diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py
RENAMED
@@ -19,15 +19,16 @@ import numpy as np
|
|
19
19
|
import PIL.Image
|
20
20
|
import torch
|
21
21
|
from packaging import version
|
22
|
-
from transformers import CLIPImageProcessor, XLMRobertaTokenizer
|
23
|
-
|
24
|
-
from
|
25
|
-
from
|
26
|
-
from
|
27
|
-
from
|
28
|
-
from
|
29
|
-
from
|
30
|
-
from
|
22
|
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer
|
23
|
+
|
24
|
+
from ....configuration_utils import FrozenDict
|
25
|
+
from ....image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
+
from ....loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27
|
+
from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
28
|
+
from ....models.attention_processor import FusedAttnProcessor2_0
|
29
|
+
from ....models.lora import adjust_lora_scale_text_encoder
|
30
|
+
from ....schedulers import KarrasDiffusionSchedulers
|
31
|
+
from ....utils import (
|
31
32
|
PIL_INTERPOLATION,
|
32
33
|
USE_PEFT_BACKEND,
|
33
34
|
deprecate,
|
@@ -36,9 +37,9 @@ from ...utils import (
|
|
36
37
|
scale_lora_layers,
|
37
38
|
unscale_lora_layers,
|
38
39
|
)
|
39
|
-
from
|
40
|
-
from
|
41
|
-
from
|
40
|
+
from ....utils.torch_utils import randn_tensor
|
41
|
+
from ...pipeline_utils import DiffusionPipeline
|
42
|
+
from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
42
43
|
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
|
43
44
|
from .pipeline_output import AltDiffusionPipelineOutput
|
44
45
|
|
@@ -76,9 +77,13 @@ EXAMPLE_DOC_STRING = """
|
|
76
77
|
|
77
78
|
|
78
79
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
79
|
-
def retrieve_latents(
|
80
|
-
|
80
|
+
def retrieve_latents(
|
81
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
82
|
+
):
|
83
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
81
84
|
return encoder_output.latent_dist.sample(generator)
|
85
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
86
|
+
return encoder_output.latent_dist.mode()
|
82
87
|
elif hasattr(encoder_output, "latents"):
|
83
88
|
return encoder_output.latents
|
84
89
|
else:
|
@@ -109,9 +114,53 @@ def preprocess(image):
|
|
109
114
|
return image
|
110
115
|
|
111
116
|
|
112
|
-
# Copied from diffusers.pipelines.stable_diffusion.
|
117
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
118
|
+
def retrieve_timesteps(
|
119
|
+
scheduler,
|
120
|
+
num_inference_steps: Optional[int] = None,
|
121
|
+
device: Optional[Union[str, torch.device]] = None,
|
122
|
+
timesteps: Optional[List[int]] = None,
|
123
|
+
**kwargs,
|
124
|
+
):
|
125
|
+
"""
|
126
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
127
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
128
|
+
|
129
|
+
Args:
|
130
|
+
scheduler (`SchedulerMixin`):
|
131
|
+
The scheduler to get timesteps from.
|
132
|
+
num_inference_steps (`int`):
|
133
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
134
|
+
`timesteps` must be `None`.
|
135
|
+
device (`str` or `torch.device`, *optional*):
|
136
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
137
|
+
timesteps (`List[int]`, *optional*):
|
138
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
139
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
140
|
+
must be `None`.
|
141
|
+
|
142
|
+
Returns:
|
143
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
144
|
+
second element is the number of inference steps.
|
145
|
+
"""
|
146
|
+
if timesteps is not None:
|
147
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
148
|
+
if not accepts_timesteps:
|
149
|
+
raise ValueError(
|
150
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
151
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
152
|
+
)
|
153
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
154
|
+
timesteps = scheduler.timesteps
|
155
|
+
num_inference_steps = len(timesteps)
|
156
|
+
else:
|
157
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
158
|
+
timesteps = scheduler.timesteps
|
159
|
+
return timesteps, num_inference_steps
|
160
|
+
|
161
|
+
|
113
162
|
class AltDiffusionImg2ImgPipeline(
|
114
|
-
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
163
|
+
DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
|
115
164
|
):
|
116
165
|
r"""
|
117
166
|
Pipeline for text-guided image-to-image generation using Alt Diffusion.
