diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (238) hide show
  1. diffusers/__init__.py +26 -2
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +13 -8
  4. diffusers/dependency_versions_check.py +0 -1
  5. diffusers/dependency_versions_table.py +5 -5
  6. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  7. diffusers/image_processor.py +463 -51
  8. diffusers/loaders/__init__.py +82 -0
  9. diffusers/loaders/ip_adapter.py +159 -0
  10. diffusers/loaders/lora.py +1553 -0
  11. diffusers/loaders/lora_conversion_utils.py +284 -0
  12. diffusers/loaders/single_file.py +637 -0
  13. diffusers/loaders/textual_inversion.py +455 -0
  14. diffusers/loaders/unet.py +828 -0
  15. diffusers/loaders/utils.py +59 -0
  16. diffusers/models/__init__.py +26 -9
  17. diffusers/models/activations.py +9 -6
  18. diffusers/models/attention.py +301 -29
  19. diffusers/models/attention_flax.py +9 -1
  20. diffusers/models/attention_processor.py +378 -6
  21. diffusers/models/autoencoders/__init__.py +5 -0
  22. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
  23. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
  24. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
  25. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
  26. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
  27. diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
  28. diffusers/models/controlnet.py +59 -39
  29. diffusers/models/controlnet_flax.py +19 -18
  30. diffusers/models/downsampling.py +338 -0
  31. diffusers/models/embeddings.py +112 -29
  32. diffusers/models/embeddings_flax.py +2 -0
  33. diffusers/models/lora.py +131 -1
  34. diffusers/models/modeling_flax_utils.py +14 -8
  35. diffusers/models/modeling_outputs.py +17 -0
  36. diffusers/models/modeling_utils.py +37 -29
  37. diffusers/models/normalization.py +110 -4
  38. diffusers/models/resnet.py +299 -652
  39. diffusers/models/transformer_2d.py +22 -5
  40. diffusers/models/transformer_temporal.py +183 -1
  41. diffusers/models/unet_2d_blocks_flax.py +5 -0
  42. diffusers/models/unet_2d_condition.py +46 -0
  43. diffusers/models/unet_2d_condition_flax.py +13 -13
  44. diffusers/models/unet_3d_blocks.py +957 -173
  45. diffusers/models/unet_3d_condition.py +16 -8
  46. diffusers/models/unet_kandinsky3.py +535 -0
  47. diffusers/models/unet_motion_model.py +48 -33
  48. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  49. diffusers/models/upsampling.py +454 -0
  50. diffusers/models/uvit_2d.py +471 -0
  51. diffusers/models/vae_flax.py +7 -0
  52. diffusers/models/vq_model.py +12 -3
  53. diffusers/optimization.py +16 -9
  54. diffusers/pipelines/__init__.py +137 -76
  55. diffusers/pipelines/amused/__init__.py +62 -0
  56. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  57. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  58. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  59. diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
  60. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  61. diffusers/pipelines/auto_pipeline.py +23 -13
  62. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  63. diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
  64. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
  65. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
  66. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
  67. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
  68. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
  69. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  70. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  71. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  72. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  73. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  74. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  75. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  76. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  77. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  78. diffusers/pipelines/deprecated/__init__.py +153 -0
  79. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  80. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
  81. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
  82. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  83. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  84. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  85. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  86. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  87. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  88. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  89. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  90. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  91. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  92. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  93. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
  94. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  95. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  96. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  97. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  98. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  100. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
  101. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
  102. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
  103. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
  104. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
  105. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
  106. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  107. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  108. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  109. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
  110. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  111. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
  112. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
  113. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
  114. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  115. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  116. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  117. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  118. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  119. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  120. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  122. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  123. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  124. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
  125. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
  126. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
  127. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
  128. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  129. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  130. diffusers/pipelines/onnx_utils.py +8 -5
  131. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  132. diffusers/pipelines/pipeline_flax_utils.py +11 -8
  133. diffusers/pipelines/pipeline_utils.py +63 -42
  134. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
  135. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  136. diffusers/pipelines/stable_diffusion/__init__.py +37 -65
  137. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
  138. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  139. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  140. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  141. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
  142. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  143. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  144. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
  145. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
  146. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
  147. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  151. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  152. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
  153. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  154. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
  155. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  156. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
  157. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  158. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  159. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
  160. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  161. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
  162. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  163. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
  164. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  165. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  166. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
  171. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  172. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
  175. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
  179. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
  180. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  181. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  182. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  183. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  184. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  185. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  186. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  187. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
  188. diffusers/schedulers/__init__.py +4 -4
  189. diffusers/schedulers/deprecated/__init__.py +50 -0
  190. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  191. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  192. diffusers/schedulers/scheduling_amused.py +162 -0
  193. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  194. diffusers/schedulers/scheduling_ddim.py +1 -3
  195. diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
  196. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  197. diffusers/schedulers/scheduling_ddpm.py +47 -3
  198. diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
  199. diffusers/schedulers/scheduling_deis_multistep.py +28 -6
  200. diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
  201. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
  202. diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
  203. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
  204. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
  205. diffusers/schedulers/scheduling_euler_discrete.py +102 -16
  206. diffusers/schedulers/scheduling_heun_discrete.py +17 -5
  207. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
  208. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
  209. diffusers/schedulers/scheduling_lcm.py +123 -29
  210. diffusers/schedulers/scheduling_lms_discrete.py +3 -3
  211. diffusers/schedulers/scheduling_pndm.py +1 -3
  212. diffusers/schedulers/scheduling_repaint.py +1 -3
  213. diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
  214. diffusers/schedulers/scheduling_utils.py +3 -1
  215. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  216. diffusers/training_utils.py +1 -1
  217. diffusers/utils/__init__.py +1 -2
  218. diffusers/utils/constants.py +10 -12
  219. diffusers/utils/dummy_pt_objects.py +75 -0
  220. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  221. diffusers/utils/dynamic_modules_utils.py +18 -22
  222. diffusers/utils/export_utils.py +8 -3
  223. diffusers/utils/hub_utils.py +24 -36
  224. diffusers/utils/logging.py +11 -11
  225. diffusers/utils/outputs.py +5 -5
  226. diffusers/utils/peft_utils.py +88 -44
  227. diffusers/utils/state_dict_utils.py +8 -0
  228. diffusers/utils/testing_utils.py +199 -1
  229. diffusers/utils/torch_utils.py +4 -4
  230. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
  231. diffusers-0.25.0.dist-info/RECORD +360 -0
  232. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  233. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  234. diffusers/loaders.py +0 -3336
  235. diffusers-0.23.1.dist-info/RECORD +0 -323
  236. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  237. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  238. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -118,6 +118,51 @@ def _preprocess_adapter_image(image, height, width):
118
118
  return image
119
119
 
