diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -18,20 +18,20 @@ import torch
|
|
18
18
|
import torch.nn.functional as F
|
19
19
|
from torch import nn
|
20
20
|
|
21
|
-
from
|
22
|
-
from
|
23
|
-
from
|
24
|
-
from
|
25
|
-
from
|
26
|
-
from
|
21
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
22
|
+
from ...schedulers import ConsistencyDecoderScheduler
|
23
|
+
from ...utils import BaseOutput
|
24
|
+
from ...utils.accelerate_utils import apply_forward_hook
|
25
|
+
from ...utils.torch_utils import randn_tensor
|
26
|
+
from ..attention_processor import (
|
27
27
|
ADDED_KV_ATTENTION_PROCESSORS,
|
28
28
|
CROSS_ATTENTION_PROCESSORS,
|
29
29
|
AttentionProcessor,
|
30
30
|
AttnAddedKVProcessor,
|
31
31
|
AttnProcessor,
|
32
32
|
)
|
33
|
-
from
|
34
|
-
from
|
33
|
+
from ..modeling_utils import ModelMixin
|
34
|
+
from ..unet_2d import UNet2DModel
|
35
35
|
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
|
36
36
|
|
37
37
|
|
@@ -56,9 +56,9 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
56
56
|
Examples:
|
57
57
|
```py
|
58
58
|
>>> import torch
|
59
|
-
>>> from diffusers import
|
59
|
+
>>> from diffusers import StableDiffusionPipeline, ConsistencyDecoderVAE
|
60
60
|
|
61
|
-
>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=
|
61
|
+
>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
|
62
62
|
>>> pipe = StableDiffusionPipeline.from_pretrained(
|
63
63
|
... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
|
64
64
|
... ).to("cuda")
|
@@ -70,39 +70,39 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
70
70
|
@register_to_config
|
71
71
|
def __init__(
|
72
72
|
self,
|
73
|
-
scaling_factor=0.18215,
|
74
|
-
latent_channels=4,
|
75
|
-
encoder_act_fn="silu",
|
76
|
-
encoder_block_out_channels=(128, 256, 512, 512),
|
77
|
-
encoder_double_z=True,
|
78
|
-
encoder_down_block_types=(
|
73
|
+
scaling_factor: float = 0.18215,
|
74
|
+
latent_channels: int = 4,
|
75
|
+
encoder_act_fn: str = "silu",
|
76
|
+
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
77
|
+
encoder_double_z: bool = True,
|
78
|
+
encoder_down_block_types: Tuple[str, ...] = (
|
79
79
|
"DownEncoderBlock2D",
|
80
80
|
"DownEncoderBlock2D",
|
81
81
|
"DownEncoderBlock2D",
|
82
82
|
"DownEncoderBlock2D",
|
83
83
|
),
|
84
|
-
encoder_in_channels=3,
|
85
|
-
encoder_layers_per_block=2,
|
86
|
-
encoder_norm_num_groups=32,
|
87
|
-
encoder_out_channels=4,
|
88
|
-
decoder_add_attention=False,
|
89
|
-
decoder_block_out_channels=(320, 640, 1024, 1024),
|
90
|
-
decoder_down_block_types=(
|
84
|
+
encoder_in_channels: int = 3,
|
85
|
+
encoder_layers_per_block: int = 2,
|
86
|
+
encoder_norm_num_groups: int = 32,
|
87
|
+
encoder_out_channels: int = 4,
|
88
|
+
decoder_add_attention: bool = False,
|
89
|
+
decoder_block_out_channels: Tuple[int, ...] = (320, 640, 1024, 1024),
|
90
|
+
decoder_down_block_types: Tuple[str, ...] = (
|
91
91
|
"ResnetDownsampleBlock2D",
|
92
92
|
"ResnetDownsampleBlock2D",
|
93
93
|
"ResnetDownsampleBlock2D",
|
94
94
|
"ResnetDownsampleBlock2D",
|
95
95
|
),
|
96
|
-
decoder_downsample_padding=1,
|
97
|
-
decoder_in_channels=7,
|
98
|
-
decoder_layers_per_block=3,
|
99
|
-
decoder_norm_eps=1e-05,
|
100
|
-
decoder_norm_num_groups=32,
|
101
|
-
decoder_num_train_timesteps=1024,
|
102
|
-
decoder_out_channels=6,
|
103
|
-
decoder_resnet_time_scale_shift="scale_shift",
|
104
|
-
decoder_time_embedding_type="learned",
|
105
|
