matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,946 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+ import copy # Added for deep copying detections to preserve original masks
6
+
7
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
8
+ from ..utils import (
9
+ filter_by_confidence,
10
+ filter_by_categories,
11
+ apply_category_mapping,
12
+ count_objects_by_category,
13
+ count_objects_in_zones,
14
+ calculate_counting_summary,
15
+ match_results_structure,
16
+ bbox_smoothing,
17
+ BBoxSmoothingConfig,
18
+ BBoxSmoothingTracker
19
+ )
20
+ from dataclasses import dataclass, field
21
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
22
+
23
+
24
+ @dataclass
25
+ class CarPartSegmentationConfig(BaseConfig):
26
+ """Configuration for car part detection use case in car part monitoring."""
27
+ # Smoothing configuration
28
+ enable_smoothing: bool = True
29
+ smoothing_algorithm: str = "observability" # "window" or "observability"
30
+ smoothing_window_size: int = 20
31
+ smoothing_cooldown_frames: int = 5
32
+ smoothing_confidence_range_factor: float = 0.5
33
+
34
+ #confidence thresholds
35
+ confidence_threshold: float = 0.3
36
+
37
+ usecase_categories: List[str] = field(
38
+ default_factory=lambda: ['Back-bumper','Back-door','Back-wheel','Back-window','Back-windshield','Fender',
39
+ 'Front-bumper','Front-door','Front-wheel','Front-window','Grille','Headlight',
40
+ 'Hood','License-plate','Mirror','Quarter-panel','Rocker-panel','Roof','Tail-light',
41
+ 'Trunk','Windshield']
42
+ )
43
+
44
+ target_categories: List[str] = field(
45
+ default_factory=lambda: ['Back-bumper','Back-door','Back-wheel','Back-window','Back-windshield','Fender',
46
+ 'Front-bumper','Front-door','Front-wheel','Front-window','Grille','Headlight',
47
+ 'Hood','License-plate','Mirror','Quarter-panel','Rocker-panel','Roof','Tail-light',
48
+ 'Trunk','Windshield']
49
+ )
50
+
51
+ alert_config: Optional[AlertConfig] = None
52
+
53
+ index_to_category: Optional[Dict[int, str]] = field(
54
+ default_factory=lambda: {
55
+ 0: 'Back-wheel',
56
+ 1: 'Back-window',
57
+ 2: 'Back-door',
58
+ 3: 'Mirror',
59
+ 4: 'License-plate',
60
+ 5: 'Grille',
61
+ 6: 'Front-bumper',
62
+ 7: 'Hood',
63
+ 8: 'Headlight',
64
+ 9: 'Front-wheel',
65
+ 10: 'Fender',
66
+ 11: 'Front-window',
67
+ 12: 'Front-door',
68
+ 13: 'Rocker-panel',
69
+ 14: 'Quarter-panel',
70
+ 15: 'Back-bumper',
71
+ 16: 'Roof',
72
+ 17: 'Windshield',
73
+ 18: 'Trunk',
74
+ 19: 'Tail-light',
75
+ 20: 'Back-windshield'
76
+ }
77
+ )
78
+
79
+
80
+ class CarPartSegmentationUseCase(BaseProcessor):
81
+
82
+ # Human-friendly display names for categories
83
+ CATEGORY_DISPLAY = {
84
+ 'Back-bumper': 'Back-bumper',
85
+ 'Back-door': 'Back-door',
86
+ 'Back-wheel': 'Back-wheel',
87
+ 'Back-window': 'Back-window',
88
+ 'Back-windshield': 'Back-windshield',
89
+ 'Fender': 'Fender',
90
+ 'Front-bumper': 'Front-bumper',
91
+ 'Front-door': 'Front-door',
92
+ 'Front-wheel': 'Front-wheel',
93
+ 'Front-window': 'Front-window',
94
+ 'Grille': 'Grille',
95
+ 'Headlight': 'Headlight',
96
+ 'Hood': 'Hood',
97
+ 'License-plate': 'License-plate',
98
+ 'Mirror': 'Mirror',
99
+ 'Quarter-panel': 'Quarter-panel',
100
+ 'Rocker-panel': 'Rocker-panel',
101
+ 'Roof': 'Roof',
102
+ 'Tail-light': 'Tail-light',
103
+ 'Trunk': 'Trunk',
104
+ 'Windshield': 'Windshield',
105
+ }
106
+
107
+ def __init__(self):
108
+ super().__init__("car_part_segmentation")
109
+ self.category = "automobile"
110
+
111
+ # List of categories to track
112
+ self.target_categories = ['Back-bumper','Back-door','Back-wheel','Back-window','Back-windshield','Fender',
113
+ 'Front-bumper','Front-door','Front-wheel','Front-window','Grille','Headlight',
114
+ 'Hood','License-plate','Mirror','Quarter-panel','Rocker-panel','Roof','Tail-light',
115
+ 'Trunk','Windshield']
116
+
117
+ self.CASE_TYPE: Optional[str] = 'car_part_segmentation'
118
+ self.CASE_VERSION: Optional[str] = '1.3'
119
+
120
+ # Initialize smoothing tracker
121
+ self.smoothing_tracker = None
122
+
123
+ # Initialize advanced tracker (will be created on first use)
124
+ self.tracker = None
125
+
126
+ # Initialize tracking state variables
127
+ self._total_frame_counter = 0
128
+ self._global_frame_offset = 0
129
+
130
+ # Track start time for "TOTAL SINCE" calculation
