diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,59 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Dict
|
16
|
+
|
17
|
+
import torch
|
18
|
+
|
19
|
+
|
20
|
+
class AttnProcsLayers(torch.nn.Module):
|
21
|
+
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
22
|
+
super().__init__()
|
23
|
+
self.layers = torch.nn.ModuleList(state_dict.values())
|
24
|
+
self.mapping = dict(enumerate(state_dict.keys()))
|
25
|
+
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
26
|
+
|
27
|
+
# .processor for unet, .self_attn for text encoder
|
28
|
+
self.split_keys = [".processor", ".self_attn"]
|
29
|
+
|
30
|
+
# we add a hook to state_dict() and load_state_dict() so that the
|
31
|
+
# naming fits with `unet.attn_processors`
|
32
|
+
def map_to(module, state_dict, *args, **kwargs):
|
33
|
+
new_state_dict = {}
|
34
|
+
for key, value in state_dict.items():
|
35
|
+
num = int(key.split(".")[1]) # 0 is always "layers"
|
36
|
+
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
37
|
+
new_state_dict[new_key] = value
|
38
|
+
|
39
|
+
return new_state_dict
|
40
|
+
|
41
|
+
def remap_key(key, state_dict):
|
42
|
+
for k in self.split_keys:
|
43
|
+
if k in key:
|
44
|
+
return key.split(k)[0] + k
|
45
|
+
|
46
|
+
raise ValueError(
|
47
|
+
f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
|
48
|
+
)
|
49
|
+
|
50
|
+
def map_from(module, state_dict, *args, **kwargs):
|
51
|
+
all_keys = list(state_dict.keys())
|
52
|
+
for key in all_keys:
|
53
|
+
replace_key = remap_key(key, state_dict)
|
54
|
+
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
|
55
|
+
state_dict[new_key] = state_dict[key]
|
56
|
+
del state_dict[key]
|
57
|
+
|
58
|
+
self._register_state_dict_hook(map_to)
|
59
|
+
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
diffusers/models/__init__.py
CHANGED
@@ -14,19 +14,26 @@
|
|
14
14
|
|
15
15
|
from typing import TYPE_CHECKING
|
16
16
|
|
17
|
-
from ..utils import
|
17
|
+
from ..utils import (
|
18
|
+
DIFFUSERS_SLOW_IMPORT,
|
19
|
+
_LazyModule,
|
20
|
+
is_flax_available,
|
21
|
+
is_torch_available,
|
22
|
+
)
|
18
23
|
|
19
24
|
|
20
25
|
_import_structure = {}
|
21
26
|
|
22
27
|
if is_torch_available():
|
23
28
|
_import_structure["adapter"] = ["MultiAdapter", "T2IAdapter"]
|
24
|
-
_import_structure["autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
|
25
|
-
_import_structure["autoencoder_kl"] = ["AutoencoderKL"]
|
26
|
-
_import_structure["
|
27
|
-
_import_structure["
|
29
|
+
_import_structure["autoencoders.autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
|
30
|
+
_import_structure["autoencoders.autoencoder_kl"] = ["AutoencoderKL"]
|
31
|
+
_import_structure["autoencoders.autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"]
|
32
|
+
_import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"]
|
33
|
+
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
|
28
34
|
_import_structure["controlnet"] = ["ControlNetModel"]
|
29
35
|
_import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"]
|
36
|
+
_import_structure["embeddings"] = ["ImageProjection"]
|
30
37
|
_import_structure["modeling_utils"] = ["ModelMixin"]
|
31
38
|
_import_structure["prior_transformer"] = ["PriorTransformer"]
|
32
39
|
_import_structure["t5_film_transformer"] = ["T5FilmDecoder"]
|
@@ -36,7 +43,10 @@ if is_torch_available():
|
|
36
43
|
_import_structure["unet_2d"] = ["UNet2DModel"]
|
37
44
|
_import_structure["unet_2d_condition"] = ["UNet2DConditionModel"]
|
38
45
|
_import_structure["unet_3d_condition"] = ["UNet3DConditionModel"]
|
46
|
+
_import_structure["unet_kandinsky3"] = ["Kandinsky3UNet"]
|
39
47
|
_import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
|
48
|
+
_import_structure["unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
|
49
|
+
_import_structure["uvit_2d"] = ["UVit2DModel"]
|
40
50
|
_import_structure["vq_model"] = ["VQModel"]
|
41
51
|
|
42
52
|
if is_flax_available():
|
@@ -48,12 +58,16 @@ if is_flax_available():
|
|
48
58
|
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
49
59
|
if is_torch_available():
|
50
60
|
from .adapter import MultiAdapter, T2IAdapter
|
51
|
-
from .