120
120
 
121
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
122
+ def retrieve_timesteps(
123
+ scheduler,
124
+ num_inference_steps: Optional[int] = None,
125
+ device: Optional[Union[str, torch.device]] = None,
126
+ timesteps: Optional[List[int]] = None,
127
+ **kwargs,
128
+ ):
129
+ """
130
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
131
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
132
+
133
+ Args:
134
+ scheduler (`SchedulerMixin`):
135
+ The scheduler to get timesteps from.
136
+ num_inference_steps (`int`):
137
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
138
+ `timesteps` must be `None`.
139
+ device (`str` or `torch.device`, *optional*):
140
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
141
+ timesteps (`List[int]`, *optional*):
142
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
143
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
144
+ must be `None`.
145
+
146
+ Returns:
147
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
148
+ second element is the number of inference steps.
149
+ """
150
+ if timesteps is not None:
151
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
152
+ if not accepts_timesteps:
153
+ raise ValueError(
154
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
155
+ f" timestep schedules. Please check whether you are using the correct scheduler."
156
+ )
157
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ num_inference_steps = len(timesteps)
160
+ else:
161
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
162
+ timesteps = scheduler.timesteps
163
+ return timesteps, num_inference_steps
164
+
165
+
121
166
  class StableDiffusionAdapterPipeline(DiffusionPipeline):
122
167
  r"""
123
168
  Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter
@@ -152,6 +197,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
152
197
  feature_extractor ([`CLIPFeatureExtractor`]):
153
198
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
154
199
  """
200
+
155
201
  model_cpu_offload_seq = "text_encoder->adapter->unet->vae"
156
202
  _optional_components = ["safety_checker", "feature_extractor"]
157
203
 