131
+ self._tracking_start_time = None
132
+
133
+ # ------------------------------------------------------------------ #
134
+ # Canonical tracking aliasing to avoid duplicate counts #
135
+ # ------------------------------------------------------------------ #
136
+ # Maps raw tracker-generated IDs to stable canonical IDs that persist
137
+ # even if the underlying tracker re-assigns a new ID after a short
138
+ # interruption. This mirrors the logic used in people_counting to
139
+ # provide accurate unique counting.
140
+ self._track_aliases: Dict[Any, Any] = {}
141
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
142
+ # Tunable parameters – adjust if necessary for specific scenarios
143
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
144
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
145
+
146
+ self._ascending_alert_list: List[int] = []
147
+ self.current_incident_end_timestamp: str = "N/A"
148
+
149
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
150
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
151
+ """
152
+ Main entry point for post-processing.
153
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
154
+ Returns a ProcessingResult with all relevant outputs.
155
+ """
156
+ start_time = time.time()
157
+ # Ensure config is correct type
158
+ if not isinstance(config, CarPartSegmentationConfig):
159
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
160
+ context=context)
161
+ if context is None:
162
+ context = ProcessingContext()
163
+
164
+ # Detect input format and store in context
165
+ input_format = match_results_structure(data)
166
+ context.input_format = input_format
167
+ context.confidence_threshold = config.confidence_threshold
168
+
169
+ # Step 1: Confidence filtering
170
+ if config.confidence_threshold is not None:
171
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
172
+ else:
173
+ processed_data = data
174
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
175
+
176
+ # Step 2: Apply category mapping if provided
177
+ if config.index_to_category:
178
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
179
+
180
+ # Step 3: Category filtering
181
+ if config.target_categories:
182
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
183
+
184
+ # Step 4: Apply bbox smoothing if enabled
185
+ # Deep-copy detections so that we preserve the original masks before any
186
+ # smoothing/tracking logic potentially removes them.
187
+ raw_processed_data = [copy.deepcopy(det) for det in processed_data]
188
+ if config.enable_smoothing:
189
+ if self.smoothing_tracker is None:
190
+ smoothing_config = BBoxSmoothingConfig(
191
+ smoothing_algorithm=config.smoothing_algorithm,
192
+ window_size=config.smoothing_window_size,
193
+ cooldown_frames=config.smoothing_cooldown_frames,
194
+ confidence_threshold=config.confidence_threshold,
195
+ confidence_range_factor=config.smoothing_confidence_range_factor,
196
+ enable_smoothing=True
197
+ )
198
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
199
+
200
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
201
+ # Restore masks after smoothing
202
+
203
+ # Step 5: Advanced tracking (BYTETracker-like)
204
+ try:
205
+ from ..advanced_tracker import AdvancedTracker
206
+ from ..advanced_tracker.config import TrackerConfig
207
+
208
+ # Create tracker instance if it doesn't exist (preserves state across frames)
209
+ if self.tracker is None:
210
+ tracker_config = TrackerConfig()
211
+ self.tracker = AdvancedTracker(tracker_config)
212
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
213
+
214
+ processed_data = self.tracker.update(processed_data)
215
+ except Exception as e:
216
+ # If advanced tracker fails, fallback to unsmoothed detections
217
+ self.logger.warning(f"AdvancedTracker failed: {e}")
218
+
219
+ # Update tracking state for total count per label
220
+ self._update_tracking_state(processed_data)
221
+
222
+ # ------------------------------------------------------------------ #
223
+ # Re-attach segmentation masks that were present in the original input
224
+ # but may have been stripped during smoothing/tracking. We match each
225
+ # processed detection back to the raw detection with the highest IoU
226
+ # and copy over its "masks" field (if available).
