matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,836 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import dataclass, field
3
+ from datetime import datetime, timezone
4
+ import tempfile
5
+ import os
6
+ import cv2
7
+ import numpy as np
8
+ from collections import defaultdict
9
+ import time
10
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
11
+ from ..utils import (
12
+ filter_by_confidence,
13
+ filter_by_categories,
14
+ apply_category_mapping,
15
+ match_results_structure,
16
+ bbox_smoothing,
17
+ BBoxSmoothingConfig,
18
+ BBoxSmoothingTracker
19
+ )
20
+
21
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
22
+ from dataclasses import dataclass, field
23
+
24
+ @dataclass
25
+ class FlareAnalysisConfig(BaseConfig):
26
+ """Configuration for flare analysis use case."""
27
+ confidence_threshold: float = 0.5
28
+ top_k_colors: int = 3
29
+ frame_skip: int = 1
30
+ target_categories: List[str] = field(default_factory=lambda: ["BadFlare", "GoodFlare"])
31
+ fps: Optional[float] = None
32
+ bbox_format: str = "auto"
33
+ index_to_category: Dict[int, str] = field(default_factory=lambda: {0: 'BadFlare', 1: 'GoodFlare'})
34
+ alert_config: Optional[AlertConfig] = None
35
+ time_window_minutes: int = 60
36
+ enable_unique_counting: bool = True
37
+ enable_smoothing: bool = True
38
+ smoothing_algorithm: str = "observability"
39
+ smoothing_window_size: int = 20
40
+ smoothing_cooldown_frames: int = 5
41
+ smoothing_confidence_range_factor: float = 0.5
42
+
43
+ def validate(self) -> List[str]:
44
+ errors = super().validate()
45
+ if self.confidence_threshold < 0 or self.confidence_threshold > 1:
46
+ errors.append("confidence_threshold must be between 0 and 1")
47
+ if self.top_k_colors <= 0:
48
+ errors.append("top_k_colors must be positive")
49
+ if self.frame_skip <= 0:
50
+ errors.append("frame_skip must be positive")
51
+ if self.bbox_format not in ["auto", "xmin_ymin_xmax_ymax", "x_y_width_height"]:
52
+ errors.append("bbox_format must be one of: auto, xmin_ymin_xmax_ymax, x_y_width_height")
53
+ if self.smoothing_window_size <= 0:
54
+ errors.append("smoothing_window_size must be positive")
55
+ if self.smoothing_cooldown_frames < 0:
56
+ errors.append("smoothing_cooldown_frames cannot be negative")
57
+ if self.smoothing_confidence_range_factor <= 0:
58
+ errors.append("smoothing_confidence_range_factor must be positive")
59
+ return errors
60
+
61
+ class FlareAnalysisUseCase(BaseProcessor):
62
+ """Flare analysis processor for detecting and analyzing flare colors in video streams."""
63
+
64
+ CATEGORY_DISPLAY = {
65
+ "BadFlare": "BadFlare",
66
+ "GoodFlare": "GoodFlare"
67
+ }
68
+
69
+ def __init__(self):
70
+ super().__init__("flare_analysis")
71
+ self.category = "flare_detection"
72
+ self.CASE_TYPE: Optional[str] = 'flare_detection'
73
+ self.CASE_VERSION: Optional[str] = '1.2'
74
+ self.target_categories = ['BadFlare', 'GoodFlare']
75
+ self.tracker = None
76
+ self.smoothing_tracker = None
77
+ self._total_frame_counter = 0
78
+ self._global_frame_offset = 0
79
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
80
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
81
+ self._tracking_start_time = None
82
+ self._track_aliases: Dict[Any, Any] = {}
83
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
84
+ self._track_merge_iou_threshold: float = 0.05
85
+ self._track_merge_time_window: float = 7.0
86
+ self._ascending_alert_list: List[int] = []
87
+ self.current_incident_end_timestamp: str = "N/A"
88
+
89
+ def reset_tracker(self) -> None:
90
+ if self.tracker is not None:
91
+ self.tracker.reset()
92
+ self.logger.info("AdvancedTracker reset for new flare analysis session")
93
+
94
+ def reset_flare_tracking(self) -> None:
95
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
96
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
97
+ self._total_frame_counter = 0
98
+ self._global_frame_offset = 0
99
+ self._tracking_start_time = None
100
+ self._track_aliases = {}