|
52
|
-
|
53
|
-
|
54
|
-
|
61
|
+
from .autoencoders import (
|
62
|
+
AsymmetricAutoencoderKL,
|
63
|
+
AutoencoderKL,
|
64
|
+
AutoencoderKLTemporalDecoder,
|
65
|
+
AutoencoderTiny,
|
66
|
+
ConsistencyDecoderVAE,
|
67
|
+
)
|
55
68
|
from .controlnet import ControlNetModel
|
56
69
|
from .dual_transformer_2d import DualTransformer2DModel
|
70
|
+
from .embeddings import ImageProjection
|
57
71
|
from .modeling_utils import ModelMixin
|
58
72
|
from .prior_transformer import PriorTransformer
|
59
73
|
from .t5_film_transformer import T5FilmDecoder
|
@@ -63,7 +77,10 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
63
77
|
from .unet_2d import UNet2DModel
|
64
78
|
from .unet_2d_condition import UNet2DConditionModel
|
65
79
|
from .unet_3d_condition import UNet3DConditionModel
|
80
|
+
from .unet_kandinsky3 import Kandinsky3UNet
|
66
81
|
from .unet_motion_model import MotionAdapter, UNetMotionModel
|
82
|
+
from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
83
|
+
from .uvit_2d import UVit2DModel
|
67
84
|
from .vq_model import VQModel
|
68
85
|
|
69
86
|
if is_flax_available():
|
diffusers/models/activations.py
CHANGED
@@ -55,11 +55,12 @@ class GELU(nn.Module):
|
|
55
55
|
dim_in (`int`): The number of channels in the input.
|
56
56
|
dim_out (`int`): The number of channels in the output.
|
57
57
|
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
|
58
|
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
58
59
|
"""
|
59
60
|
|
60
|
-
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
|
61
|
+
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
|
61
62
|
super().__init__()
|
62
|
-
self.proj = nn.Linear(dim_in, dim_out)
|
63
|
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
63
64
|
self.approximate = approximate
|
64
65
|
|
65
66
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
@@ -81,13 +82,14 @@ class GEGLU(nn.Module):
|
|
81
82
|
Parameters:
|
82
83
|
dim_in (`int`): The number of channels in the input.
|
83
84
|
dim_out (`int`): The number of channels in the output.
|
85
|
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
84
86
|
"""
|
85
87
|
|
86
|
-
def __init__(self, dim_in: int, dim_out: int):
|
88
|
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
87
89
|
super().__init__()
|
88
90
|
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
89
91
|
|
90
|
-
self.proj = linear_cls(dim_in, dim_out * 2)
|
92
|
+
self.proj = linear_cls(dim_in, dim_out * 2, bias=bias)
|
91
93
|
|
92
94
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
93
95
|
if gate.device.type != "mps":
|
@@ -109,11 +111,12 @@ class ApproximateGELU(nn.Module):
|
|
109
111
|
Parameters:
|
110
112
|
dim_in (`int`): The number of channels in the input.
|
111
113
|
dim_out (`int`): The number of channels in the output.
