diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -46,10 +46,10 @@ class FlaxControlNetOutput(BaseOutput):
|
|
46
46
|
|
47
47
|
class FlaxControlNetConditioningEmbedding(nn.Module):
|
48
48
|
conditioning_embedding_channels: int
|
49
|
-
block_out_channels: Tuple[int] = (16, 32, 96, 256)
|
49
|
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
|
50
50
|
dtype: jnp.dtype = jnp.float32
|
51
51
|
|
52
|
-
def setup(self):
|
52
|
+
def setup(self) -> None:
|
53
53
|
self.conv_in = nn.Conv(
|
54
54
|
self.block_out_channels[0],
|
55
55
|
kernel_size=(3, 3),
|
@@ -87,7 +87,7 @@ class FlaxControlNetConditioningEmbedding(nn.Module):
|
|
87
87
|
dtype=self.dtype,
|
88
88
|
)
|
89
89
|
|
90
|
-
def __call__(self, conditioning):
|
90
|
+
def __call__(self, conditioning: jnp.ndarray) -> jnp.ndarray:
|
91
91
|
embedding = self.conv_in(conditioning)
|
92
92
|
embedding = nn.silu(embedding)
|
93
93
|
|
@@ -146,19 +146,20 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
|
|
146
146
|
conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`):
|
147
147
|
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
148
148
|
"""
|
149
|
+
|
149
150
|
sample_size: int = 32
|
150
151
|
in_channels: int = 4
|
151
|
-
down_block_types: Tuple[str] = (
|
152
|
+
down_block_types: Tuple[str, ...] = (
|
152
153
|
"CrossAttnDownBlock2D",
|
153
154
|
"CrossAttnDownBlock2D",
|
154
155
|
"CrossAttnDownBlock2D",
|
155
156
|
"DownBlock2D",
|
156
157
|
)
|
157
|
-
only_cross_attention: Union[bool, Tuple[bool]] = False
|
158
|
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
|
158
|
+
only_cross_attention: Union[bool, Tuple[bool, ...]] = False
|
159
|
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280)
|
159
160
|
layers_per_block: int = 2
|
160
|
-
attention_head_dim: Union[int, Tuple[int]] = 8
|
161
|
-
num_attention_heads: Optional[Union[int, Tuple[int]]] = None
|
161
|
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8
|
162
|
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None
|
162
163
|
cross_attention_dim: int = 1280
|
163
164
|
dropout: float = 0.0
|
164
165
|
use_linear_projection: bool = False
|
@@ -166,7 +167,7 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
|
|
166
167
|
flip_sin_to_cos: bool = True
|
167
168
|
freq_shift: int = 0
|
168
169
|
controlnet_conditioning_channel_order: str = "rgb"
|
169
|
-
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256)
|
170
|
+
conditioning_embedding_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
|
170
171
|
|
171
172
|
def init_weights(self, rng: jax.Array) -> FrozenDict:
|
172
173
|
# init input tensors
|
@@ -182,7 +183,7 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
|
|
182
183
|
|
183
184
|
return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"]
|
184
185
|
|
185
|
-
def setup(self):
|
186
|
+
def setup(self) -> None:
|
186
187
|
block_out_channels = self.block_out_channels
|
187
188
|
time_embed_dim = block_out_channels[0] * 4
|
188
189
|
|
@@ -312,21 +313,21 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
|
|
312
313
|
|
313
314
|
def __call__(
|
314
315
|
self,
|
315
|
-
sample,
|
316
|
-
timesteps,
|
317
|
-
encoder_hidden_states,
|
318
|
-
controlnet_cond,
|
316
|
+
sample: jnp.ndarray,
|
317
|
+
timesteps: Union[jnp.ndarray, float, int],
|
318
|
+
encoder_hidden_states: jnp.ndarray,
|
319
|
+
controlnet_cond: jnp.ndarray,
|
319
320
|
conditioning_scale: float = 1.0,
|
320
321
|
return_dict: bool = True,
|
321
322
|
train: bool = False,
|
322
|
-
) -> Union[FlaxControlNetOutput, Tuple]:
|
323
|
+
) -> Union[FlaxControlNetOutput, Tuple[Tuple[jnp.ndarray, ...], jnp.ndarray]]:
|
323
324
|
r"""
|
324
325
|
Args:
|
325
326
|
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
|
326
327
|
timestep (`jnp.ndarray` or `float` or `int`): timesteps
|
327
328
|
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
|
328
329
|
controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor
|
329
|
-
conditioning_scale
|
330
|
+
conditioning_scale (`float`, *optional*, defaults to `1.0`): the scale factor for controlnet outputs
|
330
331
|
return_dict (`bool`, *optional*, defaults to `True`):
|
331
332
|
Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
|
332
333
|
plain tuple.