101
+ self._canonical_tracks = {}
102
+ self._ascending_alert_list = []
103
+ self.current_incident_end_timestamp = "N/A"
104
+ self.logger.info("Flare tracking state reset")
105
+
106
+ def reset_all_tracking(self) -> None:
107
+ self.reset_tracker()
108
+ self.reset_flare_tracking()
109
+ self.logger.info("All flare tracking state reset")
110
+
111
+ @staticmethod
112
+ def _compute_iou(bbox1, bbox2) -> float:
113
+ if not bbox1 or not bbox2:
114
+ return 0.0
115
+ if "xmin" in bbox1:
116
+ x1_min, y1_min, x1_max, y1_max = bbox1["xmin"], bbox1["ymin"], bbox1["xmax"], bbox1["ymax"]
117
+ x2_min, y2_min, x2_max, y2_max = bbox2["xmin"], bbox2["ymin"], bbox2["xmax"], bbox2["ymax"]
118
+ else:
119
+ x1_min, y1_min = bbox1["x"], bbox1["y"]
120
+ x1_max, y1_max = x1_min + bbox1["width"], y1_min + bbox1["height"]
121
+ x2_min, y2_min = bbox2["x"], bbox2["y"]
122
+ x2_max, y2_max = x2_min + bbox2["width"], y2_min + bbox2["height"]
123
+ inter_x_min = max(x1_min, x2_min)
124
+ inter_y_min = max(y1_min, y2_min)
125
+ inter_x_max = min(x1_max, x2_max)
126
+ inter_y_max = min(y1_max, y2_max)
127
+ inter_w = max(0.0, inter_x_max - inter_x_min)
128
+ inter_h = max(0.0, inter_y_max - inter_y_min)
129
+ inter_area = inter_w * inter_h
130
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
131
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
132
+ union_area = area1 + area2 - inter_area
133
+ return inter_area / union_area if union_area > 0 else 0.0
134
+
135
+
136
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
137
+ if raw_id is None or bbox is None:
138
+ return raw_id
139
+ now = time.time()
140
+ if raw_id in self._track_aliases:
141
+ canonical_id = self._track_aliases[raw_id]
142
+ track_info = self._canonical_tracks.get(canonical_id)
143
+ if track_info is not None:
144
+ track_info["last_bbox"] = bbox
145
+ track_info["last_update"] = now
146
+ track_info["raw_ids"].add(raw_id)
147
+ return canonical_id
148
+ for canonical_id, info in self._canonical_tracks.items():
149
+ if now - info["last_update"] > self._track_merge_time_window:
150
+ continue
151
+ iou = self._compute_iou(bbox, info["last_bbox"])
152
+ if iou >= self._track_merge_iou_threshold:
153
+ self._track_aliases[raw_id] = canonical_id
154
+ info["last_bbox"] = bbox
155
+ info["last_update"] = now
156
+ info["raw_ids"].add(raw_id)
157
+ return canonical_id
158
+ canonical_id = raw_id
159
+ self._track_aliases[raw_id] = canonical_id
160
+ self._canonical_tracks[canonical_id] = {
161
+ "last_bbox": bbox,
162
+ "last_update": now,
163
+ "raw_ids": {raw_id},
164
+ }
165
+ return canonical_id
166
+
167
+ def _update_tracking_state(self, detections: List[Dict]):
168
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
169
+ for det in detections:
170
+ cat = det.get("category")
171
+ raw_track_id = det.get("track_id")
172
+ if cat not in self.target_categories or raw_track_id is None:
173
+ continue
174
+ bbox = det.get("bounding_box", det.get("bbox"))
175
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
176
+ det["track_id"] = canonical_id
177
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
178
+ self._current_frame_track_ids[cat].add(canonical_id)
179
+
180
+ def get_total_counts(self):
181
+ return {cat: len(ids) for cat, ids in self._per_category_total_track_ids.items()}
182
+
183
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
184
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
185
+ hours = int(timestamp // 3600)
186
+ minutes = int((timestamp % 3600) // 60)
187
+ seconds = round(float(timestamp % 60),2)
188
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
189
+
190
+ def _format_timestamp_for_stream(self, timestamp: float, precision: bool = False) -> str:
191
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
192
+ return dt.strftime("%Y-%m-%d-%H:%M:%S.%f UTC" if precision else "%Y:%m:%d %H:%M:%S")
193
+
194
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
195
+ """Get formatted current timestamp based on stream type."""
