diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from ...models.lora import adjust_lora_scale_text_encoder
|
|
37
37
|
from ...schedulers import KarrasDiffusionSchedulers
|
38
38
|
from ...utils import (
|
39
39
|
USE_PEFT_BACKEND,
|
40
|
+
deprecate,
|
40
41
|
logging,
|
41
42
|
replace_example_docstring,
|
42
43
|
scale_lora_layers,
|
@@ -132,9 +133,13 @@ EXAMPLE_DOC_STRING = """
|
|
132
133
|
|
133
134
|
|
134
135
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
135
|
-
def retrieve_latents(
|
136
|
-
|
136
|
+
def retrieve_latents(
|
137
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
138
|
+
):
|
139
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
137
140
|
return encoder_output.latent_dist.sample(generator)
|
141
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
142
|
+
return encoder_output.latent_dist.mode()
|
138
143
|
elif hasattr(encoder_output, "latents"):
|
139
144
|
return encoder_output.latents
|
140
145
|
else:
|
@@ -150,9 +155,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
150
155
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
151
156
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
152
157
|
|
153
|
-
|
154
|
-
-
|
155
|
-
-
|
158
|
+
The pipeline also inherits the following loading methods:
|
159
|
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
160
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
161
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
156
162
|
|
157
163
|
Args:
|
158
164
|
vae ([`AutoencoderKL`]):
|
@@ -192,8 +198,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
192
198
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
193
199
|
watermarker will be used.
|
194
200
|
"""
|
201
|
+
|
195
202
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
196
203
|
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
|
204
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
197
205
|
|
198
206
|
def __init__(
|
199
207
|
self,
|
@@ -542,6 +550,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
542
550
|
controlnet_conditioning_scale=1.0,
|
543
551
|
control_guidance_start=0.0,
|
544
552
|
control_guidance_end=1.0,
|
553
|
+
callback_on_step_end_tensor_inputs=None,
|
545
554
|
):
|
546
555
|
if strength < 0 or strength > 1:
|
547
556
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
@@ -552,14 +561,20 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
552
561
|
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
553
562
|
f" {type(num_inference_steps)}."
|
554
563
|
)
|
555
|
-
|
556
|
-
|
557
|
-
):
|
564
|
+
|
565
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
558
566
|
raise ValueError(
|
559
567
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
560
568
|
f" {type(callback_steps)}."
|
561
569
|
)
|
562
570
|
|
571
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
572
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
573
|
+
):
|
574
|
+
raise ValueError(
|
575
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
576
|
+
)
|
577
|
+
|
563
578
|
if prompt is not None and prompt_embeds is not None:
|
564
579
|
raise ValueError(
|
565
580
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
@@ -950,6 +965,29 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
950
965
|
"""Disables the FreeU mechanism if enabled."""
|
951
966
|
self.unet.disable_freeu()
|
952
967
|
|
968
|
+
@property
|
969
|
+
def guidance_scale(self):
|
970
|
+
return self._guidance_scale
|
971
|
+
|
972
|
+
@property
|
973
|
+
def clip_skip(self):
|
974
|
+
return self._clip_skip
|
975
|
+
|
976
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
977
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
978
|
+
# corresponds to doing no classifier free guidance.
|
979
|
+
@property
|
980
|
+
def do_classifier_free_guidance(self):
|
981
|
+
return self._guidance_scale > 1
|
982
|
+
|
983
|
+
@property
|
984
|
+
def cross_attention_kwargs(self):
|
985
|
+
return self._cross_attention_kwargs
|
986
|
+
|
987
|
+
@property
|
988
|
+
def num_timesteps(self):
|
989
|
+
return self._num_timesteps
|
990
|
+
|
953
991
|
@torch.no_grad()
|
954
992
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
955
993
|
def __call__(
|
@@ -975,8 +1013,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
975
1013
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
976
1014
|
output_type: Optional[str] = "pil",
|
977
1015
|
return_dict: bool = True,
|
978
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
979
|
-
callback_steps: int = 1,
|
980
1016
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
981
1017
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
982
1018
|
guess_mode: bool = False,
|
@@ -991,6 +1027,9 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
991
1027
|
aesthetic_score: float = 6.0,
|
992
1028
|
negative_aesthetic_score: float = 2.5,
|
993
1029
|
clip_skip: Optional[int] = None,
|
1030
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1031
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1032
|
+
**kwargs,
|
994
1033
|
):
|
995
1034
|
r"""
|
996
1035
|
Function invoked when calling the pipeline for generation.