227
+ # ------------------------------------------------------------------ #
228
+ processed_data = self._attach_masks_to_detections(processed_data, raw_processed_data)
229
+
230
+ # Update frame counter
231
+ self._total_frame_counter += 1
232
+
233
+ # Extract frame information from stream_info
234
+ frame_number = None
235
+ if stream_info:
236
+ input_settings = stream_info.get("input_settings", {})
237
+ start_frame = input_settings.get("start_frame")
238
+ end_frame = input_settings.get("end_frame")
239
+ # If start and end frame are the same, it's a single frame
240
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
241
+ frame_number = start_frame
242
+
243
+ # Compute summaries and alerts
244
+ general_counting_summary = calculate_counting_summary(data)
245
+ counting_summary = self._count_categories(processed_data, config)
246
+ # Add total unique counts after tracking using only local state
247
+ total_counts = self.get_total_counts()
248
+ counting_summary['total_counts'] = total_counts
249
+
250
+ alerts = self._check_alerts(counting_summary, frame_number, config)
251
+ predictions = self._extract_predictions(processed_data)
252
+
253
+ # Step: Generate structured events and tracking stats with frame-based keys
254
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
255
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number,stream_info)
256
+ # business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info, is_empty=False)
257
+ business_analytics_list = []
258
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
259
+
260
+ # Extract frame-based dictionaries from the lists
261
+ incidents = incidents_list[0] if incidents_list else {}
262
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
263
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
264
+ summary = summary_list[0] if summary_list else {}
265
+ agg_summary = {str(frame_number): {
266
+ "incidents": incidents,
267
+ "tracking_stats": tracking_stats,
268
+ "business_analytics": business_analytics,
269
+ "alerts": alerts,
270
+ "human_text": summary}
271
+ }
272
+
273
+ context.mark_completed()
274
+
275
+ # Build result object following the new pattern
276
+
277
+ result = self.create_result(
278
+ data={"agg_summary": agg_summary},
279
+ usecase=self.name,
280
+ category=self.category,
281
+ context=context
282
+ )
283
+
284
+ return result
285
+
286
+ def _check_alerts(self, summary: dict, frame_number:Any, config: CarPartSegmentationConfig) -> List[Dict]:
287
+ """
288
+ Check if any alert thresholds are exceeded and return alert dicts.
289
+ """
290
+ def get_trend(data, lookback=900, threshold=0.6):
291
+ '''
292
+ Determine if the trend is ascending or descending based on actual value progression.
293
+ Now works with values 0,1,2,3 (not just binary).
294
+ '''
295
+ window = data[-lookback:] if len(data) >= lookback else data
296
+ if len(window) < 2:
297
+ return True # not enough data to determine trend
298
+ increasing = 0
299
+ total = 0
300
+ for i in range(1, len(window)):
301
+ if window[i] >= window[i - 1]:
302
+ increasing += 1
303
+ total += 1
304
+ ratio = increasing / total
305
+ if ratio >= threshold:
306
+ return True
307
+ elif ratio <= (1 - threshold):
308
+ return False
309
+
310
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
311
+ alerts = []
312
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
313
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
314
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
315
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
316
+
317
+ if not config.alert_config:
318
+ return alerts
319
+
320
+ total = summary.get("total_count", 0)
321
+ #self._ascending_alert_list
322
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
323
+
324
+ for category, threshold in config.alert_config.count_thresholds.items():
325
+ if category == "all" and total > threshold:
326
+
327
+ alerts.append({
328
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
329
+ "alert_id": "alert_"+category+'_'+frame_key,
330
+ "incident_category": self.CASE_TYPE,
331
+ "threshold_level": threshold,
332
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
333
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
334
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
335
+ }
336
+ })
337
+ elif category in summary.get("per_category_count", {}):
338
+ count = summary.get("per_category_count", {})[category]
339
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
340
+ alerts.append({
341
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
342
+ "alert_id": "alert_"+category+'_'+frame_key,
343
+ "incident_category": self.CASE_TYPE,
344
+ "threshold_level": threshold,
345
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
346
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
347
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
348
+ }
349
+ })
350
+ else:
351
+ pass
352
+ return alerts
353
+
354
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: CarPartSegmentationConfig,
355
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
356
+ Dict]:
357
+ """Generate structured events for the output format with frame-based keys."""