|
@@ -124,6 +173,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
124
173
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
125
174
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
126
175
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
176
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
127
177
|
|
128
178
|
Args:
|
129
179
|
vae ([`AutoencoderKL`]):
|
@@ -145,8 +195,8 @@ class AltDiffusionImg2ImgPipeline(
|
|
145
195
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
146
196
|
"""
|
147
197
|
|
148
|
-
model_cpu_offload_seq = "text_encoder->unet->vae"
|
149
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
198
|
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
199
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
150
200
|
_exclude_from_cpu_offload = ["safety_checker"]
|
151
201
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
152
202
|
|
@@ -159,6 +209,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
159
209
|
scheduler: KarrasDiffusionSchedulers,
|
160
210
|
safety_checker: StableDiffusionSafetyChecker,
|
161
211
|
feature_extractor: CLIPImageProcessor,
|
212
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
162
213
|
requires_safety_checker: bool = True,
|
163
214
|
):
|
164
215
|
super().__init__()
|
@@ -235,6 +286,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
235
286
|
scheduler=scheduler,
|
236
287
|
safety_checker=safety_checker,
|
237
288
|
feature_extractor=feature_extractor,
|
289
|
+
image_encoder=image_encoder,
|
238
290
|
)
|
239
291
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
240
292
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
@@ -252,10 +304,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
252
304
|
lora_scale: Optional[float] = None,
|
253
305
|
**kwargs,
|
254
306
|
):
|
255
|
-
deprecation_message = (
|
256
|
-
"`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()`"
|
257
|
-
" instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
258
|
-
)
|
307
|
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
259
308
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
260
309
|
|
261
310
|
prompt_embeds_tuple = self.encode_prompt(
|
@@ -456,6 +505,30 @@ class AltDiffusionImg2ImgPipeline(
|
|
456
505
|
|
457
506
|
return prompt_embeds, negative_prompt_embeds
|
458
507
|
|
508
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
509
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
510
|
+
|
511
|
+
if not isinstance(image, torch.Tensor):
|
512
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
513
|
+
|
514
|
+
image = image.to(device=device, dtype=dtype)
|
515
|
+
if output_hidden_states:
|
516
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
517
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
518
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
519
|
+
torch.zeros_like(image), output_hidden_states=True
|
520
|
+
).hidden_states[-2]
|
521
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
522
|
+
num_images_per_prompt, dim=0
|
523
|
+
)
|
524
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
525
|
+
else:
|
526
|
+
image_embeds = self.image_encoder(image).image_embeds
|
527
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
528
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
529
|
+
|
530
|
+
return image_embeds, uncond_image_embeds
|
531
|
+
|
459
532
|
def run_safety_checker(self, image, device, dtype):
|
460
533
|
if self.safety_checker is None:
|
461
534
|
has_nsfw_concept = None
|
@@ -471,10 +544,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
471
544
|
return image, has_nsfw_concept
|
472
545
|
|
473
546
|
def decode_latents(self, latents):
|
474
|
-
deprecation_message = (
|
475
|
-
"The decode_latents method is deprecated and will be removed in 1.0.0. Please use"
|
476
|
-
" VaeImageProcessor.postprocess(...) instead"
|
477
|
-
)
|
547
|
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
478
548
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
479
549
|
|
480
550
|
latents = 1 / self.vae.config.scaling_factor * latents
|
@@ -524,8 +594,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
524
594
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
525
595
|
):
|
526
596
|
raise ValueError(
|
527
|
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found"
|
528
|
-
f" {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
597
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
529
598
|
)
|
530
599
|
if prompt is not None and prompt_embeds is not None:
|
531
600
|
raise ValueError(
|
@@ -578,8 +647,8 @@ class AltDiffusionImg2ImgPipeline(
|
|
578
647
|
else:
|
579
648
|
if isinstance(generator, list) and len(generator) != batch_size:
|
580
649
|
raise ValueError(
|
581
|
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective"
|
582
|
-
f"
|
650
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
651
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
583
652
|
)
|
584
653
|
|
585
654
|
elif isinstance(generator, list):
|
@@ -646,6 +715,65 @@ class AltDiffusionImg2ImgPipeline(
|
|
646
715
|
"""Disables the FreeU mechanism if enabled."""