|
@@ -1076,12 +1115,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1076
1115
|
return_dict (`bool`, *optional*, defaults to `True`):
|
1077
1116
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1078
1117
|
plain tuple.
|
1079
|
-
callback (`Callable`, *optional*):
|
1080
|
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
1081
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1082
|
-
callback_steps (`int`, *optional*, defaults to 1):
|
1083
|
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1084
|
-
called at every step.
|
1085
1118
|
cross_attention_kwargs (`dict`, *optional*):
|
1086
1119
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1087
1120
|
`self.processor` in
|
@@ -1137,6 +1170,15 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1137
1170
|
clip_skip (`int`, *optional*):
|
1138
1171
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1139
1172
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1173
|
+
callback_on_step_end (`Callable`, *optional*):
|
1174
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1175
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1176
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1177
|
+
`callback_on_step_end_tensor_inputs`.
|
1178
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1179
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1180
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1181
|
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
1140
1182
|
|
1141
1183
|
Examples:
|
1142
1184
|
|
@@ -1145,6 +1187,23 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1145
1187
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
1146
1188
|
containing the output images.
|
1147
1189
|
"""
|
1190
|
+
|
1191
|
+
callback = kwargs.pop("callback", None)
|
1192
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
1193
|
+
|
1194
|
+
if callback is not None:
|
1195
|
+
deprecate(
|
1196
|
+
"callback",
|
1197
|
+
"1.0.0",
|
1198
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1199
|
+
)
|
1200
|
+
if callback_steps is not None:
|
1201
|
+
deprecate(
|
1202
|
+
"callback_steps",
|
1203
|
+
"1.0.0",
|
1204
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1205
|
+
)
|
1206
|
+
|
1148
1207
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1149
1208
|
|
1150
1209
|
# align format for control guidance
|
@@ -1154,9 +1213,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1154
1213
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1155
1214
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1156
1215
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1157
|
-
control_guidance_start, control_guidance_end =
|
1158
|
-
|
1159
|
-
|
1216
|
+
control_guidance_start, control_guidance_end = (
|
1217
|
+
mult * [control_guidance_start],
|
1218
|
+
mult * [control_guidance_end],
|
1219
|
+
)
|
1160
1220
|
|
1161
1221
|
# 1. Check inputs. Raise error if not correct
|
1162
1222
|
self.check_inputs(
|
@@ -1175,8 +1235,13 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1175
1235
|
controlnet_conditioning_scale,
|
1176
1236
|
control_guidance_start,
|
1177
1237
|
control_guidance_end,
|
1238
|
+
callback_on_step_end_tensor_inputs,
|
1178
1239
|
)
|
1179
1240
|
|
1241
|
+
self._guidance_scale = guidance_scale
|
1242
|
+
self._clip_skip = clip_skip
|
1243
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1244
|
+
|
1180
1245
|
# 2. Define call parameters
|
1181
1246
|
if prompt is not None and isinstance(prompt, str):
|
1182
1247
|
batch_size = 1
|
@@ -1186,10 +1251,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1186
1251
|
batch_size = prompt_embeds.shape[0]
