "ascending": True,
391
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
392
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
393
+ }
394
+ })
395
+
396
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
397
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
398
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
399
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
400
+ incidents.append(event)
401
+
402
+ else:
403
+ self._ascending_alert_list.append(0)
404
+ incidents.append({})
405
+
406
+ return incidents
407
+ def _generate_tracking_stats(
408
+ self,
409
+ counting_summary: Dict,
410
+ alerts: List,
411
+ config: AgeDetectionConfig,
412
+ frame_number: Optional[int] = None,
413
+ stream_info: Optional[Dict[str, Any]] = None
414
+ ) -> List[Dict]:
415
+ """Generate structured tracking stats matching eg.json format."""
416
+ camera_info = self.get_camera_info_from_stream(stream_info)
417
+
418
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
419
+ # tracking_stats = [{frame_key: []}]
420
+ # frame_tracking_stats = tracking_stats[0][frame_key]
421
+ tracking_stats = []
422
+
423
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
424
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
425
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
426
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
427
+
428
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
429
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
430
+
431
+ # Create high precision timestamps for input_timestamp and reset_timestamp
432
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
433
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
434
+
435
+
436
+ # Build total_counts array in expected format
437
+ total_counts = []
438
+ for cat, count in total_counts_dict.items():
439
+ if count > 0:
440
+ total_counts.append({
441
+ "category": cat,
442
+ "count": count
443
+ })
444
+
445
+ # Build current_counts array in expected format
446
+ current_counts = []
447
+ for cat, count in per_category_count.items():
448
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
449
+ current_counts.append({
450
+ "category": cat,
451
+ "count": count
452
+ })
453
+
454
+ # Prepare detections without confidence scores (as per eg.json)
455
+ detections = []
456
+ for detection in counting_summary.get("detections", []):
457
+ bbox = detection.get("bounding_box", {})
458
+ category = detection.get("category", "person")
459
+ # Include segmentation if available (like in eg.json)
460
+ if detection.get("masks"):
461
+ segmentation= detection.get("masks", [])
462
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
463
+ elif detection.get("segmentation"):
464
+ segmentation= detection.get("segmentation")
465
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
466
+ elif detection.get("mask"):
467
+ segmentation= detection.get("mask")
468
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
469
+ else:
470
+ detection_obj = self.create_detection_object(category, bbox)
471
+ detections.append(detection_obj)
472
+
473
+ # Build alert_settings array in expected format
474
+ alert_settings = []
475
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
476
+ alert_settings.append({
477
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
478
+ "incident_category": self.CASE_TYPE,
479
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
480
+ "ascending": True,
481
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
482
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
483
+ }
484
+ })
485
+
486
+ # Generate human_text in expected format
487
+ human_text_lines = [f"Tracking Statistics:"]
488
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
489
+
490
+ for cat, count in per_category_count.items():
491
+ human_text_lines.append(f"\t{cat}: {count}")
492
+
493
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
494
+ for cat, count in total_counts_dict.items():
495
+ if count > 0:
496
+ human_text_lines.append(f"\t{cat}: {count}")
497
+
498
+ if alerts:
499
+ for alert in alerts:
500
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
501
+ else:
502
+ human_text_lines.append("Alerts: None")
503
+
504
+ human_text = "\n".join(human_text_lines)
505
+ reset_settings=[
506
+ {
507
+ "interval_type": "daily",
508
+ "reset_time": {
509
+ "value": 9,
510
+ "time_unit": "hour"
511
+ }
512
+ }
513
+ ]
514
+
515
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
516
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
517
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
518
+ reset_time=high_precision_reset_timestamp)
519
+
520
+ tracking_stats.append(tracking_stat)
521
+ return tracking_stats
522
+
523
+ def _generate_business_analytics(self, counting_summary: Dict, alerts:Any, config: AgeDetectionConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
524
+ """Generate standardized business analytics for the agg_summary structure."""
525
+ if is_empty:
526
+ return []
527
+
528
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
529
+ #camera_info = self.get_camera_info_from_stream(stream_info)
530
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
531
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
532
+ # reset_settings)
533
+ # return business_analytics
534
+
535
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
536
+ """
537
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
538
+ """
539
+ lines = {}
540
+ lines["Application Name"] = self.CASE_TYPE
541
+ lines["Application Version"] = self.CASE_VERSION
542
+ if len(incidents) > 0:
543
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
544
+ if len(tracking_stats) > 0:
545
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
546
+ if len(business_analytics) > 0:
547
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
548
+
549
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
550
+ lines["Summary"] = "No Summary Data"
551
+
552
+ return [lines]
553
+
554
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
555
+ """
556
+ Get detailed information about track IDs (per frame).