|
@@ -335,8 +336,8 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
|
|
335
336
|
|
336
337
|
Returns:
|
337
338
|
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
|
338
|
-
|
339
|
-
|
339
|
+
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a
|
340
|
+
`tuple`. When returning a tuple, the first element is the sample tensor.
|
340
341
|
"""
|
341
342
|
channel_order = self.controlnet_conditioning_channel_order
|
342
343
|
if channel_order == "bgr":
|
@@ -0,0 +1,338 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Optional, Tuple
|
16
|
+
|
17
|
+
import torch
|
18
|
+
import torch.nn as nn
|
19
|
+
import torch.nn.functional as F
|
20
|
+
|
21
|
+
from ..utils import USE_PEFT_BACKEND
|
22
|
+
from .lora import LoRACompatibleConv
|
23
|
+
from .normalization import RMSNorm
|
24
|
+
from .upsampling import upfirdn2d_native
|
25
|
+
|
26
|
+
|
27
|
+
class Downsample1D(nn.Module):
|
28
|
+
"""A 1D downsampling layer with an optional convolution.
|
29
|
+
|
30
|
+
Parameters:
|
31
|
+
channels (`int`):
|
32
|
+
number of channels in the inputs and outputs.
|
33
|
+
use_conv (`bool`, default `False`):
|
34
|
+
option to use a convolution.
|
35
|
+
out_channels (`int`, optional):
|
36
|
+
number of output channels. Defaults to `channels`.
|
37
|
+
padding (`int`, default `1`):
|
38
|
+
padding for the convolution.
|
39
|
+
name (`str`, default `conv`):
|
40
|
+
name of the downsampling 1D layer.
|
41
|
+
"""
|
42
|
+
|
43
|
+
def __init__(
|
44
|
+
self,
|
45
|
+
channels: int,
|
46
|
+
use_conv: bool = False,
|
47
|
+
out_channels: Optional[int] = None,
|
48
|
+
padding: int = 1,
|
49
|
+
name: str = "conv",
|
50
|
+
):
|
51
|
+
super().__init__()
|
52
|
+
self.channels = channels
|
53
|
+
self.out_channels = out_channels or channels
|
54
|
+
self.use_conv = use_conv
|
55
|
+
self.padding = padding
|
56
|
+
stride = 2
|
57
|
+
self.name = name
|
58
|
+
|
59
|
+
if use_conv:
|
60
|
+
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
61
|
+
else:
|
62
|
+
assert self.channels == self.out_channels
|
63
|
+
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
|
64
|
+
|
65
|
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
66
|
+
assert inputs.shape[1] == self.channels
|
67
|
+
return self.conv(inputs)
|
68
|
+
|
69
|
+
|
70
|
+
class Downsample2D(nn.Module):
|
71
|
+
"""A 2D downsampling layer with an optional convolution.
|
72
|
+
|
73
|
+
Parameters:
|
74
|
+
channels (`int`):
|
75
|
+
number of channels in the inputs and outputs.
|
76
|
+
use_conv (`bool`, default `False`):
|
77
|
+
option to use a convolution.
|
78
|
+
out_channels (`int`, optional):
|
79
|
+
number of output channels. Defaults to `channels`.
|
80
|
+
padding (`int`, default `1`):
|
81
|
+
padding for the convolution.
|
82
|
+
name (`str`, default `conv`):
|
83
|
+
name of the downsampling 2D layer.