|
647
716
|
self.unet.disable_freeu()
|
648
717
|
|
718
|
+
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
719
|
+
"""
|
720
|
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
721
|
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
722
|
+
|
723
|
+
<Tip warning={true}>
|
724
|
+
|
725
|
+
This API is 🧪 experimental.
|
726
|
+
|
727
|
+
</Tip>
|
728
|
+
|
729
|
+
Args:
|
730
|
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
731
|
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
732
|
+
"""
|
733
|
+
self.fusing_unet = False
|
734
|
+
self.fusing_vae = False
|
735
|
+
|
736
|
+
if unet:
|
737
|
+
self.fusing_unet = True
|
738
|
+
self.unet.fuse_qkv_projections()
|
739
|
+
self.unet.set_attn_processor(FusedAttnProcessor2_0())
|
740
|
+
|
741
|
+
if vae:
|
742
|
+
if not isinstance(self.vae, AutoencoderKL):
|
743
|
+
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
|
744
|
+
|
745
|
+
self.fusing_vae = True
|
746
|
+
self.vae.fuse_qkv_projections()
|
747
|
+
self.vae.set_attn_processor(FusedAttnProcessor2_0())
|
748
|
+
|
749
|
+
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
750
|
+
"""Disable QKV projection fusion if enabled.
|
751
|
+
|
752
|
+
<Tip warning={true}>
|
753
|
+
|
754
|
+
This API is 🧪 experimental.
|
755
|
+
|
756
|
+
</Tip>
|
757
|
+
|
758
|
+
Args:
|
759
|
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
760
|
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
761
|
+
|
762
|
+
"""
|
763
|
+
if unet:
|
764
|
+
if not self.fusing_unet:
|
765
|
+
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
|
766
|
+
else:
|
767
|
+
self.unet.unfuse_qkv_projections()
|
768
|
+
self.fusing_unet = False
|
769
|
+
|
770
|
+
if vae:
|
771
|
+
if not self.fusing_vae:
|
772
|
+
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
|
773
|
+
else:
|
774
|
+
self.vae.unfuse_qkv_projections()
|
775
|
+
self.fusing_vae = False
|
776
|
+
|
649
777
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
650
778
|
"""
|
651
779
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
@@ -705,6 +833,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
705
833
|
image: PipelineImageInput = None,
|
706
834
|
strength: float = 0.8,
|
707
835
|
num_inference_steps: Optional[int] = 50,
|
836
|
+
timesteps: List[int] = None,
|
708
837
|
guidance_scale: Optional[float] = 7.5,
|
709
838
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
710
839
|
num_images_per_prompt: Optional[int] = 1,
|
@@ -712,6 +841,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
712
841
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
713
842
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
714
843
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
844
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
715
845
|
output_type: Optional[str] = "pil",
|
716
846
|
return_dict: bool = True,
|
717
847
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -741,6 +871,10 @@ class AltDiffusionImg2ImgPipeline(
|
|
741
871
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
742
872
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
743
873
|
expense of slower inference. This parameter is modulated by `strength`.
|
874
|
+
timesteps (`List[int]`, *optional*):
|
875
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
876
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
877
|
+
passed will be used. Must be in descending order.