196
+ if not stream_info:
197
+ return "00:00:00.00"
198
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
199
+ if precision:
200
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
201
+ if frame_id:
202
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
203
+ else:
204
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
205
+ stream_time_str = self._format_timestamp_for_video(start_time)
206
+ return stream_time_str
207
+ else:
208
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
209
+
210
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
211
+ if frame_id:
212
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
213
+ else:
214
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
215
+ stream_time_str = self._format_timestamp_for_video(start_time)
216
+ return stream_time_str
217
+ else:
218
+ # For streams, use stream_time from stream_info
219
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
220
+ if stream_time_str:
221
+ # Parse the high precision timestamp string to get timestamp
222
+ try:
223
+ # Remove " UTC" suffix and parse
224
+ timestamp_str = stream_time_str.replace(" UTC", "")
225
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
226
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
227
+ return self._format_timestamp_for_stream(timestamp)
228
+ except:
229
+ # Fallback to current time if parsing fails
230
+ return self._format_timestamp_for_stream(time.time())
231
+ else:
232
+ return self._format_timestamp_for_stream(time.time())
233
+
234
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
235
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
236
+ if not stream_info:
237
+ return "00:00:00"
238
+ if precision:
239
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
240
+ return "00:00:00"
241
+ else:
242
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
243
+
244
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
245
+ # If video format, start from 00:00:00
246
+ return "00:00:00"
247
+ else:
248
+ # For streams, use tracking start time or current time with minutes/seconds reset
249
+ if self._tracking_start_time is None:
250
+ # Try to extract timestamp from stream_time string
251
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
252
+ if stream_time_str:
253
+ try:
254
+ # Remove " UTC" suffix and parse
255
+ timestamp_str = stream_time_str.replace(" UTC", "")
256
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
257
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
258
+ except:
259
+ # Fallback to current time if parsing fails
260
+ self._tracking_start_time = time.time()
261
+ else:
262
+ self._tracking_start_time = time.time()
263
+
264
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
265
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
266
+ dt = dt.replace(minute=0, second=0, microsecond=0)
267
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
268
+
269
+ def _get_track_ids_info(self, detections: List[Dict]) -> Dict[str, Any]:
270
+ frame_track_ids = set(det.get('track_id') for det in detections if det.get('track_id') is not None)
271
+ total_track_ids = set()
272
+ for s in self._per_category_total_track_ids.values():
273
+ total_track_ids.update(s)
274
+ return {
275
+ "total_count": len(total_track_ids),
276
+ "current_frame_count": len(frame_track_ids),
277
+ "total_unique_track_ids": len(total_track_ids),
278
+ "current_frame_track_ids": list(frame_track_ids),
279
+ "last_update_time": time.time(),
280
+ "total_frames_processed": self._total_frame_counter
281
+ }
282
+
283
+ def get_config_schema(self) -> Dict[str, Any]:
284
+ return {
285
+ "type": "object",
286
+ "properties": {
287
+ "confidence_threshold": {"type": "number", "minimum": 0.0, "maximum": 1.0, "default": 0.5},
288
+ "top_k_colors": {"type": "integer", "minimum": 1, "default": 3},
289
+ "frame_skip": {"type": "integer", "minimum": 1, "default": 1},
290
+ "target_categories": {"type": ["array", "null"], "items": {"type": "string"}, "default": ["BadFlare", "GoodFlare"]},
291
+ "fps": {"type": ["number", "null"], "minimum": 1.0, "default": None},
292
+ "bbox_format": {"type": "string", "enum": ["auto", "xmin_ymin_xmax_ymax", "x_y_width_height"], "default": "auto"},
293
+ "index_to_category": {"type": ["object", "null"], "default": {0: 'BadFlare', 1: 'GoodFlare'}},
294
+ "alert_config": {"type": ["object", "null"], "default": None},
295
+ "time_window_minutes": {"type": "integer", "minimum": 1, "default": 60},
296
+ "enable_unique_counting": {"type": "boolean", "default": True},
297
+ "enable_smoothing": {"type": "boolean", "default": True},
298