@@ -610,6 +656,46 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
610
656
  """Disables the FreeU mechanism if enabled."""
611
657
  self.unet.disable_freeu()
612
658
 
659
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
660
+ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
661
+ """
662
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
663
+
664
+ Args:
665
+ timesteps (`torch.Tensor`):
666
+ generate embedding vectors at these timesteps
667
+ embedding_dim (`int`, *optional*, defaults to 512):
668
+ dimension of the embeddings to generate
669
+ dtype:
670
+ data type of the generated embeddings
671
+
672
+ Returns:
673
+ `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
674
+ """
675
+ assert len(w.shape) == 1
676
+ w = w * 1000.0
677
+
678
+ half_dim = embedding_dim // 2
679
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
680
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
681
+ emb = w.to(dtype)[:, None] * emb[None, :]
682
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
683
+ if embedding_dim % 2 == 1: # zero pad
684
+ emb = torch.nn.functional.pad(emb, (0, 1))
685
+ assert emb.shape == (w.shape[0], embedding_dim)
686
+ return emb
687
+
688
+ @property
689
+ def guidance_scale(self):
690
+ return self._guidance_scale
691
+
692
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
693
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
694
+ # corresponds to doing no classifier free guidance.
695
+ @property
696
+ def do_classifier_free_guidance(self):
697
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
698
+
613
699
  @torch.no_grad()
614
700
  @replace_example_docstring(EXAMPLE_DOC_STRING)
615
701
  def __call__(
@@ -619,6 +705,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
619
705
  height: Optional[int] = None,
620
706
  width: Optional[int] = None,
621
707
  num_inference_steps: int = 50,
708
+ timesteps: List[int] = None,
622
709
  guidance_scale: float = 7.5,
623
710
  negative_prompt: Optional[Union[str, List[str]]] = None,
624
711
  num_images_per_prompt: Optional[int] = 1,
@@ -653,6 +740,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
653
740
  num_inference_steps (`int`, *optional*, defaults to 50):
654
741
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
655
742
  expense of slower inference.
743
+ timesteps (`List[int]`, *optional*):
744
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
745
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
746
+ passed will be used. Must be in descending order.
656
747
  guidance_scale (`float`, *optional*, defaults to 7.5):
657
748
  Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
658
749
  `guidance_scale` is defined as `w` of equation 2. of [Imagen
@@ -723,6 +814,8 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
723
814
  prompt, height, width, callback_steps, image, negative_prompt, prompt_embeds, negative_prompt_embeds
724
815
  )
725
816
 
817
+ self._guidance_scale = guidance_scale
818
+
726
819
  if isinstance(self.adapter, MultiAdapter):
727
820
  adapter_input = []
728
821
 
@@ -742,17 +835,12 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
742
835
  else:
743
836
  batch_size = prompt_embeds.shape[0]
744
837
 