358
+
359
+ # Use frame number as key, fallback to 'current_frame' if not available
360
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
361
+ incidents=[]
362
+ total_detections = counting_summary.get("total_count", 0)
363
+ current_timestamp = self._get_current_timestamp_str(stream_info)
364
+ camera_info = self.get_camera_info_from_stream(stream_info)
365
+
366
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
367
+
368
+ if total_detections > 0:
369
+ # Determine event level based on thresholds
370
+ level = "low"
371
+ intensity = 5.0
372
+ start_timestamp = self._get_start_timestamp_str(stream_info)
373
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
374
+ self.current_incident_end_timestamp = 'Incident still active'
375
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
376
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
377
+ self.current_incident_end_timestamp = current_timestamp
378
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
379
+ self.current_incident_end_timestamp = 'N/A'
380
+
381
+ if config.alert_config and config.alert_config.count_thresholds:
382
+ threshold = config.alert_config.count_thresholds.get("all", 15)
383
+ intensity = min(10.0, (total_detections / threshold) * 10)
384
+
385
+ if intensity >= 9:
386
+ level = "critical"
387
+ self._ascending_alert_list.append(3)
388
+ elif intensity >= 7:
389
+ level = "significant"
390
+ self._ascending_alert_list.append(2)
391
+ elif intensity >= 5:
392
+ level = "medium"
393
+ self._ascending_alert_list.append(1)
394
+ else:
395
+ level = "low"
396
+ self._ascending_alert_list.append(0)
397
+ else:
398
+ if total_detections > 30:
399
+ level = "critical"
400
+ intensity = 10.0
401
+ self._ascending_alert_list.append(3)
402
+ elif total_detections > 25:
403
+ level = "significant"
404
+ intensity = 9.0
405
+ self._ascending_alert_list.append(2)
406
+ elif total_detections > 15:
407
+ level = "medium"
408
+ intensity = 7.0
409
+ self._ascending_alert_list.append(1)
410
+ else:
411
+ level = "low"
412
+ intensity = min(10.0, total_detections / 3.0)
413
+ self._ascending_alert_list.append(0)
414
+
415
+ # Generate human text in new format
416
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
417
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
418
+ human_text = "\n".join(human_text_lines)
419
+
420
+ alert_settings=[]
421
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
422
+ alert_settings.append({
423
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
424
+ "incident_category": self.CASE_TYPE,
425
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
426
+ "ascending": True,
427
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
428
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
429
+ }
430
+ })
431
+
432
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
433
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
434
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
435
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
436
+ incidents.append(event)
437
+
438
+ else:
439
+ self._ascending_alert_list.append(0)
440
+ incidents.append({})
441
+
442
+ return incidents
443
+
444
+ def _generate_tracking_stats(
445
+ self,
446
+ counting_summary: Dict,
447
+ alerts: Any,
448
+ config: CarPartSegmentationConfig,
449
+ frame_number: Optional[int] = None,
450
+ stream_info: Optional[Dict[str, Any]] = None
451
+ ) -> List[Dict]:
452
+ """Generate structured tracking stats for the output format with frame-based keys, including track_ids_info and detections with masks."""