+ "smoothing_algorithm": {"type": "string", "default": "observability"},
299
+ "smoothing_window_size": {"type": "integer", "minimum": 1, "default": 20},
300
+ "smoothing_cooldown_frames": {"type": "integer", "minimum": 0, "default": 5},
301
+ "smoothing_confidence_range_factor": {"type": "number", "minimum": 0, "default": 0.5}
302
+ },
303
+ "required": ["confidence_threshold", "top_k_colors"],
304
+ "additionalProperties": False
305
+ }
306
+
307
+ def create_default_config(self, **overrides) -> FlareAnalysisConfig:
308
+ defaults = {
309
+ "category": self.category,
310
+ "usecase": self.name,
311
+ "confidence_threshold": 0.5,
312
+ "top_k_colors": 3,
313
+ "frame_skip": 1,
314
+ "target_categories": ["BadFlare", "GoodFlare"],
315
+ "fps": None,
316
+ "bbox_format": "auto",
317
+ "index_to_category": {0: 'BadFlare', 1: 'GoodFlare'},
318
+ "alert_config": None,
319
+ "time_window_minutes": 60,
320
+ "enable_unique_counting": True,
321
+ "enable_smoothing": True,
322
+ "smoothing_algorithm": "observability",
323
+ "smoothing_window_size": 20,
324
+ "smoothing_cooldown_frames": 5,
325
+ "smoothing_confidence_range_factor": 0.5
326
+ }
327
+ defaults.update(overrides)
328
+ return FlareAnalysisConfig(**defaults)
329
+
330
+ def process(
331
+ self,
332
+ data: Any,
333
+ config: ConfigProtocol,
334
+ input_bytes: Optional[bytes] = None,
335
+ context: Optional[ProcessingContext] = None,
336
+ stream_info: Optional[Dict[str, Any]] = None
337
+ ) -> ProcessingResult:
338
+ start_time = time.time()
339
+ try:
340
+ if not isinstance(config, FlareAnalysisConfig):
341
+ return self.create_error_result(
342
+ "Invalid configuration type for flare analysis",
343
+ usecase=self.name,
344
+ category=self.category,
345
+ context=context
346
+ )
347
+ if context is None:
348
+ context = ProcessingContext()
349
+ if not input_bytes:
350
+ return self.create_error_result(
351
+ "input_bytes (video/image) is required for flare analysis",
352
+ usecase=self.name,
353
+ category=self.category,
354
+ context=context
355
+ )
356
+ if not data:
357
+ return self.create_error_result(
358
+ "Detection data is required for flare analysis",
359
+ usecase=self.name,
360
+ category=self.category,
361
+ context=context
362
+ )
363
+
364
+ input_format = match_results_structure(data)
365
+ context.input_format = input_format
366
+ context.confidence_threshold = config.confidence_threshold
367
+ self.logger.info(f"Processing flare analysis with format: {input_format.value}")
368
+
369
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
370
+ if config.index_to_category:
371
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
372
+ flare_processed_data = filter_by_categories(processed_data.copy(), config.target_categories)
373
+
374
+ if config.enable_smoothing:
375
+ if self.smoothing_tracker is None:
376
+ smoothing_config = BBoxSmoothingConfig(
377
+ smoothing_algorithm=config.smoothing_algorithm,
378
+ window_size=config.smoothing_window_size,
379
+ cooldown_frames=config.smoothing_cooldown_frames,
380
+ confidence_threshold=config.confidence_threshold,
381
+ confidence_range_factor=config.smoothing_confidence_range_factor,
382
+ enable_smoothing=True
383
+ )
384
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
385
+ flare_processed_data = bbox_smoothing(flare_processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
386
+
387
+ try:
388
+ from ..advanced_tracker import AdvancedTracker
389
+ from ..advanced_tracker.config import TrackerConfig
390
+ if self.tracker is None:
391
+ tracker_config = TrackerConfig()
392
+ self.tracker = AdvancedTracker(tracker_config)
393
+ self.logger.info("Initialized AdvancedTracker for flare analysis tracking")
394
+ flare_processed_data = self.tracker.update(flare_processed_data)
395
+ except Exception as e:
396
+ self.logger.warning(f"AdvancedTracker failed: {e}")
397
+
398
+ self._update_tracking_state(flare_processed_data)
399
+ self._total_frame_counter += 1
400
+
401
+ frame_number = None
402
+ if stream_info:
403
+ input_settings = stream_info.get("input_settings", {})
404
+ start_frame = input_settings.get("start_frame")
405
+ end_frame = input_settings.get("end_frame")
406
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
407
+ frame_number = start_frame
408
+
409
+ flare_analysis = self._analyze_flares_in_media(flare_processed_data, input_bytes, config)
410
+ counting_summary = self._count_categories(flare_analysis, config)
411
+ counting_summary['total_counts'] = self.get_total_counts()
412
+ alerts = self._check_alerts(counting_summary, frame_number, config)
413
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
414