|
1187
1252
|
|
1188
1253
|
device = self._execution_device
|
1189
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1190
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1191
|
-
# corresponds to doing no classifier free guidance.
|
1192
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
1193
1254
|
|
1194
1255
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1195
1256
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
@@ -1203,7 +1264,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1203
1264
|
|
1204
1265
|
# 3. Encode input prompt
|
1205
1266
|
text_encoder_lora_scale = (
|
1206
|
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1267
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1207
1268
|
)
|
1208
1269
|
(
|
1209
1270
|
prompt_embeds,
|
@@ -1215,7 +1276,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1215
1276
|
prompt_2,
|
1216
1277
|
device,
|
1217
1278
|
num_images_per_prompt,
|
1218
|
-
do_classifier_free_guidance,
|
1279
|
+
self.do_classifier_free_guidance,
|
1219
1280
|
negative_prompt,
|
1220
1281
|
negative_prompt_2,
|
1221
1282
|
prompt_embeds=prompt_embeds,
|
@@ -1223,7 +1284,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1223
1284
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
1224
1285
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1225
1286
|
lora_scale=text_encoder_lora_scale,
|
1226
|
-
clip_skip=clip_skip,
|
1287
|
+
clip_skip=self.clip_skip,
|
1227
1288
|
)
|
1228
1289
|
|
1229
1290
|
# 4. Prepare image and controlnet_conditioning_image
|
@@ -1238,7 +1299,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1238
1299
|
num_images_per_prompt=num_images_per_prompt,
|
1239
1300
|
device=device,
|
1240
1301
|
dtype=controlnet.dtype,
|
1241
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1302
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1242
1303
|
guess_mode=guess_mode,
|
1243
1304
|
)
|
1244
1305
|
height, width = control_image.shape[-2:]
|
@@ -1254,7 +1315,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1254
1315
|
num_images_per_prompt=num_images_per_prompt,
|
1255
1316
|
device=device,
|
1256
1317
|
dtype=controlnet.dtype,
|
1257
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1318
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1258
1319
|
guess_mode=guess_mode,
|
1259
1320
|
)
|
1260
1321
|
|
@@ -1269,6 +1330,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1269
1330
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1270
1331
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1271
1332
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1333
|
+
self._num_timesteps = len(timesteps)
|
1272
1334
|
|
1273
1335
|
# 6. Prepare latent variables
|
1274
1336
|
latents = self.prepare_latents(
|
@@ -1326,7 +1388,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1326
1388
|
)
|
1327
1389
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1328
1390
|
|
1329
|
-
if do_classifier_free_guidance:
|
1391
|
+
if self.do_classifier_free_guidance:
|
1330
1392
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1331
1393
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1332
1394
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
@@ -1341,13 +1403,13 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1341
1403
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1342
1404
|
for i, t in enumerate(timesteps):
|
1343
1405
|
# expand the latents if we are doing classifier free guidance
|
1344
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1406
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1345
1407
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1346
1408
|
|
1347
1409
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1348
1410
|
|
1349
1411
|
# controlnet(s) inference
|
1350
|
-
if guess_mode and do_classifier_free_guidance:
|
1412
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1351
1413
|
# Infer ControlNet only for the conditional batch.
|
1352
1414
|
control_model_input = latents
|
1353
1415
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
@@ -1380,7 +1442,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1380
1442
|
return_dict=False,
|
1381
1443
|
)
|
1382
1444
|
|
1383
|
-
if guess_mode and do_classifier_free_guidance:
|
1445
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1384
1446
|
# Infered ControlNet only for the conditional batch.
|
1385
1447
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1386
1448
|
# add 0 to the unconditional batch to keep it unchanged.
|
@@ -1392,7 +1454,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1392
1454
|
latent_model_input,
|
1393
1455
|
t,
|
1394
1456
|
encoder_hidden_states=prompt_embeds,
|
1395
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1457
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1396
1458
|
down_block_additional_residuals=down_block_res_samples,
|
1397
1459
|
mid_block_additional_residual=mid_block_res_sample,
|
1398
1460
|
added_cond_kwargs=added_cond_kwargs,
|
@@ -1400,13 +1462,23 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1400
1462
|
)[0]
|
1401
1463
|
|
1402
1464
|
# perform guidance
|
1403
|
-
if do_classifier_free_guidance:
|
1465
|
+
if self.do_classifier_free_guidance:
|
1404
1466
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1405
1467
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1406
1468
|
|
1407
1469
|
# compute the previous noisy sample x_t -> x_t-1
|
1408
1470
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1409
1471
|
|
1472
|
+
if callback_on_step_end is not None:
|
1473
|
+
callback_kwargs = {}
|
1474
|
+
for k in callback_on_step_end_tensor_inputs:
|
1475
|
+
callback_kwargs[k] = locals()[k]
|
1476
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1477
|
+
|
1478
|
+
latents = callback_outputs.pop("latents", latents)
|
1479
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1480
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1481
|
+
|
1410
1482
|
# call the callback, if provided
|
1411
1483
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1412
1484
|
progress_bar.update()
|
@@ -39,6 +39,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
|
|
39
39
|
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
40
40
|
[`IPNDMScheduler`].
|
41
41
|
"""
|
42
|
+
|
42
43
|
model_cpu_offload_seq = "unet"
|
43
44
|
|
44
45
|
def __init__(self, unet, scheduler):
|
@@ -35,6 +35,7 @@ class DDIMPipeline(DiffusionPipeline):
|
|
35
35
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
36
36
|
[`DDPMScheduler`], or [`DDIMScheduler`].
|
37
37
|
"""
|
38
|
+
|
38
39
|
model_cpu_offload_seq = "unet"
|
39
40
|
|
40
41
|
def __init__(self, unet, scheduler):
|
@@ -35,6 +35,7 @@ class DDPMPipeline(DiffusionPipeline):
|
|
35
35
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
36
36
|
[`DDPMScheduler`], or [`DDIMScheduler`].
|
37
37
|
"""
|
38
|
+
|
38
39
|
model_cpu_offload_seq = "unet"
|
39
40
|
|
40
41
|
def __init__(self, unet, scheduler):
|
@@ -98,7 +98,19 @@ class IFPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
98
98
|
watermarker: Optional[IFWatermarker]
|
99
99
|
|
100
100
|
bad_punct_regex = re.compile(
|
101
|
-
r"["
|
101
|
+
r"["
|
102
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
103
|
+
+ r"\)"
|
104
|
+
+ r"\("
|
105
|
+
+ r"\]"
|
106
|
+
+ r"\["
|
107
|
+
+ r"\}"
|
108
|
+
+ r"\{"
|
109
|
+
+ r"\|"
|
110
|
+
+ "\\"
|
111
|
+
+ r"\/"
|
112
|
+
+ r"\*"
|
113
|
+
+ r"]{1,}"
|
102
114
|
) # noqa
|
103
115
|
|
104
116