453
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
454
+ # tracking_stats = [{frame_key: []}]
455
+ # frame_tracking_stats = tracking_stats[0][frame_key]
456
+ tracking_stats = []
457
+
458
+ total_detections = counting_summary.get("total_count", 0)
459
+ total_counts = counting_summary.get("total_counts", {})
460
+ cumulative_total = sum(total_counts.values()) if total_counts else 0
461
+ per_category_count = counting_summary.get("per_category_count", {})
462
+
463
+ track_ids_info = self._get_track_ids_info(counting_summary.get("detections", []))
464
+
465
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
466
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
467
+
468
+ # Create high precision timestamps for input_timestamp and reset_timestamp
469
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
470
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
471
+
472
+ camera_info = self.get_camera_info_from_stream(stream_info)
473
+ human_text_lines = []
474
+
475
+ # CURRENT FRAME section
476
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
477
+ if total_detections > 0:
478
+ category_counts = [f"{count} {cat}" for cat, count in per_category_count.items()]
479
+ if len(category_counts) == 1:
480
+ detection_text = category_counts[0] + " detected"
481
+ elif len(category_counts) == 2:
482
+ detection_text = f"{category_counts[0]} and {category_counts[1]} detected"
483
+ else:
484
+ detection_text = f"{', '.join(category_counts[:-1])}, and {category_counts[-1]} detected"
485
+ human_text_lines.append(f"\t- {detection_text}")
486
+ else:
487
+ human_text_lines.append(f"\t- No detections")
488
+
489
+ human_text_lines.append("") # spacing
490
+
491
+ # TOTAL SINCE section
492
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}:")
493
+ human_text_lines.append(f"\t- Total Detected: {cumulative_total}")
494
+ # Add category-wise counts
495
+ if total_counts:
496
+ for cat, count in total_counts.items():
497
+ if count > 0: # Only include categories with non-zero counts
498
+ human_text_lines.append(f"\t- {cat}: {count}")
499
+ # Build current_counts array in expected format
500
+ current_counts = []
501
+ for cat, count in per_category_count.items():
502
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
503
+ current_counts.append({
504
+ "category": cat,
505
+ "count": count
506
+ })
507
+
508
+ human_text = "\n".join(human_text_lines)
509
+
510
+ # Include detections with masks from counting_summary
511
+ # Prepare detections without confidence scores (as per eg.json)
512
+ detections = []
513
+ for detection in counting_summary.get("detections", []):
514
+ bbox = detection.get("bounding_box", {})
515
+ category = detection.get("category", "person")
516
+ # Include segmentation if available (like in eg.json)
517
+ if detection.get("masks"):
518
+ segmentation= detection.get("masks", [])
519
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
520
+ elif detection.get("segmentation"):
521
+ segmentation= detection.get("segmentation")
522
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
523
+ elif detection.get("mask"):
524
+ segmentation= detection.get("mask")
525
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
526
+ else:
527
+ detection_obj = self.create_detection_object(category, bbox)
528
+ detections.append(detection_obj)
529
+
530
+ # Build alert_settings array in expected format
531
+ alert_settings = []
532
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
533
+ alert_settings.append({
534
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
535
+ "incident_category": self.CASE_TYPE,
536
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
537
+ "ascending": True,
538
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
539
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
540
+ }
541
+ })
542
+
543
+ if alerts:
544
+ for alert in alerts:
545
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
546
+ else:
547
+ human_text_lines.append("Alerts: None")
548
+
549
+ human_text = "\n".join(human_text_lines)
550
+ reset_settings = [
551
+ {
552
+ "interval_type": "daily",
553
+ "reset_time": {
554
+ "value": 9,
555
+ "time_unit": "hour"
556
+ }
557
+ }
558
+ ]
559
+
560
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
561
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
562
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
563
+ reset_time=high_precision_reset_timestamp)
564
+
565
+ tracking_stats.append(tracking_stat)
566
+ return tracking_stats
567
+
568
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: CarPartSegmentationConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
569
+ """Generate standardized business analytics for the agg_summary structure."""
570
+ if is_empty:
571
+ return []
572
+
573
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
574
+ #camera_info = self.get_camera_info_from_stream(stream_info)
575
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
576
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
577
+ # reset_settings)
578
+ # return business_analytics
579
+
580
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
581
+ """
582
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
583
+ """
584
+ lines = {}
585
+ lines["Application Name"] = self.CASE_TYPE
586
+ lines["Application Version"] = self.CASE_VERSION
587
+ if len(incidents) > 0:
588
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
589
+ if len(tracking_stats) > 0:
590
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
591
+ if len(business_analytics) > 0:
592
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
593
+
594
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
595
+ lines["Summary"] = "No Summary Data"
596
+
597
+ return [lines]
598
+
599
+
600
+ def _count_categories(self, detections: list, config: CarPartSegmentationConfig) -> dict:
601
+ """
602
+ Count the number of detections per category and return a summary dict.