-
decoder_up_block_types=(
|
96
|
+
decoder_downsample_padding: int = 1,
|
97
|
+
decoder_in_channels: int = 7,
|
98
|
+
decoder_layers_per_block: int = 3,
|
99
|
+
decoder_norm_eps: float = 1e-05,
|
100
|
+
decoder_norm_num_groups: int = 32,
|
101
|
+
decoder_num_train_timesteps: int = 1024,
|
102
|
+
decoder_out_channels: int = 6,
|
103
|
+
decoder_resnet_time_scale_shift: str = "scale_shift",
|
104
|
+
decoder_time_embedding_type: str = "learned",
|
105
|
+
decoder_up_block_types: Tuple[str, ...] = (
|
106
106
|
"ResnetUpsampleBlock2D",
|
107
107
|
"ResnetUpsampleBlock2D",
|
108
108
|
"ResnetUpsampleBlock2D",
|
@@ -138,6 +138,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
138
138
|
)
|
139
139
|
self.decoder_scheduler = ConsistencyDecoderScheduler()
|
140
140
|
self.register_to_config(block_out_channels=encoder_block_out_channels)
|
141
|
+
self.register_to_config(force_upcast=False)
|
141
142
|
self.register_buffer(
|
142
143
|
"means",
|
143
144
|
torch.tensor([0.38862467, 0.02253063, 0.07381133, -0.0171294])[None, :, None, None],
|
@@ -152,7 +153,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
152
153
|
self.use_slicing = False
|
153
154
|
self.use_tiling = False
|
154
155
|
|
155
|
-
# Copied from diffusers.models.autoencoder_kl.AutoencoderKL.enable_tiling
|
156
|
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_tiling
|
156
157
|
def enable_tiling(self, use_tiling: bool = True):
|
157
158
|
r"""
|
158
159
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
@@ -161,7 +162,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
161
162
|
"""
|
162
163
|
self.use_tiling = use_tiling
|
163
164
|
|
164
|
-
# Copied from diffusers.models.autoencoder_kl.AutoencoderKL.disable_tiling
|
165
|
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_tiling
|
165
166
|
def disable_tiling(self):
|
166
167
|
r"""
|
167
168
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
@@ -169,7 +170,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
169
170
|
"""
|
170
171
|
self.enable_tiling(False)
|
171
172
|
|
172
|
-
# Copied from diffusers.models.autoencoder_kl.AutoencoderKL.enable_slicing
|
173
|
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_slicing
|
173
174
|
def enable_slicing(self):
|
174
175
|
r"""
|
175
176
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
@@ -177,7 +178,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
177
178
|
"""
|
178
179
|
self.use_slicing = True
|
179
180
|
|
180
|
-
# Copied from diffusers.models.autoencoder_kl.AutoencoderKL.disable_slicing
|
181
|
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_slicing
|
181
182
|
def disable_slicing(self):
|
182
183
|
r"""
|
183
184
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
@@ -304,8 +305,8 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
304
305
|
z: torch.FloatTensor,
|
305
306
|
generator: Optional[torch.Generator] = None,
|
306
307
|
return_dict: bool = True,
|
307
|
-
num_inference_steps=2,
|
308
|
-
) -> Union[DecoderOutput, torch.FloatTensor]:
|
308
|
+
num_inference_steps: int = 2,
|
309
|
+
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
|
309
310
|
z = (z * self.config.scaling_factor - self.means) / self.stds
|
310
311
|
|
311
312
|
scale_factor = 2 ** (len(self.config.block_out_channels) - 1)
|
@@ -332,15 +333,15 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
332
333
|
|
333
334
|
return DecoderOutput(sample=x_0)
|
334
335
|
|
335