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -122,7 +122,19 @@ class IFImg2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
122
122
|
watermarker: Optional[IFWatermarker]
|
123
123
|
|
124
124
|
bad_punct_regex = re.compile(
|
125
|
-
r"["
|
125
|
+
r"["
|
126
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
127
|
+
+ r"\)"
|
128
|
+
+ r"\("
|
129
|
+
+ r"\]"
|
130
|
+
+ r"\["
|
131
|
+
+ r"\}"
|
132
|
+
+ r"\{"
|
133
|
+
+ r"\|"
|
134
|
+
+ "\\"
|
135
|
+
+ r"\/"
|
136
|
+
+ r"\*"
|
137
|
+
+ r"]{1,}"
|
126
138
|
) # noqa
|
127
139
|
|
128
140
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -126,7 +126,19 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
126
126
|
watermarker: Optional[IFWatermarker]
|
127
127
|
|
128
128
|
bad_punct_regex = re.compile(
|
129
|
-
r"["
|
129
|
+
r"["
|
130
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
131
|
+
+ r"\)"
|
132
|
+
+ r"\("
|
133
|
+
+ r"\]"
|
134
|
+
+ r"\["
|
135
|
+
+ r"\}"
|
136
|
+
+ r"\{"
|
137
|
+
+ r"\|"
|
138
|
+
+ "\\"
|
139
|
+
+ r"\/"
|
140
|
+
+ r"\*"
|
141
|
+
+ r"]{1,}"
|
130
142
|
) # noqa
|
131
143
|
|
132
144
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor"]
|
@@ -125,7 +125,19 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
125
125
|
watermarker: Optional[IFWatermarker]
|
126
126
|
|
127
127
|
bad_punct_regex = re.compile(
|
128
|
-
r"["
|
128
|
+
r"["
|
129
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
130
|
+
+ r"\)"
|
131
|
+
+ r"\("
|
132
|
+
+ r"\]"
|
133
|
+
+ r"\["
|
134
|
+
+ r"\}"
|
135
|
+
+ r"\{"
|
136
|
+
+ r"\|"
|
137
|
+
+ "\\"
|
138
|
+
+ r"\/"
|
139
|
+
+ r"\*"
|
140
|
+
+ r"]{1,}"
|
129
141
|
) # noqa
|
130
142
|
|
131
143
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -128,7 +128,19 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
128
128
|
watermarker: Optional[IFWatermarker]
|
129
129
|
|
130
130
|
bad_punct_regex = re.compile(
|
131
|
-
r"["
|
131
|
+
r"["
|
132
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
133
|
+
+ r"\)"
|
134
|
+
+ r"\("
|
135
|
+
+ r"\]"
|
136
|
+
+ r"\["
|
137
|
+
+ r"\}"
|
138
|
+
+ r"\{"
|
139
|
+
+ r"\|"
|
140
|
+
+ "\\"
|
141
|
+
+ r"\/"
|
142
|
+
+ r"\*"
|
143
|
+
+ r"]{1,}"
|
132
144
|
) # noqa
|
133
145
|
|
134
146
|
model_cpu_offload_seq = "text_encoder->unet"
|
@@ -84,7 +84,19 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
84
84
|
watermarker: Optional[IFWatermarker]
|
85
85
|
|
86
86
|
bad_punct_regex = re.compile(
|
87
|
-
r"["
|
87
|
+
r"["
|
88
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
89
|
+
+ r"\)"
|
90
|
+
+ r"\("
|
91
|
+
+ r"\]"
|
92
|
+
+ r"\["
|
93
|
+
+ r"\}"
|
94
|
+
+ r"\{"
|
95
|
+
+ r"\|"
|
96
|
+
+ "\\"
|
97
|
+
+ r"\/"
|
98
|
+
+ r"\*"
|
99
|
+
+ r"]{1,}"
|
88
100
|
) # noqa
|
89
101
|
|
90
102
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -0,0 +1,153 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
|
3
|
+
from ...utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
|
+
OptionalDependencyNotAvailable,
|
6
|
+
_LazyModule,
|
7
|
+
get_objects_from_module,
|
8
|
+
is_librosa_available,
|
9
|
+
is_note_seq_available,
|
10
|
+
is_torch_available,
|
11
|
+
is_transformers_available,
|
12
|
+
)
|
13
|
+
|
14
|
+
|
15
|
+
_dummy_objects = {}
|
16
|
+
_import_structure = {}
|
17
|
+
|
18