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
415
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info)
416
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
417
+
418
+ incidents = incidents_list[0] if incidents_list else {}
419
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
420
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
421
+ agg_summary = {str(frame_number) if frame_number is not None else "current_frame": {
422
+ "incidents": incidents,
423
+ "tracking_stats": tracking_stats,
424
+ "business_analytics": business_analytics,
425
+ "alerts": alerts,
426
+ "human_text": summary_list[0] if summary_list else {}
427
+ }}
428
+
429
+ context.mark_completed()
430
+ result = self.create_result(
431
+ data={"agg_summary": agg_summary},
432
+ usecase=self.name,
433
+ category=self.category,
434
+ context=context
435
+ )
436
+ result.processing_time = context.processing_time or time.time() - start_time
437
+ self.logger.info(f"Flare analysis completed in {result.processing_time:.2f}s")
438
+ return result
439
+ except Exception as e:
440
+ self.logger.error(f"Flare analysis failed: {str(e)}", exc_info=True)
441
+ if context:
442
+ context.mark_completed()
443
+ return self.create_error_result(
444
+ str(e),
445
+ type(e).__name__,
446
+ usecase=self.name,
447
+ category=self.category,
448
+ context=context
449
+ )
450
+
451
+ def _is_video_bytes(self, media_bytes: bytes) -> bool:
452
+ video_signatures = [
453
+ b'\x00\x00\x00\x20ftypmp4', b'\x00\x00\x00\x18ftypmp4', b'RIFF', b'\x1aE\xdf\xa3', b'ftyp'
454
+ ]
455
+ for signature in video_signatures:
456
+ if media_bytes.startswith(signature) or signature in media_bytes[:50]:
457
+ return True
458
+ return False
459
+
460
+ def _analyze_flares_in_media(self, data: Any, media_bytes: bytes, config: FlareAnalysisConfig) -> List[Dict[str, Any]]:
461
+ is_video = self._is_video_bytes(media_bytes)
462
+ return self._analyze_flares_in_video(data, media_bytes, config) if is_video else self._analyze_flares_in_image(data, media_bytes, config)
463
+
464
+
465
+ def _analyze_flares_in_image(self, data: Any, image_bytes: bytes, config: FlareAnalysisConfig) -> List[Dict[str, Any]]:
466
+ image_array = np.frombuffer(image_bytes, np.uint8)
467
+ image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
468
+ if image is None:
469
+ raise RuntimeError("Failed to decode image from bytes")
470
+ rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
471
+ flare_analysis = []
472
+ detections = self._get_frame_detections(data, "0")
473
+ for detection in detections:
474
+ if detection.get("confidence", 1.0) < config.confidence_threshold:
475
+ continue
476
+ bbox = detection.get("bounding_box", detection.get("bbox"))
477
+ if not bbox:
478
+ continue
479
+ crop = self._crop_bbox(rgb_image, bbox, config.bbox_format)
480
+ if crop.size == 0:
481
+ continue
482
+ major_colors = [()] #extract_major_colors(crop, k=config.top_k_colors)
483
+ main_color = major_colors[0][0] if major_colors else "unknown"
484
+ flare_record = {
485
+ "frame_id": "0",
486
+ "timestamp": 0.0,
487
+ "category": detection.get("category", "unknown"),
488
+ "confidence": round(detection.get("confidence", 0.0), 3),
489
+ "main_color": main_color,
490
+ "major_colors": major_colors,
491
+ "bounding_box": bbox,
492
+ "detection_id": detection.get("id", f"det_{len(flare_analysis)}"),
493
+ "track_id": detection.get("track_id")
494
+ }
495
+ flare_analysis.append(flare_record)
496
+ return flare_analysis
497
+
498
+ def _get_frame_detections(self, data: Any, frame_key: str) -> List[Dict[str, Any]]:
499
+ if isinstance(data, dict):
500
+ return data.get(frame_key, [])
501
+ elif isinstance(data, list):
502
+ return data
503
+ return []
504
+
505
+ def _crop_bbox(self, image: np.ndarray, bbox: Dict[str, Any], bbox_format: str) -> np.ndarray:
506
+ h, w = image.shape[:2]
507
+ if bbox_format == "auto":
508
+ bbox_format = "xmin_ymin_xmax_ymax" if "xmin" in bbox else "x_y_width_height"
509
+ if bbox_format == "xmin_ymin_xmax_ymax":
510
+ xmin = max(0, int(bbox["xmin"]))
511
+ ymin = max(0, int(bbox["ymin"]))
512
+ xmax = min(w, int(bbox["xmax"]))
513
+ ymax = min(h, int(bbox["ymax"]))
514
+ x_center = (xmin + xmax) / 2
515
+ x_offset = (xmax - xmin) / 4
516
+ y_center = (ymin + ymax) / 2
517
+ y_offset = (ymax - ymin) / 4
518
+ new_xmin = max(0, int(x_center - x_offset))
519
+ new_xmax = min(w, int(x_center + x_offset))
520
+ new_ymin = max(0, int(y_center - y_offset))
521
+ new_ymax = min(h, int(y_center + y_offset))
522
+ elif bbox_format == "x_y_width_height":
523
+ x = max(0, int(bbox["x"]))
524
+ y = max(0, int(bbox["y"]))
525