|
114
|
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
112
115
|
"""
|
113
116
|
|
114
|
-
def __init__(self, dim_in: int, dim_out: int):
|
117
|
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
115
118
|
super().__init__()
|
116
|
-
self.proj = nn.Linear(dim_in, dim_out)
|
119
|
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
117
120
|
|
118
121
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
119
122
|
x = self.proj(x)
|
diffusers/models/attention.py
CHANGED
@@ -14,6 +14,7 @@
|
|
14
14
|
from typing import Any, Dict, Optional
|
15
15
|
|
16
16
|
import torch
|
17
|
+
import torch.nn.functional as F
|
17
18
|
from torch import nn
|
18
19
|
|
19
20
|
from ..utils import USE_PEFT_BACKEND
|
@@ -22,7 +23,32 @@ from .activations import GEGLU, GELU, ApproximateGELU
|
|
22
23
|
from .attention_processor import Attention
|
23
24
|
from .embeddings import SinusoidalPositionalEmbedding
|
24
25
|
from .lora import LoRACompatibleLinear
|
25
|
-
from .normalization import AdaLayerNorm, AdaLayerNormZero
|
26
|
+
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
27
|
+
|
28
|
+
|
29
|
+
def _chunked_feed_forward(
|
30
|
+
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
|
31
|
+
):
|
32
|
+
# "feed_forward_chunk_size" can be used to save memory
|
33
|
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34
|
+
raise ValueError(
|
35
|
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36
|
+
)
|
37
|
+
|
38
|
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39
|
+
if lora_scale is None:
|
40
|
+
ff_output = torch.cat(
|
41
|
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
42
|
+
dim=chunk_dim,
|
43
|
+
)
|
44
|
+
else:
|
45
|
+
# TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
|
46
|
+
ff_output = torch.cat(
|
47
|
+
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
48
|
+
dim=chunk_dim,
|
49
|
+
)
|
50
|
+
|
51
|
+
return ff_output
|
26
52
|
|
27
53
|
|
28
54
|
@maybe_allow_in_graph
|
@@ -123,6 +149,11 @@ class BasicTransformerBlock(nn.Module):
|
|
123
149
|
attention_type: str = "default",
|
124
150
|
positional_embeddings: Optional[str] = None,
|
125
151
|
num_positional_embeddings: Optional[int] = None,
|
152
|
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
153
|
+
ada_norm_bias: Optional[int] = None,
|
154
|
+
ff_inner_dim: Optional[int] = None,
|
155
|
+
ff_bias: bool = True,
|
156
|
+
attention_out_bias: bool = True,
|
126
157
|
):
|
127
158
|
super().__init__()
|
128
159
|
self.only_cross_attention = only_cross_attention
|
@@ -131,6 +162,7 @@ class BasicTransformerBlock(nn.Module):
|
|
131
162
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
132
163
|
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
133
164
|
self.use_layer_norm = norm_type == "layer_norm"
|
165
|
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
134
166
|
|
135
167
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
136
168
|
raise ValueError(
|
@@ -154,6 +186,15 @@ class BasicTransformerBlock(nn.Module):
|
|
154
186
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
155
187
|
elif self.use_ada_layer_norm_zero:
|
156
188
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
189
|
+
elif self.use_ada_layer_norm_continuous:
|
190
|
+
self.norm1 = AdaLayerNormContinuous(
|
191
|
+
dim,
|
192
|
+
ada_norm_continous_conditioning_embedding_dim,
|
193
|
+
norm_elementwise_affine,
|
194
|
+
norm_eps,
|
195
|
+
ada_norm_bias,
|
196
|
+
"rms_norm",
|
197
|
+
)
|
157
198
|
else:
|
158
199
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
159
200
|
|
@@ -165,6 +206,7 @@ class BasicTransformerBlock(nn.Module):
|
|
165
206
|
bias=attention_bias,
|
166
207
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
167
208
|
upcast_attention=upcast_attention,
|
209
|
+
out_bias=attention_out_bias,
|
168
210
|
)
|
169
211
|
|
170
212
|
# 2. Cross-Attn
|
@@ -172,11 +214,20 @@ class BasicTransformerBlock(nn.Module):
|
|
172
214
|
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
173
215
|
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
174
216
|
# the second cross attention block.
|
175
|
-
self.