|
+
try:
|
19
|
+
if not is_torch_available():
|
20
|
+
raise OptionalDependencyNotAvailable()
|
21
|
+
except OptionalDependencyNotAvailable:
|
22
|
+
from ...utils import dummy_pt_objects
|
23
|
+
|
24
|
+
_dummy_objects.update(get_objects_from_module(dummy_pt_objects))
|
25
|
+
else:
|
26
|
+
_import_structure["latent_diffusion_uncond"] = ["LDMPipeline"]
|
27
|
+
_import_structure["pndm"] = ["PNDMPipeline"]
|
28
|
+
_import_structure["repaint"] = ["RePaintPipeline"]
|
29
|
+
_import_structure["score_sde_ve"] = ["ScoreSdeVePipeline"]
|
30
|
+
_import_structure["stochastic_karras_ve"] = ["KarrasVePipeline"]
|
31
|
+
|
32
|
+
try:
|
33
|
+
if not (is_transformers_available() and is_torch_available()):
|
34
|
+
raise OptionalDependencyNotAvailable()
|
35
|
+
except OptionalDependencyNotAvailable:
|
36
|
+
from ...utils import dummy_torch_and_transformers_objects
|
37
|
+
|
38
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
39
|
+
else:
|
40
|
+
_import_structure["alt_diffusion"] = [
|
41
|
+
"AltDiffusionImg2ImgPipeline",
|
42
|
+
"AltDiffusionPipeline",
|
43
|
+
"AltDiffusionPipelineOutput",
|
44
|
+
]
|
45
|
+
_import_structure["versatile_diffusion"] = [
|
46
|
+
"VersatileDiffusionDualGuidedPipeline",
|
47
|
+
"VersatileDiffusionImageVariationPipeline",
|
48
|
+
"VersatileDiffusionPipeline",
|
49
|
+
"VersatileDiffusionTextToImagePipeline",
|
50
|
+
]
|
51
|
+
_import_structure["vq_diffusion"] = ["VQDiffusionPipeline"]
|
52
|
+
_import_structure["stable_diffusion_variants"] = [
|
53
|
+
"CycleDiffusionPipeline",
|
54
|
+
"StableDiffusionInpaintPipelineLegacy",
|
55
|
+
"StableDiffusionPix2PixZeroPipeline",
|
56
|
+
"StableDiffusionParadigmsPipeline",
|
57
|
+
"StableDiffusionModelEditingPipeline",
|
58
|
+
]
|
59
|
+
|
60
|
+
try:
|
61
|
+
if not (is_torch_available() and is_librosa_available()):
|
62
|
+
raise OptionalDependencyNotAvailable()
|
63
|
+
except OptionalDependencyNotAvailable:
|
64
|
+
from ...utils import dummy_torch_and_librosa_objects # noqa F403
|
65
|
+
|
66
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_librosa_objects))
|
67
|
+
|
68
|
+
else:
|
69
|
+
_import_structure["audio_diffusion"] = ["AudioDiffusionPipeline", "Mel"]
|
70
|
+
|
71
|
+
try:
|
72
|
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
73
|
+
raise OptionalDependencyNotAvailable()
|
74
|
+
except OptionalDependencyNotAvailable:
|
75
|
+
from ...utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
|
76
|
+
|
77
|
+
_dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects))
|
78
|
+
|
79
|
+
else:
|
80
|
+
_import_structure["spectrogram_diffusion"] = ["MidiProcessor", "SpectrogramDiffusionPipeline"]
|
81
|
+
|
82
|
+
|
83
|
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
84
|
+
try:
|
85
|
+
if not is_torch_available():
|
86
|
+
raise OptionalDependencyNotAvailable()
|
87
|
+
except OptionalDependencyNotAvailable:
|
88
|
+
from ...utils.dummy_pt_objects import *
|
89
|
+
|
90
|
+
else:
|
91
|
+
from .latent_diffusion_uncond import LDMPipeline
|
92
|
+
from .pndm import PNDMPipeline
|
93
|
+
from .repaint import RePaintPipeline
|
94
|
+
from .score_sde_ve import ScoreSdeVePipeline
|
95
|
+
from .stochastic_karras_ve import KarrasVePipeline
|
96
|
+
|
97
|
+
try:
|
98
|
+