745
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
746
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
747
- # corresponds to doing no classifier free guidance.
748
- do_classifier_free_guidance = guidance_scale > 1.0
749
-
750
838
  # 3. Encode input prompt
751
839
  prompt_embeds, negative_prompt_embeds = self.encode_prompt(
752
840
  prompt,
753
841
  device,
754
842
  num_images_per_prompt,
755
- do_classifier_free_guidance,
843
+ self.do_classifier_free_guidance,
756
844
  negative_prompt,
757
845
  prompt_embeds=prompt_embeds,
758
846
  negative_prompt_embeds=negative_prompt_embeds,
@@ -761,12 +849,11 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
761
849
  # For classifier free guidance, we need to do two forward passes.
762
850
  # Here we concatenate the unconditional and text embeddings into a single batch
763
851
  # to avoid doing two forward passes
764
- if do_classifier_free_guidance:
852
+ if self.do_classifier_free_guidance:
765
853
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
766
854
 
767
855
  # 4. Prepare timesteps
768
- self.scheduler.set_timesteps(num_inference_steps, device=device)
769
- timesteps = self.scheduler.timesteps
856
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
770
857
 
771
858
  # 5. Prepare latent variables
772
859
  num_channels_latents = self.unet.config.in_channels
@@ -784,6 +871,14 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
784
871
  # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
785
872
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
786
873
 
874
+ # 6.5 Optionally get Guidance Scale Embedding
875
+ timestep_cond = None
876
+ if self.unet.config.time_cond_proj_dim is not None:
877
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
878
+ timestep_cond = self.get_guidance_scale_embedding(
879
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
880
+ ).to(device=device, dtype=latents.dtype)
881
+
787
882
  # 7. Denoising loop
788
883
  if isinstance(self.adapter, MultiAdapter):
789
884
  adapter_state = self.adapter(adapter_input, adapter_conditioning_scale)
@@ -796,7 +891,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
796
891
  if num_images_per_prompt > 1:
797
892
  for k, v in enumerate(adapter_state):
798
893
  adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
799
- if do_classifier_free_guidance:
894
+ if self.do_classifier_free_guidance:
800
895
  for k, v in enumerate(adapter_state):
801
896
  adapter_state[k] = torch.cat([v] * 2, dim=0)
802
897
 
@@ -804,7 +899,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
804
899
  with self.progress_bar(total=num_inference_steps) as progress_bar:
805
900
  for i, t in enumerate(timesteps):
806
901
  # expand the latents if we are doing classifier free guidance
807
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
902
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
808
903
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
809
904
 
810
905
  # predict the noise residual
@@ -812,13 +907,14 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
812
907
  latent_model_input,
813
908
  t,
814
909
  encoder_hidden_states=prompt_embeds,
910
+ timestep_cond=timestep_cond,
815
911
  cross_attention_kwargs=cross_attention_kwargs,
816
912
  down_intrablock_additional_residuals=[state.clone() for state in adapter_state],
817
913
  return_dict=False,
818
914
  )[0]
819
915
 
820
916
  # perform guidance
821
- if do_classifier_free_guidance:
917
+ if self.do_classifier_free_guidance:
822
918
  noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
823
919
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
824
920
 
@@ -123,6 +123,51 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
123
123
  return noise_cfg
124
124
 
125
125
 
126
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
127
+ def retrieve_timesteps(
128
+ scheduler,
129
+ num_inference_steps: Optional[int] = None,
130
+ device: Optional[Union[str, torch.device]] = None,
131
+ timesteps: Optional[List[int]] = None,
132
+ **kwargs,
133
+ ):
134
+ """
135
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
136
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
137
+
138
+ Args:
139
+ scheduler (`SchedulerMixin`):
140
+ The scheduler to get timesteps from.
141
+ num_inference_steps (`int`):
142
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
143
+ `timesteps` must be `None`.
144
+ device (`str` or `torch.device`, *optional*):
145
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
146
+ timesteps (`List[int]`, *optional*):
147
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
148
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
149
+ must be `None`.
150
+
151
+ Returns:
152
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
153
+ second element is the number of inference steps.
154
+ """
155
+ if timesteps is not None:
156
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
157
+ if not accepts_timesteps:
158
+ raise ValueError(
159
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
160
+ f" timestep schedules. Please check whether you are using the correct scheduler."
161
+ )
162
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
163
+ timesteps = scheduler.timesteps
164
+ num_inference_steps = len(timesteps)
165
+ else:
166
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
167
+ timesteps = scheduler.timesteps
168
+ return timesteps, num_inference_steps
169
+
170
+
126
171
  class StableDiffusionXLAdapterPipeline(
127
172
  DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
128
173
  ):
@@ -133,6 +178,12 @@ class StableDiffusionXLAdapterPipeline(
133
178
  This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
134
179
  library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
135
180
 