|
-
# Copied from diffusers.models.autoencoder_kl.AutoencoderKL.blend_v
|
336
|
-
def blend_v(self, a, b, blend_extent):
|
336
|
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_v
|
337
|
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
337
338
|
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
|
338
339
|
for y in range(blend_extent):
|
339
340
|
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
|
340
341
|
return b
|
341
342
|
|
342
|
-
# Copied from diffusers.models.autoencoder_kl.AutoencoderKL.blend_h
|
343
|
-
def blend_h(self, a, b, blend_extent):
|
343
|
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_h
|
344
|
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
344
345
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
345
346
|
for x in range(blend_extent):
|
346
347
|
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
|
@@ -407,7 +408,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
407
408
|
sample_posterior: bool = False,
|
408
409
|
return_dict: bool = True,
|
409
410
|
generator: Optional[torch.Generator] = None,
|
410
|
-
) -> Union[DecoderOutput, torch.FloatTensor]:
|
411
|
+
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
|
411
412
|
r"""
|
412
413
|
Args:
|
413
414
|
sample (`torch.FloatTensor`): Input sample.
|
@@ -415,6 +416,12 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
415
416
|
Whether to sample from the posterior.
|
416
417
|
return_dict (`bool`, *optional*, defaults to `True`):
|
417
418
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
419
|
+
generator (`torch.Generator`, *optional*, defaults to `None`):
|
420
|
+
Generator to use for sampling.
|
421
|
+
|
422
|
+
Returns:
|
423
|
+
[`DecoderOutput`] or `tuple`:
|
424
|
+
If return_dict is True, a [`DecoderOutput`] is returned, otherwise a plain `tuple` is returned.
|
418
425
|
"""
|
419
426
|
x = sample
|
420
427
|
posterior = self.encode(x).latent_dist
|
@@ -18,11 +18,16 @@ import numpy as np
|
|
18
18
|
import torch
|
19
19
|
import torch.nn as nn
|
20
20
|
|
21
|
-
from
|
22
|
-
from
|
23
|
-
from
|
24
|
-
from
|
25
|
-
from
|
21
|
+
from ...utils import BaseOutput, is_torch_version
|
22
|
+
from ...utils.torch_utils import randn_tensor
|
23
|
+
from ..activations import get_activation
|
24
|
+
from ..attention_processor import SpatialNorm
|
25
|
+
from ..unet_2d_blocks import (
|
26
|
+
AutoencoderTinyBlock,
|
27
|
+
UNetMidBlock2D,
|
28
|
+
get_down_block,
|
29
|
+
get_up_block,
|
30
|
+
)
|
26
31
|
|
27
32
|
|
28
33
|
@dataclass
|
@@ -72,6 +77,7 @@ class Encoder(nn.Module):
|
|
72
77
|
norm_num_groups: int = 32,
|
73
78
|
act_fn: str = "silu",
|
74
79
|
double_z: bool = True,
|
80
|
+
mid_block_add_attention=True,
|
75
81
|
):
|
76
82
|
super().__init__()
|
77
83
|
self.layers_per_block = layers_per_block
|
@@ -119,6 +125,7 @@ class Encoder(nn.Module):
|
|
119
125
|
attention_head_dim=block_out_channels[-1],
|
120
126
|
resnet_groups=norm_num_groups,
|
121
127
|
temb_channels=None,
|
128
|
+
add_attention=mid_block_add_attention,
|
122
129
|
)
|
123
130
|
|
124
131
|
# out
|
@@ -208,6 +215,7 @@ class Decoder(nn.Module):
|
|
208
215
|
norm_num_groups: int = 32,
|
209
216
|
act_fn: str = "silu",
|
210
217
|
norm_type: str = "group", # group, spatial
|
218
|
+
mid_block_add_attention=True,
|
211
219
|
):
|
212
220
|
super().__init__()
|
213
221
|
self.layers_per_block = layers_per_block
|
@@ -235,6 +243,7 @@ class Decoder(nn.Module):