603
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', 'masks', etc.
604
+ Output structure will include 'track_id' and 'masks' for each detection as per AdvancedTracker output.
605
+ """
606
+ counts = {}
607
+ valid_detections = []
608
+ for det in detections:
609
+ cat = det.get('category', 'unknown')
610
+ if not all(k in det for k in ['category', 'confidence', 'bounding_box']): # Validate required fields
611
+ self.logger.warning(f"Skipping invalid detection: {det}")
612
+ continue
613
+ counts[cat] = counts.get(cat, 0) + 1
614
+ valid_detections.append({
615
+ "bounding_box": det.get("bounding_box"),
616
+ "category": det.get("category"),
617
+ "confidence": det.get("confidence"),
618
+ "track_id": det.get("track_id"),
619
+ "frame_id": det.get("frame_id"),
620
+ "masks": det.get("masks", det.get("mask", [])) # Include masks, fallback to empty list
621
+ })
622
+ self.logger.debug(f"Valid detections after filtering: {len(valid_detections)}")
623
+ return {
624
+ "total_count": sum(counts.values()),
625
+ "per_category_count": counts,
626
+ "detections": valid_detections
627
+ }
628
+
629
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
630
+ """
631
+ Get detailed information about track IDs (per frame).
632
+ """
633
+ # Collect all track_ids in this frame
634
+ frame_track_ids = set()
635
+ for det in detections:
636
+ tid = det.get('track_id')
637
+ if tid is not None:
638
+ frame_track_ids.add(tid)
639
+ # Use persistent total set for unique counting
640
+ total_track_ids = set()
641
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
642
+ total_track_ids.update(s)
643
+ return {
644
+ "total_count": len(total_track_ids),
645
+ "current_frame_count": len(frame_track_ids),
646
+ "total_unique_track_ids": len(total_track_ids),
647
+ "current_frame_track_ids": list(frame_track_ids),
648
+ "last_update_time": time.time(),
649
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
650
+ }
651
+
652
+ def _update_tracking_state(self, detections: list):
653
+ """
654
+ Track unique categories track_ids per category for total count after tracking.
655
+ Applies canonical ID merging to avoid duplicate counting when the underlying
656
+ tracker loses an object temporarily and assigns a new ID.
657
+ """
658
+ # Lazily initialise storage dicts
659
+ if not hasattr(self, "_per_category_total_track_ids"):
660
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
661
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
662
+
663
+ for det in detections:
664
+ cat = det.get("category")
665
+ raw_track_id = det.get("track_id")
666
+ if cat not in self.target_categories or raw_track_id is None:
667
+ continue
668
+ bbox = det.get("bounding_box", det.get("bbox"))
669
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
670
+ # Propagate canonical ID back to detection so downstream logic uses it
671
+ det["track_id"] = canonical_id
672
+
673
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
674
+ self._current_frame_track_ids[cat].add(canonical_id)
675
+
676
+ def get_total_counts(self):
677
+ """
678
+ Return total unique track_id count for each category.
679
+ """
680
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
681
+
682
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
683
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
684
+ hours = int(timestamp // 3600)
685
+ minutes = int((timestamp % 3600) // 60)
686
+ seconds = round(float(timestamp % 60),2)
687
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
688
+
689
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
690
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
691
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
692
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
693
+
694
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
695
+ """Get formatted current timestamp based on stream type."""