181
+ The pipeline also inherits the following loading methods:
182
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
183
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
184
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
185
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
186
+
136
187
  Args:
137
188
  adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`):
138
189
  Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a
@@ -159,6 +210,7 @@ class StableDiffusionXLAdapterPipeline(
159
210
  feature_extractor ([`CLIPFeatureExtractor`]):
160
211
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
161
212
  """
213
+
162
214
  model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
163
215
  _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
164
216
 
@@ -670,6 +722,46 @@ class StableDiffusionXLAdapterPipeline(
670
722
  """Disables the FreeU mechanism if enabled."""
671
723
  self.unet.disable_freeu()
672
724
 
725
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
726
+ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
727
+ """
728
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
729
+
730
+ Args:
731
+ timesteps (`torch.Tensor`):
732
+ generate embedding vectors at these timesteps
733
+ embedding_dim (`int`, *optional*, defaults to 512):
734
+ dimension of the embeddings to generate
735
+ dtype:
736
+ data type of the generated embeddings
737
+
738
+ Returns:
739
+ `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
740
+ """
741
+ assert len(w.shape) == 1
742
+ w = w * 1000.0
743
+
744
+ half_dim = embedding_dim // 2
745
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
746
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
747
+ emb = w.to(dtype)[:, None] * emb[None, :]
748
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
749
+ if embedding_dim % 2 == 1: # zero pad
750
+ emb = torch.nn.functional.pad(emb, (0, 1))
751
+ assert emb.shape == (w.shape[0], embedding_dim)
752
+ return emb
753
+
754
+ @property
755
+ def guidance_scale(self):
756
+ return self._guidance_scale
757
+
758
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
759
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
760
+ # corresponds to doing no classifier free guidance.
761
+ @property
762
+ def do_classifier_free_guidance(self):
763
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
764
+
673
765
  @torch.no_grad()
674
766
  @replace_example_docstring(EXAMPLE_DOC_STRING)
675
767
  def __call__(
@@ -680,6 +772,7 @@ class StableDiffusionXLAdapterPipeline(
680
772
  height: Optional[int] = None,
681
773
  width: Optional[int] = None,
682
774
  num_inference_steps: int = 50,
775
+ timesteps: List[int] = None,
683
776
  denoising_end: Optional[float] = None,
684
777
  guidance_scale: float = 5.0,
685
778
  negative_prompt: Optional[Union[str, List[str]]] = None,
@@ -733,6 +826,10 @@ class StableDiffusionXLAdapterPipeline(
733
826
  num_inference_steps (`int`, *optional*, defaults to 50):
734
827
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
735
828
  expense of slower inference.
829
+ timesteps (`List[int]`, *optional*):
830
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
831
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
832
+ passed will be used. Must be in descending order.
736
833
  denoising_end (`float`, *optional*):
737
834
  When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
738
835
  completed before it is intentionally prematurely terminated. As a result, the returned sample will
@@ -882,6 +979,8 @@ class StableDiffusionXLAdapterPipeline(
882
979
  negative_pooled_prompt_embeds,
883
980
  )
884
981
 
982
+ self._guidance_scale = guidance_scale
983
+
885
984
  # 2. Define call parameters
886
985
  if prompt is not None and isinstance(prompt, str):
887
986
  batch_size = 1
@@ -892,11 +991,6 @@ class StableDiffusionXLAdapterPipeline(
892
991
 