|
84
|
+
"""
|
85
|
+
|
86
|
+
def __init__(
|
87
|
+
self,
|
88
|
+
channels: int,
|
89
|
+
use_conv: bool = False,
|
90
|
+
out_channels: Optional[int] = None,
|
91
|
+
padding: int = 1,
|
92
|
+
name: str = "conv",
|
93
|
+
kernel_size=3,
|
94
|
+
norm_type=None,
|
95
|
+
eps=None,
|
96
|
+
elementwise_affine=None,
|
97
|
+
bias=True,
|
98
|
+
):
|
99
|
+
super().__init__()
|
100
|
+
self.channels = channels
|
101
|
+
self.out_channels = out_channels or channels
|
102
|
+
self.use_conv = use_conv
|
103
|
+
self.padding = padding
|
104
|
+
stride = 2
|
105
|
+
self.name = name
|
106
|
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
107
|
+
|
108
|
+
if norm_type == "ln_norm":
|
109
|
+
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
|
110
|
+
elif norm_type == "rms_norm":
|
111
|
+
self.norm = RMSNorm(channels, eps, elementwise_affine)
|
112
|
+
elif norm_type is None:
|
113
|
+
self.norm = None
|
114
|
+
else:
|
115
|
+
raise ValueError(f"unknown norm_type: {norm_type}")
|
116
|
+
|
117
|
+
if use_conv:
|
118
|
+
conv = conv_cls(
|
119
|
+
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
|
120
|
+
)
|
121
|
+
else:
|
122
|
+
assert self.channels == self.out_channels
|
123
|
+
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
124
|
+
|
125
|
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
126
|
+
if name == "conv":
|
127
|
+
self.Conv2d_0 = conv
|
128
|
+
self.conv = conv
|
129
|
+
elif name == "Conv2d_0":
|
130
|
+
self.conv = conv
|
131
|
+
else:
|
132
|
+
self.conv = conv
|
133
|
+
|
134
|
+
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
|
135
|
+
assert hidden_states.shape[1] == self.channels
|
136
|
+
|
137
|
+
if self.norm is not None:
|
138
|
+
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
139
|
+
|
140
|
+
if self.use_conv and self.padding == 0:
|
141
|
+
pad = (0, 1, 0, 1)
|
142
|
+
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
|
143
|
+
|
144
|
+
assert hidden_states.shape[1] == self.channels
|
145
|
+
|
146
|
+
if not USE_PEFT_BACKEND:
|
147
|
+
if isinstance(self.conv, LoRACompatibleConv):
|
148
|
+
hidden_states = self.conv(hidden_states, scale)
|
149
|
+
else:
|
150
|
+
hidden_states = self.conv(hidden_states)
|
151
|
+
else:
|
152
|
+
hidden_states = self.conv(hidden_states)
|
153
|
+
|
154
|
+
return hidden_states
|
155
|
+
|
156
|
+
|
157
|
+
class FirDownsample2D(nn.Module):
|
158
|
+
"""A 2D FIR downsampling layer with an optional convolution.
|
159
|
+
|
160
|
+
Parameters:
|
161
|
+
channels (`int`):
|
162
|
+
number of channels in the inputs and outputs.
|
163
|
+
use_conv (`bool`, default `False`):
|
164
|
+
option to use a convolution.
|
165
|
+
out_channels (`int`, optional):
|
166
|
+
number of output channels. Defaults to `channels`.
|
167
|
+
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
|
168
|
+
kernel for the FIR filter.
|
169
|
+
"""
|
170
|
+
|
171
|
+
def __init__(
|
172
|
+
self,
|
173
|
+
channels: Optional[int] = None,
|
174
|
+
out_channels: Optional[int] = None,
|
175
|
+
use_conv: bool = False,
|
176
|
+
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
|
177
|
+
):
|
178
|
+
super().__init__()
|
179
|
+
out_channels = out_channels if out_channels else channels
|
180
|
+
if use_conv:
|
181
|
+
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
|
182
|
+
self.fir_kernel = fir_kernel
|
183
|
+
self.use_conv = use_conv
|
184
|
+
self.out_channels = out_channels
|
185
|
+
|
186
|
+
def _downsample_2d(
|
187
|
+
self,
|
188
|
+
hidden_states: torch.FloatTensor,
|
189
|
+
weight: Optional[torch.FloatTensor] = None,
|
190
|
+
kernel: Optional[torch.FloatTensor] = None,
|
191
|
+
factor: int = 2,
|
192
|
+
gain: float = 1,
|
193
|
+
) -> torch.FloatTensor:
|
194
|
+
"""Fused `Conv2d()` followed by `downsample_2d()`.