696
+ if not stream_info:
697
+ return "00:00:00.00"
698
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
699
+ if precision:
700
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
701
+ if frame_id:
702
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
703
+ else:
704
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
705
+ stream_time_str = self._format_timestamp_for_video(start_time)
706
+ return stream_time_str
707
+ else:
708
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
709
+
710
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
711
+ if frame_id:
712
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
713
+ else:
714
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
715
+ stream_time_str = self._format_timestamp_for_video(start_time)
716
+ return stream_time_str
717
+ else:
718
+ # For streams, use stream_time from stream_info
719
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
720
+ if stream_time_str:
721
+ # Parse the high precision timestamp string to get timestamp
722
+ try:
723
+ # Remove " UTC" suffix and parse
724
+ timestamp_str = stream_time_str.replace(" UTC", "")
725
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
726
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
727
+ return self._format_timestamp_for_stream(timestamp)
728
+ except:
729
+ # Fallback to current time if parsing fails
730
+ return self._format_timestamp_for_stream(time.time())
731
+ else:
732
+ return self._format_timestamp_for_stream(time.time())
733
+
734
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
735
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
736
+ if not stream_info:
737
+ return "00:00:00"
738
+ if precision:
739
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
740
+ return "00:00:00"
741
+ else:
742
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
743
+
744
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
745
+ # If video format, start from 00:00:00
746
+ return "00:00:00"
747
+ else:
748
+ # For streams, use tracking start time or current time with minutes/seconds reset
749
+ if self._tracking_start_time is None:
750
+ # Try to extract timestamp from stream_time string
751
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
752
+ if stream_time_str:
753
+ try:
754
+ # Remove " UTC" suffix and parse
755
+ timestamp_str = stream_time_str.replace(" UTC", "")
756
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
757
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
758
+ except:
759
+ # Fallback to current time if parsing fails
760
+ self._tracking_start_time = time.time()
761
+ else:
762
+ self._tracking_start_time = time.time()
763
+
764
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
765
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
766
+ dt = dt.replace(minute=0, second=0, microsecond=0)
767
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
768
+
769
+ # ------------------------------------------------------------------ #
770
+ # Helper to merge masks back into detections #
771
+ # ------------------------------------------------------------------ #
772
+ def _attach_masks_to_detections(
773
+ self,
774
+ processed_detections: List[Dict[str, Any]],
775
+ raw_detections: List[Dict[str, Any]],
776
+ iou_threshold: float = 0.5,
777
+ ) -> List[Dict[str, Any]]:
778
+ """
779
+ Attach segmentation masks from the original `raw_detections` list to the
780
+ `processed_detections` list returned after smoothing/tracking.
781
+
782
+ Matching between detections is performed using Intersection-over-Union
783
+ (IoU) of the bounding boxes. For each processed detection we select the
784
+ raw detection with the highest IoU above `iou_threshold` and copy its
785
+ `masks` (or `mask`) field. If no suitable match is found, the detection
786
+ keeps an empty list for `masks` to maintain a consistent schema.
787
+ """
788
+
789
+ if not processed_detections or not raw_detections:
790
+ # Nothing to do – ensure masks key exists for downstream logic.
791
+ for det in processed_detections:
792
+ det.setdefault("masks", [])
793
+ return processed_detections
794
+
795
+ # Track which raw detections have already been matched to avoid
796
+ # assigning the same mask to multiple processed detections.
797
+ used_raw_indices = set()
798
+
799
+ for det in processed_detections:
800
+ best_iou = 0.0
801
+ best_idx = None
802
+
803
+ for idx, raw_det in enumerate(raw_detections):
804
+ if idx in used_raw_indices:
805
+ continue
806
+
807
+ iou = self._compute_iou(det.get("bounding_box"), raw_det.get("bounding_box"))
808
+ if iou > best_iou:
809
+ best_iou = iou
810
+ best_idx = idx
811
+
812
+ if best_idx is not None and best_iou >= iou_threshold:
813
+ raw_det = raw_detections[best_idx]
814
+ masks = raw_det.get("masks", raw_det.get("mask"))
815
+ if masks is not None:
816
+ det["masks"] = masks
817
+ used_raw_indices.add(best_idx)
818
+ else:
819
+ # No adequate match – default to empty list to keep schema consistent.
820
+ det.setdefault("masks", ["EMPTY"])
821
+
822
+ return processed_detections
823
+
824
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
825
+ """
826
+ Extract prediction details for output (category, confidence, bounding box).