557
+ """
558
+ # Collect all track_ids in this frame
559
+ frame_track_ids = set()
560
+ for det in detections:
561
+ tid = det.get('track_id')
562
+ if tid is not None:
563
+ frame_track_ids.add(tid)
564
+ # Use persistent total set for unique counting
565
+ total_track_ids = set()
566
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
567
+ total_track_ids.update(s)
568
+ return {
569
+ "total_count": len(total_track_ids),
570
+ "current_frame_count": len(frame_track_ids),
571
+ "total_unique_track_ids": len(total_track_ids),
572
+ "current_frame_track_ids": list(frame_track_ids),
573
+ "last_update_time": time.time(),
574
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
575
+ }
576
+
577
+ def _update_tracking_state(self, detections: list):
578
+ """
579
+ Track unique categories track_ids per category for total count after tracking.
580
+ Applies canonical ID merging to avoid duplicate counting when the underlying
581
+ tracker loses an object temporarily and assigns a new ID.
582
+ """
583
+ # Lazily initialise storage dicts
584
+ if not hasattr(self, "_per_category_total_track_ids"):
585
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
586
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
587
+
588
+ for det in detections:
589
+ cat = det.get("category")
590
+ raw_track_id = det.get("track_id")
591
+ if cat not in self.target_categories or raw_track_id is None:
592
+ continue
593
+ bbox = det.get("bounding_box", det.get("bbox"))
594
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
595
+ # Propagate canonical ID back to detection so downstream logic uses it
596
+ det["track_id"] = canonical_id
597
+
598
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
599
+ self._current_frame_track_ids[cat].add(canonical_id)
600
+
601
+ def get_total_counts(self):
602
+ """
603
+ Return total unique track_id count for each category.
604
+ """
605
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
606
+
607
+
608
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
609
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
610
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
611
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
612
+
613
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
614
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
615
+ hours = int(timestamp // 3600)
616
+ minutes = int((timestamp % 3600) // 60)
617
+ seconds = round(float(timestamp % 60),2)
618
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
619
+
620
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
621
+ """Get formatted current timestamp based on stream type."""
622
+ if not stream_info:
623
+ return "00:00:00.00"
624
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
625
+ if precision:
626
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
627
+ if frame_id:
628
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
629
+ else:
630
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
631
+ stream_time_str = self._format_timestamp_for_video(start_time)
632
+ return stream_time_str
633
+ else:
634
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
635
+
636
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
637
+ if frame_id:
638
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
639
+ else:
640
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
641
+ stream_time_str = self._format_timestamp_for_video(start_time)
642
+ return stream_time_str
643
+ else:
644
+ # For streams, use stream_time from stream_info
645
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
646
+ if stream_time_str:
647
+ # Parse the high precision timestamp string to get timestamp
648
+ try:
649
+ # Remove " UTC" suffix and parse
650
+ timestamp_str = stream_time_str.replace(" UTC", "")
651
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
652
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
653
+ return self._format_timestamp_for_stream(timestamp)
654
+ except:
655
+ # Fallback to current time if parsing fails
656
+ return self._format_timestamp_for_stream(time.time())
657
+ else:
658
+ return self._format_timestamp_for_stream(time.time())
659
+
660
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
661
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
662
+ if not stream_info:
663
+ return "00:00:00"
664
+ if precision:
665
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
666
+ return "00:00:00"
667
+ else:
668
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
669
+
670
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
671
+ # If video format, start from 00:00:00
672
+ return "00:00:00"
673
+ else:
674
+ # For streams, use tracking start time or current time with minutes/seconds reset
675
+ if self._tracking_start_time is None:
676
+ # Try to extract timestamp from stream_time string
677
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
678
+ if stream_time_str:
679
+ try:
680
+ # Remove " UTC" suffix and parse
681
+ timestamp_str = stream_time_str.replace(" UTC", "")
682
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
683
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
684
+ except:
685
+ # Fallback to current time if parsing fails
686
+ self._tracking_start_time = time.time()
687
+ else:
688
+ self._tracking_start_time = time.time()
689
+
690
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
691
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
692
+ dt = dt.replace(minute=0, second=0, microsecond=0)
693
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
694
+
695
+
696
+ def _count_categories(self, detections: list, config: AgeDetectionConfig) -> dict:
697
+ """
698
+ Count the number of detections per category and return a summary dict.
699
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
700
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
701
+ """
702
+ counts = {}
703
+ for det in detections:
704
+ cat = det.get('category', 'unknown')
705
+ counts[cat] = counts.get(cat, 0) + 1
706
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
707
+ return {
708
+ "total_count": sum(counts.values()),
709
+ "per_category_count": counts,
710
+ "detections": [
711
+ {
712
+ "bounding_box": det.get("bounding_box"),
713
+ "category": det.get("category"),
714
+ "confidence": det.get("confidence"),
715
+ "track_id": det.get("track_id"),
716
+ "frame_id": det.get("frame_id")
717
+ }
718
+ for det in detections
719
+ ]
720
+ }
721
+
722
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
723
+ """
724
+ Extract prediction details for output (category, confidence, bounding box).