|
195
|
+
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
196
|
+
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
|
197
|
+
arbitrary order.
|
198
|
+
|
199
|
+
Args:
|
200
|
+
hidden_states (`torch.FloatTensor`):
|
201
|
+
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
202
|
+
weight (`torch.FloatTensor`, *optional*):
|
203
|
+
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
|
204
|
+
performed by `inChannels = x.shape[0] // numGroups`.
|
205
|
+
kernel (`torch.FloatTensor`, *optional*):
|
206
|
+
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
|
207
|
+
corresponds to average pooling.
|
208
|
+
factor (`int`, *optional*, default to `2`):
|
209
|
+
Integer downsampling factor.
|
210
|
+
gain (`float`, *optional*, default to `1.0`):
|
211
|
+
Scaling factor for signal magnitude.
|
212
|
+
|
213
|
+
Returns:
|
214
|
+
output (`torch.FloatTensor`):
|
215
|
+
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
|
216
|
+
datatype as `x`.
|
217
|
+
"""
|
218
|
+
|
219
|
+
assert isinstance(factor, int) and factor >= 1
|
220
|
+
if kernel is None:
|
221
|
+
kernel = [1] * factor
|
222
|
+
|
223
|
+
# setup kernel
|
224
|
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
225
|
+
if kernel.ndim == 1:
|
226
|
+
kernel = torch.outer(kernel, kernel)
|
227
|
+
kernel /= torch.sum(kernel)
|
228
|
+
|
229
|
+
kernel = kernel * gain
|
230
|
+
|
231
|
+
if self.use_conv:
|
232
|
+
_, _, convH, convW = weight.shape
|
233
|
+
pad_value = (kernel.shape[0] - factor) + (convW - 1)
|
234
|
+
stride_value = [factor, factor]
|
235
|
+
upfirdn_input = upfirdn2d_native(
|
236
|
+
hidden_states,
|
237
|
+
torch.tensor(kernel, device=hidden_states.device),
|
238
|
+
pad=((pad_value + 1) // 2, pad_value // 2),
|
239
|
+
)
|
240
|
+
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
|
241
|
+
else:
|
242
|
+
pad_value = kernel.shape[0] - factor
|
243
|
+
output = upfirdn2d_native(
|
244
|
+
hidden_states,
|
245
|
+
torch.tensor(kernel, device=hidden_states.device),
|
246
|
+
down=factor,
|
247
|
+
pad=((pad_value + 1) // 2, pad_value // 2),
|
248
|
+
)
|
249
|
+
|
250
|
+
return output
|
251
|
+
|
252
|
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
253
|
+
if self.use_conv:
|
254
|
+
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
|
255
|
+
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
256
|
+
else:
|
257
|
+
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
|
258
|
+
|
259
|
+
return hidden_states
|
260
|
+
|
261
|
+
|
262
|
+
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
|
263
|
+
class KDownsample2D(nn.Module):
|
264
|
+
r"""A 2D K-downsampling layer.
|
265
|
+
|
266
|
+
Parameters:
|
267
|
+
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
|
268
|
+
"""
|
269
|
+
|
270
|
+
def __init__(self, pad_mode: str = "reflect"):
|
271
|
+
super().__init__()
|
272
|
+
self.pad_mode = pad_mode
|
273
|
+
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
|
274
|
+
self.pad = kernel_1d.shape[1] // 2 - 1
|
275
|
+
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
|
276
|
+
|
277
|
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
278
|
+
inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode)
|
279
|
+
weight = inputs.new_zeros(
|
280
|
+
[
|
281
|
+
inputs.shape[1],
|
282
|
+
inputs.shape[1],
|
283
|
+
self.kernel.shape[0],
|
284
|
+
self.kernel.shape[1],
|
285
|
+
]
|
286
|
+
)
|
287
|
+
indices = torch.arange(inputs.shape[1], device=inputs.device)
|
288
|
+
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
|
289
|
+
weight[indices, indices] = kernel
|
290
|
+
return F.conv2d(inputs, weight, stride=2)
|
291
|
+
|
292
|
+
|
293
|
+
def downsample_2d(
|
294
|
+
hidden_states: torch.FloatTensor,
|
295
|
+
kernel: Optional[torch.FloatTensor] = None,
|
296
|
+
factor: int = 2,
|
297
|
+
gain: float = 1,
|
298
|
+
) -> torch.FloatTensor:
|
299
|
+
r"""Downsample2D a batch of 2D images with the given filter.