827
+ """
828
+ return [
829
+ {
830
+ "category": det.get("category", "unknown"),
831
+ "confidence": det.get("confidence", 0.0),
832
+ "bounding_box": det.get("bounding_box", {}),
833
+ "mask": det.get("mask", det.get("masks", None)) # Accept either key
834
+ }
835
+ for det in detections
836
+ ]
837
+
838
+
839
+ # ------------------------------------------------------------------ #
840
+ # Canonical ID helpers #
841
+ # ------------------------------------------------------------------ #
842
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
843
+ """Compute IoU between two bounding boxes which may be dicts or lists.
844
+ Falls back to 0 when insufficient data is available."""
845
+
846
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
847
+ def _bbox_to_list(bbox):
848
+ if bbox is None:
849
+ return []
850
+ if isinstance(bbox, list):
851
+ return bbox[:4] if len(bbox) >= 4 else []
852
+ if isinstance(bbox, dict):
853
+ if "xmin" in bbox:
854
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
855
+ if "x1" in bbox:
856
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
857
+ # Fallback: first four numeric values
858
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
859
+ return values[:4] if len(values) >= 4 else []
860
+ return []
861
+
862
+ l1 = _bbox_to_list(box1)
863
+ l2 = _bbox_to_list(box2)
864
+ if len(l1) < 4 or len(l2) < 4:
865
+ return 0.0
866
+ x1_min, y1_min, x1_max, y1_max = l1
867
+ x2_min, y2_min, x2_max, y2_max = l2
868
+
869
+ # Ensure correct order
870
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
871
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
872
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
873
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
874
+
875
+ inter_x_min = max(x1_min, x2_min)
876
+ inter_y_min = max(y1_min, y2_min)
877
+ inter_x_max = min(x1_max, x2_max)
878
+ inter_y_max = min(y1_max, y2_max)
879
+
880
+ inter_w = max(0.0, inter_x_max - inter_x_min)
881
+ inter_h = max(0.0, inter_y_max - inter_y_min)
882
+ inter_area = inter_w * inter_h
883
+
884
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
885
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
886
+ union_area = area1 + area2 - inter_area
887
+
888
+ return (inter_area / union_area) if union_area > 0 else 0.0
889
+
890
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
891
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
892
+ tracks when IoU and temporal constraints indicate they represent the
893
+ same physical."""
894
+ if raw_id is None or bbox is None:
895
+ # Nothing to merge
896
+ return raw_id
897
+
898
+ now = time.time()
899
+
900
+ # Fast path – raw_id already mapped
901
+ if raw_id in self._track_aliases:
902
+ canonical_id = self._track_aliases[raw_id]
903
+ track_info = self._canonical_tracks.get(canonical_id)
904
+ if track_info is not None:
905
+ track_info["last_bbox"] = bbox
906
+ track_info["last_update"] = now
907
+ track_info["raw_ids"].add(raw_id)
908
+ return canonical_id
909
+
910
+ # Attempt to merge with an existing canonical track
911
+ for canonical_id, info in self._canonical_tracks.items():
912
+ # Only consider recently updated tracks
913
+ if now - info["last_update"] > self._track_merge_time_window:
914
+ continue
915
+ iou = self._compute_iou(bbox, info["last_bbox"])
916
+ if iou >= self._track_merge_iou_threshold:
917
+ # Merge
918
+ self._track_aliases[raw_id] = canonical_id
919
+ info["last_bbox"] = bbox
920
+ info["last_update"] = now
921
+ info["raw_ids"].add(raw_id)
922
+ return canonical_id
923
+
924
+ # No match – register new canonical track
925
+ canonical_id = raw_id
926
+ self._track_aliases[raw_id] = canonical_id
927
+ self._canonical_tracks[canonical_id] = {
928
+ "last_bbox": bbox,
929
+ "last_update": now,
930
+ "raw_ids": {raw_id},
931
+ }
932
+ return canonical_id
933
+
934
+ def _format_timestamp(self, timestamp: float) -> str:
935
+ """Format a timestamp for human-readable output."""
936
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
937
+
938
+ def _get_tracking_start_time(self) -> str:
939
+ """Get the tracking start time, formatted as a string."""
940
+ if self._tracking_start_time is None:
941
+ return "N/A"
942
+ return self._format_timestamp(self._tracking_start_time)
943
+
944
+ def _set_tracking_start_time(self) -> None:
945
+ """Set the tracking start time to the current time."""
946
+ self._tracking_start_time = time.time()