|
176
|
-
AdaLayerNorm(dim, num_embeds_ada_norm)
|
177
|
-
|
178
|
-
|
179
|
-
|
217
|
+
if self.use_ada_layer_norm:
|
218
|
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
219
|
+
elif self.use_ada_layer_norm_continuous:
|
220
|
+
self.norm2 = AdaLayerNormContinuous(
|
221
|
+
dim,
|
222
|
+
ada_norm_continous_conditioning_embedding_dim,
|
223
|
+
norm_elementwise_affine,
|
224
|
+
norm_eps,
|
225
|
+
ada_norm_bias,
|
226
|
+
"rms_norm",
|
227
|
+
)
|
228
|
+
else:
|
229
|
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
230
|
+
|
180
231
|
self.attn2 = Attention(
|
181
232
|
query_dim=dim,
|
182
233
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
@@ -185,16 +236,33 @@ class BasicTransformerBlock(nn.Module):
|
|
185
236
|
dropout=dropout,
|
186
237
|
bias=attention_bias,
|
187
238
|
upcast_attention=upcast_attention,
|
239
|
+
out_bias=attention_out_bias,
|
188
240
|
) # is self-attn if encoder_hidden_states is none
|
189
241
|
else:
|
190
242
|
self.norm2 = None
|
191
243
|
self.attn2 = None
|
192
244
|
|
193
245
|
# 3. Feed-forward
|
194
|
-
if
|
195
|
-
self.norm3 =
|
246
|
+
if self.use_ada_layer_norm_continuous:
|
247
|
+
self.norm3 = AdaLayerNormContinuous(
|
248
|
+
dim,
|
249
|
+
ada_norm_continous_conditioning_embedding_dim,
|
250
|
+
norm_elementwise_affine,
|
251
|
+
norm_eps,
|
252
|
+
ada_norm_bias,
|
253
|
+
"layer_norm",
|
254
|
+
)
|
255
|
+
elif not self.use_ada_layer_norm_single:
|
256
|
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
196
257
|
|
197
|
-
self.ff = FeedForward(
|
258
|
+
self.ff = FeedForward(
|
259
|
+
dim,
|
260
|
+
dropout=dropout,
|
261
|
+
activation_fn=activation_fn,
|
262
|
+
final_dropout=final_dropout,
|
263
|
+
inner_dim=ff_inner_dim,
|
264
|
+
bias=ff_bias,
|
265
|
+
)
|
198
266
|
|
199
267
|
# 4. Fuser
|
200
268
|
if attention_type == "gated" or attention_type == "gated-text-image":
|
@@ -208,7 +276,7 @@ class BasicTransformerBlock(nn.Module):
|
|
208
276
|
self._chunk_size = None
|
209
277
|
self._chunk_dim = 0
|
210
278
|
|
211
|
-
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
279
|
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
212
280
|
# Sets chunk feed-forward
|
213
281
|
self._chunk_size = chunk_size
|
214
282
|
self._chunk_dim = dim
|
@@ -222,6 +290,7 @@ class BasicTransformerBlock(nn.Module):
|
|
222
290
|
timestep: Optional[torch.LongTensor] = None,
|
223
291
|
cross_attention_kwargs: Dict[str, Any] = None,
|
224
292
|
class_labels: Optional[torch.LongTensor] = None,
|
293
|
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
225
294
|
) -> torch.FloatTensor:
|
226
295
|
# Notice that normalization is always applied before the real computation in the following blocks.
|
227
296
|
# 0. Self-Attention
|
@@ -235,6 +304,8 @@ class BasicTransformerBlock(nn.Module):
|
|
235
304
|
)
|
236
305
|
elif self.use_layer_norm:
|
237
306
|
norm_hidden_states = self.norm1(hidden_states)
|
307
|
+
elif self.use_ada_layer_norm_continuous:
|
308
|
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
238
309
|
elif self.use_ada_layer_norm_single:
|
239
310
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
240
311
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
@@ -284,6 +355,8 @@ class BasicTransformerBlock(nn.Module):
|
|
284
355
|
# For PixArt norm2 isn't applied here:
|
285
356
|
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
286
357
|
norm_hidden_states = hidden_states
|
358
|
+
elif self.use_ada_layer_norm_continuous:
|
359
|
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
287
360
|
else:
|
288
361
|
raise ValueError("Incorrect norm")
|
289
362
|
|
@@ -299,7 +372,9 @@ class BasicTransformerBlock(nn.Module):
|
|
299
372
|
hidden_states = attn_output + hidden_states
|
300
373
|
|
301
374
|
# 4. Feed-forward
|
302
|
-
if
|
375
|
+
if self.use_ada_layer_norm_continuous:
|
376
|
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
377
|
+
elif not self.use_ada_layer_norm_single:
|
303
378
|
norm_hidden_states = self.norm3(hidden_states)
|
304
379
|
|
305
380
|
if self.use_ada_layer_norm_zero:
|
@@ -311,18 +386,8 @@ class BasicTransformerBlock(nn.Module):
|
|
311
386
|
|
312
387
|
if self._chunk_size is not None:
|
313
388
|
# "feed_forward_chunk_size" can be used to save memory
|
314
|
-
|
315
|
-
|
316
|
-
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
317
|
-
)
|
318
|
-
|
319
|
-
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
320
|
-
ff_output = torch.cat(
|
321
|
-
[
|
322
|
-
self.ff(hid_slice, scale=lora_scale)
|
323
|
-
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
324
|
-
],
|
325
|
-
dim=self._chunk_dim,
|
389
|
+
ff_output = _chunked_feed_forward(
|
390
|
+
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
|
326
391
|
)
|
327
392
|
else:
|
328
393
|
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
@@ -339,6 +404,209 @@ class BasicTransformerBlock(nn.Module):
|
|
339
404
|
return hidden_states
|
340
405
|
|
341
406
|
|
407
|
+
@maybe_allow_in_graph
|
408
|
+
class TemporalBasicTransformerBlock(nn.Module):
|
409
|
+
r"""
|
410
|
+
A basic Transformer block for video like data.
|
411
|
+
|
412
|
+
Parameters:
|
413
|
+
dim (`int`): The number of channels in the input and output.
|
414
|
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
415
|
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
416
|
+
attention_head_dim (`int`): The number of channels in each head.
|
417
|
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
418
|
+
"""
|
419
|
+
|
420
|
+
def __init__(
|
421
|
+
self,
|
422
|
+
dim: int,
|
423
|
+
time_mix_inner_dim: int,
|
424
|
+
num_attention_heads: int,
|
425
|
+
attention_head_dim: int,
|
426
|
+
cross_attention_dim: Optional[int] = None,
|
427
|
+
):
|
428
|
+
super().__init__()
|
429
|
+
self.is_res = dim == time_mix_inner_dim
|
430
|
+
|
431
|
+
self.norm_in = nn.LayerNorm(dim)
|
432
|
+
|
433
|
+
# Define 3 blocks. Each block has its own normalization layer.
|
434
|
+
# 1. Self-Attn
|
435
|
+
self.norm_in = nn.LayerNorm(dim)
|
436
|
+
self.ff_in = FeedForward(
|
437
|
+
dim,
|
438
|
+
dim_out=time_mix_inner_dim,
|
439
|
+
activation_fn="geglu",
|
440
|
+
)
|
441
|
+
|
442
|
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
443
|
+
self.attn1 = Attention(
|
444
|
+
query_dim=time_mix_inner_dim,
|
445
|
+
heads=num_attention_heads,
|
446
|
+
dim_head=attention_head_dim,
|
447
|
+
cross_attention_dim=None,
|
448
|
+
)
|
449
|
+
|
450
|
+
# 2. Cross-Attn
|
451
|
+
if cross_attention_dim is not None:
|
452
|
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
453
|
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
454
|
+
# the second cross attention block.
|
455
|
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
456
|
+
self.attn2 = Attention(
|
457
|
+
query_dim=time_mix_inner_dim,
|
458
|
+
cross_attention_dim=cross_attention_dim,
|
459
|
+
heads=num_attention_heads,
|
460
|
+
dim_head=attention_head_dim,
|
461
|
+
) # is self-attn if encoder_hidden_states is none
|
462
|
+
else:
|
463
|
+
self.norm2 = None
|
464
|
+
self.attn2 = None
|
465
|
+
|
466
|
+
# 3. Feed-forward
|
467
|
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
468
|
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
469
|
+
|
470
|
+
# let chunk size default to None
|
471
|
+
self._chunk_size = None
|
472
|
+
self._chunk_dim = None
|
473
|
+
|
474
|
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
475
|
+
# Sets chunk feed-forward
|
476
|
+
self._chunk_size = chunk_size
|
477
|
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
478
|
+
self._chunk_dim = 1
|
479
|
+
|
480
|
+
def forward(
|
481
|
+
self,
|
482
|
+
hidden_states: torch.FloatTensor,
|
483
|
+
num_frames: int,
|
484
|
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
485
|
+
) -> torch.FloatTensor:
|
486
|
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
487
|
+
# 0. Self-Attention
|
488
|
+
batch_size = hidden_states.shape[0]
|
489
|
+
|
490
|
+
batch_frames, seq_length, channels = hidden_states.shape
|
491
|
+
batch_size = batch_frames // num_frames
|
492
|
+
|
493
|
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
494
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
495
|
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
496
|
+
|
497
|
+
residual = hidden_states
|
498
|
+
hidden_states = self.norm_in(hidden_states)
|
499
|
+
|
500
|
+
if self._chunk_size is not None:
|
501
|
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
502
|
+
else:
|
503
|
+
hidden_states = self.ff_in(hidden_states)
|
504
|
+
|
505
|
+
if self.is_res:
|
506
|
+
hidden_states = hidden_states + residual
|
507
|
+
|
508
|
+
norm_hidden_states = self.norm1(hidden_states)
|
509
|
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
510
|
+
hidden_states = attn_output + hidden_states
|
511
|
+
|
512
|
+
# 3. Cross-Attention
|
513
|
+
if self.attn2 is not None:
|
514
|
+
norm_hidden_states = self.norm2(hidden_states)
|
515
|
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
516
|
+
hidden_states = attn_output + hidden_states
|
517
|
+
|
518
|
+
# 4. Feed-forward
|
519
|
+
norm_hidden_states = self.norm3(hidden_states)
|
520
|
+
|
521
|
+
if self._chunk_size is not None:
|
522
|
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
523
|
+
else:
|
524
|
+
ff_output = self.ff(norm_hidden_states)
|
525
|
+
|
526
|
+
if self.is_res:
|
527
|
+
hidden_states = ff_output + hidden_states
|
528
|
+
else:
|
529
|
+
hidden_states = ff_output
|
530
|
+
|
531
|
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
532
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
533
|
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
534
|
+
|
535
|
+
return hidden_states
|
536
|
+
|
537
|
+
|
538
|
+
class SkipFFTransformerBlock(nn.Module):
|
539
|
+
def __init__(
|
540
|
+
self,
|
541
|
+
dim: int,
|
542
|
+
num_attention_heads: int,
|
543
|
+
attention_head_dim: int,
|
544
|
+
kv_input_dim: int,
|
545
|
+
kv_input_dim_proj_use_bias: bool,
|
546
|
+
dropout=0.0,
|
547
|
+
cross_attention_dim: Optional[int] = None,
|
548
|
+
attention_bias: bool = False,
|
549
|
+
attention_out_bias: bool = True,
|
550
|
+
):
|
551
|
+
super().__init__()
|
552
|
+
if kv_input_dim != dim:
|
553
|
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
554
|