|
300
|
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
301
|
+
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
302
|
+
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
|
303
|
+
shape is a multiple of the downsampling factor.
|
304
|
+
|
305
|
+
Args:
|
306
|
+
hidden_states (`torch.FloatTensor`)
|
307
|
+
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
308
|
+
kernel (`torch.FloatTensor`, *optional*):
|
309
|
+
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
|
310
|
+
corresponds to average pooling.
|
311
|
+
factor (`int`, *optional*, default to `2`):
|
312
|
+
Integer downsampling factor.
|
313
|
+
gain (`float`, *optional*, default to `1.0`):
|
314
|
+
Scaling factor for signal magnitude.
|
315
|
+
|
316
|
+
Returns:
|
317
|
+
output (`torch.FloatTensor`):
|
318
|
+
Tensor of the shape `[N, C, H // factor, W // factor]`
|
319
|
+
"""
|
320
|
+
|
321
|
+
assert isinstance(factor, int) and factor >= 1
|
322
|
+
if kernel is None:
|
323
|
+
kernel = [1] * factor
|
324
|
+
|
325
|
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
326
|
+
if kernel.ndim == 1:
|
327
|
+
kernel = torch.outer(kernel, kernel)
|
328
|
+
kernel /= torch.sum(kernel)
|
329
|
+
|
330
|
+
kernel = kernel * gain
|
331
|
+
pad_value = kernel.shape[0] - factor
|
332
|
+
output = upfirdn2d_native(
|
333
|
+
hidden_states,
|
334
|
+
kernel.to(device=hidden_states.device),
|
335
|
+
down=factor,
|
336
|
+
pad=((pad_value + 1) // 2, pad_value // 2),
|
337
|
+
)
|
338
|
+
return output
|
diffusers/models/embeddings.py
CHANGED
@@ -20,6 +20,7 @@ from torch import nn
|
|
20
20
|
|
21
21
|
from ..utils import USE_PEFT_BACKEND
|
22
22
|
from .activations import get_activation
|
23
|
+
from .attention_processor import Attention
|
23
24
|
from .lora import LoRACompatibleLinear
|
24
25
|
|
25
26
|
|
@@ -196,11 +197,12 @@ class TimestepEmbedding(nn.Module):
|
|
196
197
|
out_dim: int = None,
|
197
198
|
post_act_fn: Optional[str] = None,
|
198
199
|
cond_proj_dim=None,
|
200
|
+
sample_proj_bias=True,
|
199
201
|
):
|
200
202
|
super().__init__()
|
201
203
|
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
202
204
|
|
203
|
-
self.linear_1 = linear_cls(in_channels, time_embed_dim)
|
205
|
+
self.linear_1 = linear_cls(in_channels, time_embed_dim, sample_proj_bias)
|
204
206
|
|
205
207
|
if cond_proj_dim is not None:
|
206
208
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
|
@@ -213,7 +215,7 @@ class TimestepEmbedding(nn.Module):
|
|
213
215
|
time_embed_dim_out = out_dim
|
214
216
|
else:
|
215
217
|
time_embed_dim_out = time_embed_dim
|
216
|
-
self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out)
|
218
|
+
self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out, sample_proj_bias)
|
217
219
|
|
218
220
|
if post_act_fn is None:
|
219
221
|
self.post_act = None
|
@@ -460,6 +462,18 @@ class ImageProjection(nn.Module):
|
|
460
462
|
return image_embeds
|
461
463
|
|
462
464
|
|
465
|
+
class MLPProjection(nn.Module):
|
466
|
+
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
|
467
|
+
super().__init__()
|
468
|
+
from .attention import FeedForward
|
469
|
+
|
470
|
+
self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
|
471
|
+
self.norm = nn.LayerNorm(cross_attention_dim)
|
472
|
+
|
473
|
+
def forward(self, image_embeds: torch.FloatTensor):
|
474
|
+
return self.norm(self.ff(image_embeds))
|
475
|
+
|
476
|
+
|
463
477
|
class CombinedTimestepLabelEmbeddings(nn.Module):
|
464
478
|
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
|
465
479
|
super().__init__()
|
@@ -716,7 +730,7 @@ class PositionNet(nn.Module):
|
|
716
730
|
return objs
|
717
731
|
|
718
732
|
|
719
|
-
class
|
733
|
+
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
|
720
734
|
"""
|
721
735
|
For PixArt-Alpha.