+ width = int(bbox["width"])
526
+ height = int(bbox["height"])
527
+ xmax = min(w, x + width)
528
+ ymax = min(h, y + height)
529
+ x_center = (x + xmax) / 2
530
+ x_offset = (xmax - x) / 4
531
+ y_center = (y + ymax) / 2
532
+ y_offset = (ymax - y) / 4
533
+ new_xmin = max(0, int(x_center - x_offset))
534
+ new_xmax = min(w, int(x_center + x_offset))
535
+ new_ymin = max(0, int(y_center - y_offset))
536
+ new_ymax = min(h, int(y_center + y_offset))
537
+ else:
538
+ return np.zeros((0, 0, 3), dtype=np.uint8)
539
+ return image[new_ymin:new_ymax, new_xmin:new_xmax]
540
+
541
+ def _count_categories(self, detections: List[Dict], config: FlareAnalysisConfig) -> Dict[str, Any]:
542
+ counts = {}
543
+ detections_list = []
544
+ category_colors = defaultdict(lambda: defaultdict(int))
545
+ for det in detections:
546
+ cat = det.get("category", "unknown")
547
+ counts[cat] = counts.get(cat, 0) + 1
548
+ main_color = det.get("main_color", "unknown")
549
+ category_colors[cat][main_color] += 1
550
+ detections_list.append({
551
+ "bounding_box": det.get("bounding_box"),
552
+ "category": cat,
553
+ "confidence": det.get("confidence"),
554
+ "track_id": det.get("track_id"),
555
+ "frame_id": det.get("frame_id"),
556
+ "main_color": main_color
557
+ })
558
+ return {
559
+ "total_count": sum(counts.values()),
560
+ "per_category_count": counts,
561
+ "detections": detections_list,
562
+ "color_distribution": {cat: dict(colors) for cat, colors in category_colors.items()}
563
+ }
564
+
565
+ def _check_alerts(self, summary: Dict, frame_number: Optional[int], config: FlareAnalysisConfig) -> List[Dict]:
566
+ def get_trend(data, lookback=900, threshold=0.8):
567
+ window = data[-lookback:] if len(data) >= lookback else data
568
+ if len(window) < 2:
569
+ return True
570
+ increasing = 0
571
+ total = 0
572
+ for i in range(1, len(window)):
573
+ if window[i] >= window[i - 1]:
574
+ increasing += 1
575
+ total += 1
576
+ return increasing / total >= threshold
577
+
578
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
579
+ alerts = []
580
+ total_detections = summary.get("total_count", 0)
581
+ total_counts_dict = summary.get("total_counts", {})
582
+ per_category_count = summary.get("per_category_count", {})
583
+
584
+ if not config.alert_config:
585
+ return alerts
586
+
587
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
588
+ for category, threshold in config.alert_config.count_thresholds.items():
589
+ if category == "all" and total_detections > threshold:
590
+ alerts.append({
591
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
592
+ "alert_id": f"alert_{category}_{frame_key}",
593
+ "incident_category": self.CASE_TYPE,
594
+ "threshold_level": threshold,
595
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
596
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
597
+ getattr(config.alert_config, 'alert_value', ['JSON']))}
598
+ })
599
+ elif category in per_category_count:
600
+ count = per_category_count[category]
601
+ if count > threshold:
602
+ alerts.append({
603
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
604
+ "alert_id": f"alert_{category}_{frame_key}",
605
+ "incident_category": self.CASE_TYPE,
606
+ "threshold_level": threshold,
607
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
608
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
609
+ getattr(config.alert_config, 'alert_value', ['JSON']))}
610
+ })
611
+ return alerts
612
+
613
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: FlareAnalysisConfig, frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
614
+ incidents = []
615
+ total_detections = counting_summary.get("total_count", 0)
616
+ current_timestamp = self._get_current_timestamp_str(stream_info)
617
+ camera_info = self.get_camera_info_from_stream(stream_info)
618
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
619
+
620
+ if total_detections > 0:
621
+ level = "low"
622
+ intensity = 5.0
623
+ start_timestamp = self._get_start_timestamp_str(stream_info)
624
+ if start_timestamp and self.current_incident_end_timestamp == 'N/A':
625
+ self.current_incident_end_timestamp = 'Incident still active'
626
+ elif start_timestamp and self.current_incident_end_timestamp == 'Incident still active':
627
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
628
+ self.current_incident_end_timestamp = current_timestamp
629
+ elif self.current_incident_end_timestamp != 'Incident still active' and self.current_incident_end_timestamp != 'N/A':
630
+ self.current_incident_end_timestamp = 'N/A'
631
+
632
+ if config.alert_config and config.alert_config.count_thresholds:
633