+
else:
|
555
|
+
self.kv_mapper = None
|
556
|
+
|
557
|
+
self.norm1 = RMSNorm(dim, 1e-06)
|
558
|
+
|
559
|
+
self.attn1 = Attention(
|
560
|
+
query_dim=dim,
|
561
|
+
heads=num_attention_heads,
|
562
|
+
dim_head=attention_head_dim,
|
563
|
+
dropout=dropout,
|
564
|
+
bias=attention_bias,
|
565
|
+
cross_attention_dim=cross_attention_dim,
|
566
|
+
out_bias=attention_out_bias,
|
567
|
+
)
|
568
|
+
|
569
|
+
self.norm2 = RMSNorm(dim, 1e-06)
|
570
|
+
|
571
|
+
self.attn2 = Attention(
|
572
|
+
query_dim=dim,
|
573
|
+
cross_attention_dim=cross_attention_dim,
|
574
|
+
heads=num_attention_heads,
|
575
|
+
dim_head=attention_head_dim,
|
576
|
+
dropout=dropout,
|
577
|
+
bias=attention_bias,
|
578
|
+
out_bias=attention_out_bias,
|
579
|
+
)
|
580
|
+
|
581
|
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
582
|
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
583
|
+
|
584
|
+
if self.kv_mapper is not None:
|
585
|
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
586
|
+
|
587
|
+
norm_hidden_states = self.norm1(hidden_states)
|
588
|
+
|
589
|
+
attn_output = self.attn1(
|
590
|
+
norm_hidden_states,
|
591
|
+
encoder_hidden_states=encoder_hidden_states,
|
592
|
+
**cross_attention_kwargs,
|
593
|
+
)
|
594
|
+
|
595
|
+
hidden_states = attn_output + hidden_states
|
596
|
+
|
597
|
+
norm_hidden_states = self.norm2(hidden_states)
|
598
|
+
|
599
|
+
attn_output = self.attn2(
|
600
|
+
norm_hidden_states,
|
601
|
+
encoder_hidden_states=encoder_hidden_states,
|
602
|
+
**cross_attention_kwargs,
|
603
|
+
)
|
604
|
+
|
605
|
+
hidden_states = attn_output + hidden_states
|
606
|
+
|
607
|
+
return hidden_states
|
608
|
+
|
609
|
+
|
342
610
|
class FeedForward(nn.Module):
|
343
611
|
r"""
|
344
612
|
A feed-forward layer.
|
@@ -350,6 +618,7 @@ class FeedForward(nn.Module):
|
|
350
618
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
351
619
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
352
620
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
621
|
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
353
622
|
"""
|
354
623
|
|
355
624
|
def __init__(
|
@@ -360,20 +629,23 @@ class FeedForward(nn.Module):
|
|
360
629
|
dropout: float = 0.0,
|
361
630
|
activation_fn: str = "geglu",
|
362
631
|
final_dropout: bool = False,
|
632
|
+
inner_dim=None,
|
633
|
+
bias: bool = True,
|
363
634
|
):
|
364
635
|
super().__init__()
|
365
|
-
inner_dim
|
636
|
+
if inner_dim is None:
|
637
|
+
inner_dim = int(dim * mult)
|
366
638
|
dim_out = dim_out if dim_out is not None else dim
|
367
639
|
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
368
640
|
|
369
641
|
if activation_fn == "gelu":
|
370
|
-
act_fn = GELU(dim, inner_dim)
|
642
|
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
371
643
|
if activation_fn == "gelu-approximate":
|
372
|
-
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
644
|
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
373
645
|
elif activation_fn == "geglu":
|
374
|
-
act_fn = GEGLU(dim, inner_dim)
|
646
|
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
375
647
|
elif activation_fn == "geglu-approximate":
|
376
|
-
act_fn = ApproximateGELU(dim, inner_dim)
|
648
|
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
377
649
|
|
378
650
|
self.net = nn.ModuleList([])
|
379
651
|
# project in
|
@@ -381,7 +653,7 @@ class FeedForward(nn.Module):
|
|
381
653
|
# project dropout
|
382
654
|
self.net.append(nn.Dropout(dropout))
|
383
655
|
# project out
|
384
|
-
self.net.append(linear_cls(inner_dim, dim_out))
|
656
|
+
self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
|
385
657
|
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
386
658
|
if final_dropout:
|
387
659
|
self.net.append(nn.Dropout(dropout))
|