|
722
736
|
|
@@ -733,45 +747,27 @@ class CombinedTimestepSizeEmbeddings(nn.Module):
|
|
733
747
|
|
734
748
|
self.use_additional_conditions = use_additional_conditions
|
735
749
|
if use_additional_conditions:
|
736
|
-
self.use_additional_conditions = True
|
737
750
|
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
738
751
|
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
|
739
752
|
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
|
740
753
|
|
741
|
-
def apply_condition(self, size: torch.Tensor, batch_size: int, embedder: nn.Module):
|
742
|
-
if size.ndim == 1:
|
743
|
-
size = size[:, None]
|
744
|
-
|
745
|
-
if size.shape[0] != batch_size:
|
746
|
-
size = size.repeat(batch_size // size.shape[0], 1)
|
747
|
-
if size.shape[0] != batch_size:
|
748
|
-
raise ValueError(f"`batch_size` should be {size.shape[0]} but found {batch_size}.")
|
749
|
-
|
750
|
-
current_batch_size, dims = size.shape[0], size.shape[1]
|
751
|
-
size = size.reshape(-1)
|
752
|
-
size_freq = self.additional_condition_proj(size).to(size.dtype)
|
753
|
-
|
754
|
-
size_emb = embedder(size_freq)
|
755
|
-
size_emb = size_emb.reshape(current_batch_size, dims * self.outdim)
|
756
|
-
return size_emb
|
757
|
-
|
758
754
|
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
|
759
755
|
timesteps_proj = self.time_proj(timestep)
|
760
756
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
761
757
|
|
762
758
|
if self.use_additional_conditions:
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
)
|
767
|
-
conditioning = timesteps_emb + torch.cat([
|
759
|
+
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
|
760
|
+
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
|
761
|
+
aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
|
762
|
+
aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
|
763
|
+
conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
|
768
764
|
else:
|
769
765
|
conditioning = timesteps_emb
|
770
766
|
|
771
767
|
return conditioning
|
772
768
|
|
773
769
|
|
774
|
-
class
|
770
|
+
class PixArtAlphaTextProjection(nn.Module):
|
775
771
|
"""
|
776
772
|
Projects caption embeddings. Also handles dropout for classifier-free guidance.
|
777
773
|
|
@@ -783,10 +779,97 @@ class CaptionProjection(nn.Module):
|
|
783
779
|
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
|
784
780
|
self.act_1 = nn.GELU(approximate="tanh")
|
785
781
|
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
|
786
|
-
self.register_buffer("y_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features**0.5))
|
787
782
|
|
788
|
-
def forward(self, caption
|
783
|
+
def forward(self, caption):
|
789
784
|
hidden_states = self.linear_1(caption)
|
790
785
|
hidden_states = self.act_1(hidden_states)
|
791
786
|
hidden_states = self.linear_2(hidden_states)
|
792
787
|
return hidden_states
|
788
|
+
|
789
|
+
|
790
|
+
class Resampler(nn.Module):
|
791
|
+
"""Resampler of IP-Adapter Plus.
|
792
|
+
|
793
|
+
Args:
|
794
|
+
----
|
795
|
+
embed_dims (int): The feature dimension. Defaults to 768.
|
796
|
+
output_dims (int): The number of output channels, that is the same
|
797
|
+
number of the channels in the
|
798
|
+
`unet.config.cross_attention_dim`. Defaults to 1024.