+ threshold = config.alert_config.count_thresholds.get("all", 15)
634
+ intensity = min(10.0, (total_detections / threshold) * 10)
635
+ if intensity >= 9:
636
+ level = "critical"
637
+ self._ascending_alert_list.append(3)
638
+ elif intensity >= 7:
639
+ level = "significant"
640
+ self._ascending_alert_list.append(2)
641
+ elif intensity >= 5:
642
+ level = "medium"
643
+ self._ascending_alert_list.append(1)
644
+ else:
645
+ self._ascending_alert_list.append(0)
646
+ else:
647
+ if total_detections > 30:
648
+ level = "critical"
649
+ intensity = 10.0
650
+ self._ascending_alert_list.append(3)
651
+ elif total_detections > 25:
652
+ level = "significant"
653
+ intensity = 9.0
654
+ self._ascending_alert_list.append(2)
655
+ elif total_detections > 15:
656
+ level = "medium"
657
+ intensity = 7.0
658
+ self._ascending_alert_list.append(1)
659
+ else:
660
+ level = "low"
661
+ intensity = min(10.0, total_detections / 3.0)
662
+ self._ascending_alert_list.append(0)
663
+
664
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
665
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE, level)}")
666
+ for cat, count in counting_summary.get("per_category_count", {}).items():
667
+ if count > 0:
668
+ human_text_lines.append(f"\t{cat}: {count}")
669
+ human_text = "\n".join(human_text_lines)
670
+
671
+ alert_settings = []
672
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
673
+ alert_settings.append({
674
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
675
+ "incident_category": self.CASE_TYPE,
676
+ "threshold_level": config.alert_config.count_thresholds,
677
+ "ascending": True,
678
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
679
+ getattr(config.alert_config, 'alert_value', ['JSON']))}
680
+ })
681
+
682
+ event = self.create_incident(
683
+ incident_id=f"{self.CASE_TYPE}_{frame_number if frame_number is not None else 'current_frame'}",
684
+ incident_type=self.CASE_TYPE,
685
+ severity_level=level,
686
+ human_text=human_text,
687
+ camera_info=camera_info,
688
+ alerts=alerts,
689
+ alert_settings=alert_settings,
690
+ start_time=start_timestamp,
691
+ end_time=self.current_incident_end_timestamp,
692
+ level_settings={"low": 1, "medium": 3, "significant": 4, "critical": 7}
693
+ )
694
+ incidents.append(event)
695
+ else:
696
+ self._ascending_alert_list.append(0)
697
+ incidents.append({})
698
+ return incidents
699
+
700
+ def _generate_tracking_stats(self, counting_summary: Dict, alerts: List, config: FlareAnalysisConfig, frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
701
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
702
+ tracking_stats = []
703
+ total_detections = counting_summary.get("total_count", 0)
704
+ total_counts_dict = counting_summary.get("total_counts", {})
705
+ per_category_count = counting_summary.get("per_category_count", {})
706
+ color_distribution = counting_summary.get("color_distribution", {})
707
+ current_timestamp = self._get_current_timestamp_str(stream_info)
708
+ start_timestamp = self._get_start_timestamp_str(stream_info)
709
+ high_precision_start_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
710
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
711
+ camera_info = self.get_camera_info_from_stream(stream_info)
712
+
713
+ total_counts = [{"category": cat, "count": count} for cat, count in total_counts_dict.items() if count > 0]
714
+ current_counts = [{"category": cat, "count": count} for cat, count in per_category_count.items() if count > 0 or total_detections > 0]
715
+
716
+ detections = []
717
+ for detection in counting_summary.get("detections", []):
718
+ bbox = detection.get("bounding_box", {})
719
+ category = detection.get("category", "unknown")
720
+ detection_obj = self.create_detection_object(category, bbox) # Remove main_color parameter
721
+ detection_obj["main_color"] = detection.get("main_color", "unknown") # Add main_color afterward
722
+ detections.append(detection_obj)
723
+
724
+ alert_settings = []
725
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
726
+ alert_settings.append({
727
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
728
+ "incident_category": self.CASE_TYPE,
729
+ "threshold_level": config.alert_config.count_thresholds,
730
+ "ascending": True,
731
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
732
+ getattr(config.alert_config, 'alert_value', ['JSON']))}
733
+ })
734
+
735
+ human_text_lines = [f"Tracking Statistics:"]
736
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
737
+ for cat, count in per_category_count.items():
738
+ if count > 0:
739
+ colors = color_distribution.get(cat, {})
740