if not (is_transformers_available() and is_torch_available()):
|
99
|
+
raise OptionalDependencyNotAvailable()
|
100
|
+
except OptionalDependencyNotAvailable:
|
101
|
+
from ...utils.dummy_torch_and_transformers_objects import *
|
102
|
+
|
103
|
+
else:
|
104
|
+
from .alt_diffusion import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline, AltDiffusionPipelineOutput
|
105
|
+
from .audio_diffusion import AudioDiffusionPipeline, Mel
|
106
|
+
from .spectrogram_diffusion import SpectrogramDiffusionPipeline
|
107
|
+
from .stable_diffusion_variants import (
|
108
|
+
CycleDiffusionPipeline,
|
109
|
+
StableDiffusionInpaintPipelineLegacy,
|
110
|
+
StableDiffusionModelEditingPipeline,
|
111
|
+
StableDiffusionParadigmsPipeline,
|
112
|
+
StableDiffusionPix2PixZeroPipeline,
|
113
|
+
)
|
114
|
+
from .stochastic_karras_ve import KarrasVePipeline
|
115
|
+
from .versatile_diffusion import (
|
116
|
+
VersatileDiffusionDualGuidedPipeline,
|
117
|
+
VersatileDiffusionImageVariationPipeline,
|
118
|
+
VersatileDiffusionPipeline,
|
119
|
+
VersatileDiffusionTextToImagePipeline,
|
120
|
+
)
|
121
|
+
from .vq_diffusion import VQDiffusionPipeline
|
122
|
+
|
123
|
+
try:
|
124
|
+
if not (is_torch_available() and is_librosa_available()):
|
125
|
+
raise OptionalDependencyNotAvailable()
|
126
|
+
except OptionalDependencyNotAvailable:
|
127
|
+
from ...utils.dummy_torch_and_librosa_objects import *
|
128
|
+
else:
|
129
|
+
from .audio_diffusion import AudioDiffusionPipeline, Mel
|
130
|
+
|
131
|
+
try:
|
132
|
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
133
|
+
raise OptionalDependencyNotAvailable()
|
134
|
+
except OptionalDependencyNotAvailable:
|
135
|
+
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
|
136
|
+
else:
|
137
|
+
from .spectrogram_diffusion import (
|
138
|
+
MidiProcessor,
|
139
|
+
SpectrogramDiffusionPipeline,
|
140
|
+
)
|
141
|
+
|
142
|
+
|
143
|
+
else:
|
144
|
+
import sys
|
145
|
+
|
146
|
+
sys.modules[__name__] = _LazyModule(
|
147
|
+
__name__,
|
148
|
+
globals()["__file__"],
|
149
|
+
_import_structure,
|
150
|
+
module_spec=__spec__,
|
151
|
+
)
|
152
|
+
for name, value in _dummy_objects.items():
|
153
|
+
setattr(sys.modules[__name__], name, value)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from typing import TYPE_CHECKING
|
2
2
|
|
3
|
-
from
|
3
|
+
from ....utils import (
|
4
4
|
DIFFUSERS_SLOW_IMPORT,
|
5
5
|
OptionalDependencyNotAvailable,
|
6
6
|
_LazyModule,
|
@@ -17,7 +17,7 @@ try:
|
|
17
17
|
if not (is_transformers_available() and is_torch_available()):
|
18
18
|
raise OptionalDependencyNotAvailable()
|
19
19
|
except OptionalDependencyNotAvailable:
|
20
|
-
from
|
20
|
+
from ....utils import dummy_torch_and_transformers_objects
|
21
21
|
|
22
22
|
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
23
23
|
else:
|
@@ -32,7 +32,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
32
32
|
if not (is_transformers_available() and is_torch_available()):
|
33
33
|
raise OptionalDependencyNotAvailable()
|
34
34
|
except OptionalDependencyNotAvailable:
|
35
|
-
from
|
35
|
+
from ....utils.dummy_torch_and_transformers_objects import *
|
36
36
|
|
37
37
|
else:
|
38
38
|
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
|