725
+ """
726
+ return [
727
+ {
728
+ "category": det.get("category", "unknown"),
729
+ "confidence": det.get("confidence", 0.0),
730
+ "bounding_box": det.get("bounding_box", {})
731
+ }
732
+ for det in detections
733
+ ]
734
+
735
+ # ------------------------------------------------------------------ #
736
+ # Canonical ID helpers #
737
+ # ------------------------------------------------------------------ #
738
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
739
+ """Compute IoU between two bounding boxes which may be dicts or lists.
740
+ Falls back to 0 when insufficient data is available."""
741
+
742
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
743
+ def _bbox_to_list(bbox):
744
+ if bbox is None:
745
+ return []
746
+ if isinstance(bbox, list):
747
+ return bbox[:4] if len(bbox) >= 4 else []
748
+ if isinstance(bbox, dict):
749
+ if "xmin" in bbox:
750
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
751
+ if "x1" in bbox:
752
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
753
+ # Fallback: first four numeric values
754
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
755
+ return values[:4] if len(values) >= 4 else []
756
+ return []
757
+
758
+ l1 = _bbox_to_list(box1)
759
+ l2 = _bbox_to_list(box2)
760
+ if len(l1) < 4 or len(l2) < 4:
761
+ return 0.0
762
+ x1_min, y1_min, x1_max, y1_max = l1
763
+ x2_min, y2_min, x2_max, y2_max = l2
764
+
765
+ # Ensure correct order
766
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
767
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
768
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
769
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
770
+
771
+ inter_x_min = max(x1_min, x2_min)
772
+ inter_y_min = max(y1_min, y2_min)
773
+ inter_x_max = min(x1_max, x2_max)
774
+ inter_y_max = min(y1_max, y2_max)
775
+
776
+ inter_w = max(0.0, inter_x_max - inter_x_min)
777
+ inter_h = max(0.0, inter_y_max - inter_y_min)
778
+ inter_area = inter_w * inter_h
779
+
780
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
781
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
782
+ union_area = area1 + area2 - inter_area
783
+
784
+ return (inter_area / union_area) if union_area > 0 else 0.0
785
+
786
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
787
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
788
+ tracks when IoU and temporal constraints indicate they represent the
789
+ same physical."""
790
+ if raw_id is None or bbox is None:
791
+ # Nothing to merge
792
+ return raw_id
793
+
794
+ now = time.time()
795
+
796
+ # Fast path – raw_id already mapped
797
+ if raw_id in self._track_aliases:
798
+ canonical_id = self._track_aliases[raw_id]
799
+ track_info = self._canonical_tracks.get(canonical_id)
800
+ if track_info is not None:
801
+ track_info["last_bbox"] = bbox
802
+ track_info["last_update"] = now
803
+ track_info["raw_ids"].add(raw_id)
804
+ return canonical_id
805
+
806
+ # Attempt to merge with an existing canonical track
807
+ for canonical_id, info in self._canonical_tracks.items():
808
+ # Only consider recently updated tracks
809
+ if now - info["last_update"] > self._track_merge_time_window:
810
+ continue
811
+ iou = self._compute_iou(bbox, info["last_bbox"])
812
+ if iou >= self._track_merge_iou_threshold:
813
+ # Merge
814
+ self._track_aliases[raw_id] = canonical_id
815
+ info["last_bbox"] = bbox
816
+ info["last_update"] = now
817
+ info["raw_ids"].add(raw_id)
818
+ return canonical_id
819
+
820
+ # No match – register new canonical track
821
+ canonical_id = raw_id
822
+ self._track_aliases[raw_id] = canonical_id
823
+ self._canonical_tracks[canonical_id] = {
824
+ "last_bbox": bbox,
825
+ "last_update": now,
826
+ "raw_ids": {raw_id},
827
+ }
828
+ return canonical_id
829
+
830
+ def _format_timestamp(self, timestamp: float) -> str:
831
+ """Format a timestamp for human-readable output."""
832
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
833
+
834
+ def _get_tracking_start_time(self) -> str:
835
+ """Get the tracking start time, formatted as a string."""
836
+ if self._tracking_start_time is None:
837
+ return "N/A"
838
+ return self._format_timestamp(self._tracking_start_time)
839
+
840
+ def _set_tracking_start_time(self) -> None:
841
+ """Set the tracking start time to the current time."""
842
+ self._tracking_start_time = time.time()