+ dominant_color = max(colors.items(), key=lambda x: x[1])[0] if colors else "unknown"
741
+ human_text_lines.append(f"\t{cat}: {count}, Dominant Color: {dominant_color}")
742
+ if total_detections == 0:
743
+ human_text_lines.append("\tNo Flares detected")
744
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
745
+ for cat, count in total_counts_dict.items():
746
+ if count > 0:
747
+ colors = color_distribution.get(cat, {})
748
+ dominant_color = max(colors.items(), key=lambda x: x[1])[0] if colors else "unknown"
749
+ human_text_lines.append(f"\t{cat}: {count}, Dominant Color: {dominant_color}")
750
+ if alerts:
751
+ for alert in alerts:
752
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
753
+ else:
754
+ human_text_lines.append("Alerts: None")
755
+ human_text = "\n".join(human_text_lines)
756
+
757
+ reset_settings = [{"interval_type": "daily", "reset_time": {"value": 9, "time_unit": "hour"}}]
758
+
759
+ tracking_stat = self.create_tracking_stats(
760
+ total_counts=total_counts,
761
+ current_counts=current_counts,
762
+ detections=detections,
763
+ human_text=human_text,
764
+ camera_info=camera_info,
765
+ alerts=alerts,
766
+ alert_settings=alert_settings,
767
+ reset_settings=reset_settings,
768
+ start_time=high_precision_start_timestamp,
769
+ reset_time=high_precision_reset_timestamp
770
+ )
771
+ tracking_stats.append(tracking_stat)
772
+ return tracking_stats
773
+
774
+ def _generate_business_analytics(self, counting_summary: Dict, alerts: List, config: FlareAnalysisConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty: bool = False) -> List[Dict]:
775
+ if is_empty:
776
+ return []
777
+ camera_info = self.get_camera_info_from_stream(stream_info)
778
+ total_detections = counting_summary.get("total_count", 0)
779
+ color_distribution = counting_summary.get("color_distribution", {})
780
+ human_text_lines = ["Business Analytics:"]
781
+ if total_detections > 0:
782
+ unique_colors = sum(len(colors) for colors in color_distribution.values())
783
+ human_text_lines.append(f"Total Flares: {total_detections}")
784
+ human_text_lines.append(f"Unique Colors: {unique_colors}")
785
+ for cat, colors in color_distribution.items():
786
+ if colors:
787
+ dominant_color = max(colors.items(), key=lambda x: x[1])[0]
788
+ human_text_lines.append(f"{cat}: {sum(colors.values())}, Dominant Color: {dominant_color}")
789
+ else:
790
+ human_text_lines.append("No Flares detected")
791
+ human_text = "\n".join(human_text_lines)
792
+ alert_settings = []
793
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
794
+ alert_settings.append({
795
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
796
+ "incident_category": self.CASE_TYPE,
797
+ "threshold_level": config.alert_config.count_thresholds,
798
+ "ascending": True,
799
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
800
+ getattr(config.alert_config, 'alert_value', ['JSON']))}
801
+ })
802
+ reset_settings = [{"interval_type": "daily", "reset_time": {"value": 9, "time_unit": "hour"}}]
803
+ return [self.create_business_analytics(
804
+ analysis_name="flare_color_analysis",
805
+ statistics={"total_detections": total_detections, "unique_colors": sum(len(colors) for colors in color_distribution.values())},
806
+ human_text=human_text,
807
+ camera_info=camera_info,
808
+ alerts=alerts,
809
+ alert_settings=alert_settings,
810
+ reset_settings=reset_settings
811
+ )]
812
+
813
+ def _generate_summary(self, counting_summary: Dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[Dict]:
814
+ lines = {}
815
+ lines["Application Name"] = self.CASE_TYPE
816
+ lines["Application Version"] = self.CASE_VERSION
817
+ if incidents and incidents[0]:
818
+ lines["Incidents"] = f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
819
+ if tracking_stats and tracking_stats[0]:
820
+ lines["Tracking Statistics"] = f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
821
+ if business_analytics and business_analytics[0]:
822
+ lines["Business Analytics"] = f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
823
+ if not lines.get("Incidents") and not lines.get("Tracking Statistics") and not lines.get("Business Analytics"):
824
+ lines["Summary"] = "No Summary Data"
825
+ return [lines]
826
+
827
+ def _format_timestamp(self, timestamp: float) -> str:
828
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
829
+
830
+ def _get_tracking_start_time(self) -> str:
831
+ if self._tracking_start_time is None:
832
+ return "N/A"
833
+ return self._format_timestamp(self._tracking_start_time)
834
+
835
+ def _set_tracking_start_time(self) -> None:
836
+ self._tracking_start_time = time.time()