893
992
  device = self._execution_device
894
993
 
895
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
896
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
897
- # corresponds to doing no classifier free guidance.
898
- do_classifier_free_guidance = guidance_scale > 1.0
899
-
900
994
  # 3. Encode input prompt
901
995
  (
902
996
  prompt_embeds,
@@ -908,7 +1002,7 @@ class StableDiffusionXLAdapterPipeline(
908
1002
  prompt_2=prompt_2,
909
1003
  device=device,
910
1004
  num_images_per_prompt=num_images_per_prompt,
911
- do_classifier_free_guidance=do_classifier_free_guidance,
1005
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
912
1006
  negative_prompt=negative_prompt,
913
1007
  negative_prompt_2=negative_prompt_2,
914
1008
  prompt_embeds=prompt_embeds,
@@ -919,9 +1013,7 @@ class StableDiffusionXLAdapterPipeline(
919
1013
  )
920
1014
 
921
1015
  # 4. Prepare timesteps
922
- self.scheduler.set_timesteps(num_inference_steps, device=device)
923
-
924
- timesteps = self.scheduler.timesteps
1016
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
925
1017
 
926
1018
  # 5. Prepare latent variables
927
1019
  num_channels_latents = self.unet.config.in_channels
@@ -939,6 +1031,14 @@ class StableDiffusionXLAdapterPipeline(
939
1031
  # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
940
1032
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
941
1033
 
1034
+ # 6.5 Optionally get Guidance Scale Embedding
1035
+ timestep_cond = None
1036
+ if self.unet.config.time_cond_proj_dim is not None:
1037
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1038
+ timestep_cond = self.get_guidance_scale_embedding(
1039
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1040
+ ).to(device=device, dtype=latents.dtype)
1041
+
942
1042
  # 7. Prepare added time ids & embeddings & adapter features
943
1043
  if isinstance(self.adapter, MultiAdapter):
944
1044
  adapter_state = self.adapter(adapter_input, adapter_conditioning_scale)
@@ -951,7 +1051,7 @@ class StableDiffusionXLAdapterPipeline(
951
1051
  if num_images_per_prompt > 1:
952
1052
  for k, v in enumerate(adapter_state):
953
1053
  adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
954
- if do_classifier_free_guidance:
1054
+ if self.do_classifier_free_guidance:
955
1055
  for k, v in enumerate(adapter_state):
956
1056
  adapter_state[k] = torch.cat([v] * 2, dim=0)
957
1057
 
@@ -979,7 +1079,7 @@ class StableDiffusionXLAdapterPipeline(
979
1079
  else:
980
1080
  negative_add_time_ids = add_time_ids
981
1081
 
982
- if do_classifier_free_guidance:
1082
+ if self.do_classifier_free_guidance:
983
1083
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
984
1084
  add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
985
1085
  add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
@@ -1005,7 +1105,7 @@ class StableDiffusionXLAdapterPipeline(
1005
1105
  with self.progress_bar(total=num_inference_steps) as progress_bar:
1006
1106
  for i, t in enumerate(timesteps):
1007
1107
  # expand the latents if we are doing classifier free guidance
1008
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
1108
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1009
1109
 
1010
1110
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1011
1111
 
@@ -1021,6 +1121,7 @@ class StableDiffusionXLAdapterPipeline(
1021
1121
  latent_model_input,
1022
1122
  t,
1023
1123
  encoder_hidden_states=prompt_embeds,
1124
+ timestep_cond=timestep_cond,
1024
1125
  cross_attention_kwargs=cross_attention_kwargs,
1025
1126
  added_cond_kwargs=added_cond_kwargs,
1026
1127
  return_dict=False,
@@ -1028,11 +1129,11 @@ class StableDiffusionXLAdapterPipeline(
1028
1129
  )[0]
1029
1130
 
1030
1131
  # perform guidance
1031
- if do_classifier_free_guidance:
1132
+ if self.do_classifier_free_guidance:
1032
1133
  noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1033
1134
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1034
1135
 