|
|
235
243
|
attention_head_dim=block_out_channels[-1],
|
236
244
|
resnet_groups=norm_num_groups,
|
237
245
|
temb_channels=temb_channels,
|
246
|
+
add_attention=mid_block_add_attention,
|
238
247
|
)
|
239
248
|
|
240
249
|
# up
|
@@ -274,7 +283,9 @@ class Decoder(nn.Module):
|
|
274
283
|
self.gradient_checkpointing = False
|
275
284
|
|
276
285
|
def forward(
|
277
|
-
self,
|
286
|
+
self,
|
287
|
+
sample: torch.FloatTensor,
|
288
|
+
latent_embeds: Optional[torch.FloatTensor] = None,
|
278
289
|
) -> torch.FloatTensor:
|
279
290
|
r"""The forward method of the `Decoder` class."""
|
280
291
|
|
@@ -292,14 +303,20 @@ class Decoder(nn.Module):
|
|
292
303
|
if is_torch_version(">=", "1.11.0"):
|
293
304
|
# middle
|
294
305
|
sample = torch.utils.checkpoint.checkpoint(
|
295
|
-
create_custom_forward(self.mid_block),
|
306
|
+
create_custom_forward(self.mid_block),
|
307
|
+
sample,
|
308
|
+
latent_embeds,
|
309
|
+
use_reentrant=False,
|
296
310
|
)
|
297
311
|
sample = sample.to(upscale_dtype)
|
298
312
|
|
299
313
|
# up
|
300
314
|
for up_block in self.up_blocks:
|
301
315
|
sample = torch.utils.checkpoint.checkpoint(
|
302
|
-
create_custom_forward(up_block),
|
316
|
+
create_custom_forward(up_block),
|
317
|
+
sample,
|
318
|
+
latent_embeds,
|
319
|
+
use_reentrant=False,
|
303
320
|
)
|
304
321
|
else:
|
305
322
|
# middle
|
@@ -540,7 +557,10 @@ class MaskConditionDecoder(nn.Module):
|
|
540
557
|
if is_torch_version(">=", "1.11.0"):
|
541
558
|
# middle
|
542
559
|
sample = torch.utils.checkpoint.checkpoint(
|
543
|
-
create_custom_forward(self.mid_block),
|
560
|
+
create_custom_forward(self.mid_block),
|
561
|
+
sample,
|
562
|
+
latent_embeds,
|
563
|
+
use_reentrant=False,
|
544
564
|
)
|
545
565
|
sample = sample.to(upscale_dtype)
|
546
566
|
|
@@ -548,7 +568,10 @@ class MaskConditionDecoder(nn.Module):
|
|
548
568
|
if image is not None and mask is not None:
|
549
569
|
masked_image = (1 - mask) * image
|
550
570
|
im_x = torch.utils.checkpoint.checkpoint(
|
551
|
-
create_custom_forward(self.condition_encoder),
|
571
|
+
create_custom_forward(self.condition_encoder),
|
572
|
+
masked_image,
|
573
|
+
mask,
|
574
|
+
use_reentrant=False,
|
552
575
|
)
|
553
576
|
|
554
577
|
# up
|
@@ -558,7 +581,10 @@ class MaskConditionDecoder(nn.Module):
|
|
558
581
|
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
559
582
|
sample = sample * mask_ + sample_ * (1 - mask_)
|
560
583
|
sample = torch.utils.checkpoint.checkpoint(
|
561
|
-
create_custom_forward(up_block),
|
584
|
+
create_custom_forward(up_block),
|
585
|
+
sample,
|
586
|
+
latent_embeds,
|
587
|
+
use_reentrant=False,
|
562
588
|
)
|
563
589
|
if image is not None and mask is not None:
|
564
590
|
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
@@ -573,7 +599,9 @@ class MaskConditionDecoder(nn.Module):
|
|
573
599
|
if image is not None and mask is not None:
|
574
600
|
masked_image = (1 - mask) * image
|
575
601
|
im_x = torch.utils.checkpoint.checkpoint(
|
576
|
-
create_custom_forward(self.condition_encoder),
|
602
|
+
create_custom_forward(self.condition_encoder),
|
603
|
+
masked_image,
|
604
|
+
mask,
|
577
605
|
)
|
578
606
|
|
579
607
|
# up
|
@@ -754,7 +782,10 @@ class DiagonalGaussianDistribution(object):
|
|
754
782
|
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
|
755
783
|
# make sure sample is on the same device as the parameters and has same dtype
|
756
784
|