|
799
|
+
hidden_dims (int): The number of hidden channels. Defaults to 1280.
|
800
|
+
depth (int): The number of blocks. Defaults to 8.
|
801
|
+
dim_head (int): The number of head channels. Defaults to 64.
|
802
|
+
heads (int): Parallel attention heads. Defaults to 16.
|
803
|
+
num_queries (int): The number of queries. Defaults to 8.
|
804
|
+
ffn_ratio (float): The expansion ratio of feedforward network hidden
|
805
|
+
layer channels. Defaults to 4.
|
806
|
+
"""
|
807
|
+
|
808
|
+
def __init__(
|
809
|
+
self,
|
810
|
+
embed_dims: int = 768,
|
811
|
+
output_dims: int = 1024,
|
812
|
+
hidden_dims: int = 1280,
|
813
|
+
depth: int = 4,
|
814
|
+
dim_head: int = 64,
|
815
|
+
heads: int = 16,
|
816
|
+
num_queries: int = 8,
|
817
|
+
ffn_ratio: float = 4,
|
818
|
+
) -> None:
|
819
|
+
super().__init__()
|
820
|
+
from .attention import FeedForward # Lazy import to avoid circular import
|
821
|
+
|
822
|
+
self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)
|
823
|
+
|
824
|
+
self.proj_in = nn.Linear(embed_dims, hidden_dims)
|
825
|
+
|
826
|
+
self.proj_out = nn.Linear(hidden_dims, output_dims)
|
827
|
+
self.norm_out = nn.LayerNorm(output_dims)
|
828
|
+
|
829
|
+
self.layers = nn.ModuleList([])
|
830
|
+
for _ in range(depth):
|
831
|
+
self.layers.append(
|
832
|
+
nn.ModuleList(
|
833
|
+
[
|
834
|
+
nn.LayerNorm(hidden_dims),
|
835
|
+
nn.LayerNorm(hidden_dims),
|
836
|
+
Attention(
|
837
|
+
query_dim=hidden_dims,
|
838
|
+
dim_head=dim_head,
|
839
|
+
heads=heads,
|
840
|
+
out_bias=False,
|
841
|
+
),
|
842
|
+
nn.Sequential(
|
843
|
+
nn.LayerNorm(hidden_dims),
|
844
|
+
FeedForward(hidden_dims, hidden_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
|
845
|
+
),
|
846
|
+
]
|
847
|
+
)
|
848
|
+
)
|
849
|
+
|
850
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
851
|
+
"""Forward pass.
|
852
|
+
|
853
|
+
Args:
|
854
|
+
----
|
855
|
+
x (torch.Tensor): Input Tensor.
|
856
|
+
|
857
|
+
Returns:
|
858
|
+
-------
|
859
|
+
torch.Tensor: Output Tensor.
|
860
|
+
"""
|
861
|
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
862
|
+
|
863
|
+
x = self.proj_in(x)
|
864
|
+
|
865
|
+
for ln0, ln1, attn, ff in self.layers:
|
866
|
+
residual = latents
|
867
|
+
|
868
|
+
encoder_hidden_states = ln0(x)
|
869
|
+
latents = ln1(latents)
|
870
|
+
encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
|
871
|
+
latents = attn(latents, encoder_hidden_states) + residual
|
872
|
+
latents = ff(latents) + latents
|
873
|
+
|
874
|
+
latents = self.proj_out(latents)
|
875
|
+
return self.norm_out(latents)
|
@@ -65,6 +65,7 @@ class FlaxTimestepEmbedding(nn.Module):
|
|
65
65
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
66
66
|
Parameters `dtype`
|
67
67
|
"""
|
68
|
+
|
68
69
|
time_embed_dim: int = 32
|
69
70
|
dtype: jnp.dtype = jnp.float32
|
70
71
|
|
@@ -84,6 +85,7 @@ class FlaxTimesteps(nn.Module):
|
|
84
85
|
dim (`int`, *optional*, defaults to `32`):
|
85
86
|
Time step embedding dimension
|
86
87
|
"""
|
88
|
+
|
87
89
|
dim: int = 32
|
88
90
|
flip_sin_to_cos: bool = False
|
89
91
|
freq_shift: float = 1
|