1035
- if do_classifier_free_guidance and guidance_rescale > 0.0:
1136
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
1036
1137
  # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1037
1138
  noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
1038
1139
 
@@ -25,6 +25,7 @@ else:
25
25
  _import_structure["pipeline_text_to_video_synth"] = ["TextToVideoSDPipeline"]
26
26
  _import_structure["pipeline_text_to_video_synth_img2img"] = ["VideoToVideoSDPipeline"]
27
27
  _import_structure["pipeline_text_to_video_zero"] = ["TextToVideoZeroPipeline"]
28
+ _import_structure["pipeline_text_to_video_zero_sdxl"] = ["TextToVideoZeroSDXLPipeline"]
28
29
 
29
30
 
30
31
  if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
@@ -38,6 +39,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
38
39
  from .pipeline_text_to_video_synth import TextToVideoSDPipeline
39
40
  from .pipeline_text_to_video_synth_img2img import VideoToVideoSDPipeline
40
41
  from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
42
+ from .pipeline_text_to_video_zero_sdxl import TextToVideoZeroSDXLPipeline
41
43
 
42
44
  else:
43
45
  import sys
@@ -83,6 +83,11 @@ class TextToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lora
83
83
  This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
84
84
  implemented for all pipelines (downloading, saving, running on a particular device, etc.).
85
85
 
86
+ The pipeline also inherits the following loading methods:
87
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
88
+ - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
89
+ - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
90
+
86
91
  Args:
87
92
  vae ([`AutoencoderKL`]):
88
93
  Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
@@ -96,6 +101,7 @@ class TextToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lora
96
101
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
97
102
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
98
103
  """
104
+
99
105
  model_cpu_offload_seq = "text_encoder->unet->vae"
100
106
 
101
107
  def __init__(
@@ -79,6 +79,20 @@ EXAMPLE_DOC_STRING = """
79
79
  """
80
80
 
81
81
 
82
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
83
+ def retrieve_latents(
84
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
85
+ ):
86
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
87
+ return encoder_output.latent_dist.sample(generator)
88
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
89
+ return encoder_output.latent_dist.mode()
90
+ elif hasattr(encoder_output, "latents"):
91
+ return encoder_output.latents
92
+ else:
93
+ raise AttributeError("Could not access latents of provided encoder_output")
94
+
95
+
82
96
  def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]:
83
97
  # This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
84
98
  # reshape to ncfhw
@@ -145,6 +159,11 @@ class VideoToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
145
159
  This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
146
160
  implemented for all pipelines (downloading, saving, running on a particular device, etc.).
147
161
 
162
+ The pipeline also inherits the following loading methods:
163
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
164
+ - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
165
+ - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
166
+
148
167
  Args:
149
168
  vae ([`AutoencoderKL`]):
150
169
  Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
@@ -158,6 +177,7 @@ class VideoToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
158
177
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
159
178
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
160
179
  """
180
+
161
181
  model_cpu_offload_seq = "text_encoder->unet->vae"
162
182
 
163
183
  def __init__(
@@ -546,14 +566,14 @@ class VideoToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
546
566
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
547
567
  f" size of {batch_size}. Make sure the batch size matches the length of the generators."
548
568
  )
549
-
550
569
  elif isinstance(generator, list):
551
570
  init_latents = [
552
- self.vae.encode(video[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
571
+ retrieve_latents(self.vae.encode(video[i : i + 1]), generator=generator[i])
572
+ for i in range(batch_size)
553
573
  ]
554
574
  init_latents = torch.cat(init_latents, dim=0)
555
575
  else:
556
- init_latents = self.vae.encode(video).latent_dist.sample(generator)
576
+ init_latents = retrieve_latents(self.vae.encode(video), generator=generator)
557
577
 
558
578
  init_latents = self.vae.config.scaling_factor * init_latents
559
579