sample = randn_tensor(
|
757
|
-
self.mean.shape,
|
785
|
+
self.mean.shape,
|
786
|
+
generator=generator,
|
787
|
+
device=self.parameters.device,
|
788
|
+
dtype=self.parameters.dtype,
|
758
789
|
)
|
759
790
|
x = self.mean + self.std * sample
|
760
791
|
return x
|
@@ -764,7 +795,10 @@ class DiagonalGaussianDistribution(object):
|
|
764
795
|
return torch.Tensor([0.0])
|
765
796
|
else:
|
766
797
|
if other is None:
|
767
|
-
return 0.5 * torch.sum(
|
798
|
+
return 0.5 * torch.sum(
|
799
|
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
800
|
+
dim=[1, 2, 3],
|
801
|
+
)
|
768
802
|
else:
|
769
803
|
return 0.5 * torch.sum(
|
770
804
|
torch.pow(self.mean - other.mean, 2) / other.var
|
@@ -779,7 +813,10 @@ class DiagonalGaussianDistribution(object):
|
|
779
813
|
if self.deterministic:
|
780
814
|
return torch.Tensor([0.0])
|
781
815
|
logtwopi = np.log(2.0 * np.pi)
|
782
|
-
return 0.5 * torch.sum(
|
816
|
+
return 0.5 * torch.sum(
|
817
|
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
818
|
+
dim=dims,
|
819
|
+
)
|
783
820
|
|
784
821
|
def mode(self) -> torch.Tensor:
|
785
822
|
return self.mean
|
@@ -820,7 +857,16 @@ class EncoderTiny(nn.Module):
|
|
820
857
|
if i == 0:
|
821
858
|
layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
|
822
859
|
else:
|
823
|
-
layers.append(
|
860
|
+
layers.append(
|
861
|
+
nn.Conv2d(
|
862
|
+
num_channels,
|
863
|
+
num_channels,
|
864
|
+
kernel_size=3,
|
865
|
+
padding=1,
|
866
|
+
stride=2,
|
867
|
+
bias=False,
|
868
|
+
)
|
869
|
+
)
|
824
870
|
|
825
871
|
for _ in range(num_block):
|
826
872
|
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
@@ -899,7 +945,15 @@ class DecoderTiny(nn.Module):
|
|
899
945
|
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))
|
900
946
|
|
901
947
|
conv_out_channel = num_channels if not is_final_block else out_channels
|
902
|
-
layers.append(
|
948
|
+
layers.append(
|
949
|
+
nn.Conv2d(
|
950
|
+
num_channels,
|
951
|
+
conv_out_channel,
|
952
|
+
kernel_size=3,
|
953
|
+
padding=1,
|
954
|
+
bias=is_final_block,
|
955
|
+
)
|
956
|
+
)
|
903
957
|
|
904
958
|
self.layers = nn.Sequential(*layers)
|
905
959
|
self.gradient_checkpointing = False
|
diffusers/models/controlnet.py
CHANGED
@@ -30,12 +30,7 @@ from .attention_processor import (
|
|
30
30
|
)
|
31
31
|
from .embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32
32
|
from .modeling_utils import ModelMixin
|
33
|
-
from .unet_2d_blocks import
|
34
|
-
CrossAttnDownBlock2D,
|
35
|
-
DownBlock2D,
|
36
|
-
UNetMidBlock2DCrossAttn,
|
37
|
-
get_down_block,
|
38
|
-
)
|
33
|
+
from .unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2D, UNetMidBlock2DCrossAttn, get_down_block
|
39
34
|
from .unet_2d_condition import UNet2DConditionModel
|
40
35
|
|
41
36
|
|
@@ -76,7 +71,7 @@ class ControlNetConditioningEmbedding(nn.Module):
|
|
76
71
|
self,
|
77
72
|
conditioning_embedding_channels: int,
|
78
73
|
conditioning_channels: int = 3,
|
79
|
-
block_out_channels: Tuple[int] = (16, 32, 96, 256),
|
74
|
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
80
75
|
):
|
81
76
|
super().__init__()
|
82
77
|
|
@@ -171,6 +166,9 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
171
166
|
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
172
167
|
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
173
168
|
global_pool_conditions (`bool`, defaults to `False`):
|
169
|
+
TODO(Patrick) - unused parameter.
|
170
|
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
171
|
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
174
172
|
"""
|
175
173
|
|
176
174
|
_supports_gradient_checkpointing = True
|
@@ -182,14 +180,15 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
182
180
|
conditioning_channels: int = 3,
|
183
181
|
flip_sin_to_cos: bool = True,
|
184
182
|
freq_shift: int = 0,
|
185
|
-
down_block_types: Tuple[str] = (
|
183
|
+
down_block_types: Tuple[str, ...] = (
|
186
184
|
"CrossAttnDownBlock2D",
|
187
185
|
"CrossAttnDownBlock2D",
|
188
186
|
"CrossAttnDownBlock2D",
|
189
187
|
"DownBlock2D",
|
190
188
|
),
|
189
|
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
191
190
|
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
192
|
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
191
|
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
193
192
|
layers_per_block: int = 2,
|
194
193
|
downsample_padding: int = 1,
|
195
194
|
mid_block_scale_factor: float = 1,
|
@@ -197,11 +196,11 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
197
196
|
norm_num_groups: Optional[int] = 32,
|
198
197
|
norm_eps: float = 1e-5,
|
199
198
|
cross_attention_dim: int = 1280,
|
200
|
-
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
199
|
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
201
200
|
encoder_hid_dim: Optional[int] = None,
|
202
201
|
encoder_hid_dim_type: Optional[str] = None,
|
203
|
-
attention_head_dim: Union[int, Tuple[int]] = 8,
|
204
|
-
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
202
|
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
203
|
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
205
204
|
use_linear_projection: bool = False,
|
206
205
|
class_embed_type: Optional[str] = None,
|
207
206
|
addition_embed_type: Optional[str] = None,
|
@@ -211,9 +210,9 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
211
210
|
resnet_time_scale_shift: str = "default",
|
212
211
|
projection_class_embeddings_input_dim: Optional[int] = None,
|
213
212
|
controlnet_conditioning_channel_order: str = "rgb",
|
214
|
-
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
213
|
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
215
214
|
global_pool_conditions: bool = False,
|
216
|
-
addition_embed_type_num_heads=64,
|
215
|
+
addition_embed_type_num_heads: int = 64,
|
217
216
|
):
|
218
217
|
super().__init__()
|
219
218
|
|
@@ -406,28 +405,44 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
406
405
|
controlnet_block = zero_module(controlnet_block)
|
407
406
|
self.controlnet_mid_block = controlnet_block
|
408
407
|
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
408
|
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
409
|
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
410
|
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
411
|
+
in_channels=mid_block_channel,
|
412
|
+
temb_channels=time_embed_dim,
|
413
|
+
resnet_eps=norm_eps,
|
414
|
+
resnet_act_fn=act_fn,
|
415
|
+
output_scale_factor=mid_block_scale_factor,
|
416
|
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
417
|
+
cross_attention_dim=cross_attention_dim,
|
418
|
+
num_attention_heads=num_attention_heads[-1],
|
419
|
+
resnet_groups=norm_num_groups,
|
420
|
+
use_linear_projection=use_linear_projection,
|
421
|
+
upcast_attention=upcast_attention,
|
422
|
+
)
|
423
|
+
elif mid_block_type == "UNetMidBlock2D":
|
424
|
+
self.mid_block = UNetMidBlock2D(
|
425
|
+
in_channels=block_out_channels[-1],
|
426
|
+
temb_channels=time_embed_dim,
|
427
|
+
num_layers=0,
|
428
|
+
resnet_eps=norm_eps,
|
429
|
+
resnet_act_fn=act_fn,
|
430
|
+
output_scale_factor=mid_block_scale_factor,
|
431
|
+
resnet_groups=norm_num_groups,
|
432
|
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
433
|
+
add_attention=False,
|
434
|
+
)
|
435
|
+
else:
|
436
|
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
423
437
|
|
424
438
|
@classmethod
|
425
439
|
def from_unet(
|
426
440
|
cls,
|
427
441
|
unet: UNet2DConditionModel,
|
428
442
|
controlnet_conditioning_channel_order: str = "rgb",
|
429
|
-
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
443
|
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
430
444
|
load_weights_from_unet: bool = True,
|
445
|
+
conditioning_channels: int = 3,
|
431
446
|
):
|
432
447
|
r"""
|
433
448
|
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
@@ -474,8 +489,10 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
474
489
|
upcast_attention=unet.config.upcast_attention,
|
475
490
|
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
476
491
|
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
492
|
+
mid_block_type=unet.config.mid_block_type,
|
477
493
|
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
478
494
|
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
495
|
+
conditioning_channels=conditioning_channels,
|
479
496
|
)
|
480
497
|
|
481
498
|
if load_weights_from_unet:
|
@@ -570,7 +587,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
570
587
|
self.set_attn_processor(processor, _remove_lora=True)
|
571
588
|
|
572
589
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
573
|
-
def set_attention_slice(self, slice_size):
|
590
|
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
574
591
|
r"""
|
575
592
|
Enable sliced attention computation.
|
576
593
|
|
@@ -635,7 +652,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
635
652
|
for module in self.children():
|
636
653
|
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
637
654
|
|
638
|
-
def _set_gradient_checkpointing(self, module, value=False):
|
655
|
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
639
656
|
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
640
657
|
module.gradient_checkpointing = value
|
641
658
|
|
@@ -653,7 +670,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
653
670
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
654
671
|
guess_mode: bool = False,
|
655
672
|
return_dict: bool = True,
|
656
|
-
) -> Union[ControlNetOutput, Tuple]:
|
673
|
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
|
657
674
|
"""
|
658
675
|
The [`ControlNetModel`] forward method.
|
659
676
|
|
@@ -794,13 +811,16 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
|
794
811
|
|
795
812
|
# 4. mid
|
796
813
|
if self.mid_block is not None:
|
797
|
-
|
798
|
-
sample
|
799
|
-
|
800
|
-
|
801
|
-
|
802
|
-
|
803
|
-
|
814
|
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
815
|
+
sample = self.mid_block(
|
816
|
+
sample,
|
817
|
+
emb,
|
818
|
+
encoder_hidden_states=encoder_hidden_states,
|
819
|
+
attention_mask=attention_mask,
|
820
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
821
|
+
)
|
822
|
+
else:
|
823
|
+
sample = self.mid_block(sample, emb)
|
804
824
|
|
805
825
|
# 5. Control net blocks
|
806
826
|
|