|
744
878
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
745
879
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
746
880
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -761,6 +895,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
761
895
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
762
896
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
763
897
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
898
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
764
899
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
765
900
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
766
901
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -780,7 +915,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
780
915
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
781
916
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
782
917
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
783
|
-
`._callback_tensor_inputs` attribute of your
|
918
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
784
919
|
Examples:
|
785
920
|
|
786
921
|
Returns:
|
@@ -798,15 +933,13 @@ class AltDiffusionImg2ImgPipeline(
|
|
798
933
|
deprecate(
|
799
934
|
"callback",
|
800
935
|
"1.0.0",
|
801
|
-
"Passing `callback` as an input argument to `__call__` is deprecated, consider use"
|
802
|
-
" `callback_on_step_end`",
|
936
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
803
937
|
)
|
804
938
|
if callback_steps is not None:
|
805
939
|
deprecate(
|
806
940
|
"callback_steps",
|
807
941
|
"1.0.0",
|
808
|
-
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use"
|
809
|
-
" `callback_on_step_end`",
|
942
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
810
943
|
)
|
811
944
|
|
812
945
|
# 1. Check inputs. Raise error if not correct
|
@@ -855,11 +988,19 @@ class AltDiffusionImg2ImgPipeline(
|
|
855
988
|
if self.do_classifier_free_guidance:
|
856
989
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
857
990
|
|
991
|
+
if ip_adapter_image is not None:
|
992
|
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
993
|
+
image_embeds, negative_image_embeds = self.encode_image(
|
994
|
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
995
|
+
)
|
996
|
+
if self.do_classifier_free_guidance:
|
997
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
998
|
+
|
858
999
|
# 4. Preprocess image
|
859
1000
|
image = self.image_processor.preprocess(image)
|
860
1001
|
|
861
1002
|
# 5. set timesteps
|
862
|
-
self.scheduler
|
1003
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
863
1004
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
864
1005
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
865
1006
|
|
@@ -877,7 +1018,10 @@ class AltDiffusionImg2ImgPipeline(
|
|
877
1018
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
878
1019
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
879
1020
|
|
880
|
-
# 7.
|
1021
|
+
# 7.1 Add image embeds for IP-Adapter
|
1022
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
1023
|
+
|
1024
|
+
# 7.2 Optionally get Guidance Scale Embedding
|
881
1025
|
timestep_cond = None
|
882
1026
|
if self.unet.config.time_cond_proj_dim is not None:
|
883
1027
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
@@ -901,6 +1045,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
901
1045
|
encoder_hidden_states=prompt_embeds,
|
902
1046
|
timestep_cond=timestep_cond,
|
903
1047
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
1048
|
+
added_cond_kwargs=added_cond_kwargs,
|
904
1049
|
return_dict=False,
|
905
1050
|
)[0]
|
906
1051
|
|
@@ -15,8 +15,8 @@
|
|
15
15
|
|
16
16
|
import numpy as np # noqa: E402
|
17
17
|
|
18
|
-
from
|
19
|
-
from
|
18
|
+
from ....configuration_utils import ConfigMixin, register_to_config
|
19
|
+
from ....schedulers.scheduling_utils import SchedulerMixin
|
20
20
|
|
21
21
|
|
22
22
|
try:
|
diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py
RENAMED
@@ -20,10 +20,10 @@ import numpy as np
|
|
20
20
|
import torch
|
21
21
|
from PIL import Image
|
22
22
|
|
23
|
-
from
|
24
|
-
from
|
25
|
-
from
|
26
|
-
from
|
23
|
+
from ....models import AutoencoderKL, UNet2DConditionModel
|
24
|
+
from ....schedulers import DDIMScheduler, DDPMScheduler
|
25
|
+
from ....utils.torch_utils import randn_tensor
|
26
|
+
from ...pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
|
27
27
|
from .mel import Mel
|
28
28
|
|
29
29
|
|
@@ -17,10 +17,10 @@ from typing import List, Optional, Tuple, Union
|
|
17
17
|
|
18
18
|
import torch
|
19
19
|
|
20
|
-
from
|
21
|
-
from
|
22
|
-
from
|
23
|
-
from
|
20
|
+
from ....models import UNet2DModel, VQModel
|
21
|
+
from ....schedulers import DDIMScheduler
|
22
|
+
from ....utils.torch_utils import randn_tensor
|
23
|
+
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
24
24
|
|
25
25
|
|
26
26
|
class LDMPipeline(DiffusionPipeline):
|
@@ -17,10 +17,10 @@ from typing import List, Optional, Tuple, Union
|
|
17
17
|
|
18
18
|
import torch
|
19
19
|
|
20
|
-
from
|
21
|
-
from
|
22
|
-
from
|
23
|
-
from
|
20
|
+
from ....models import UNet2DModel
|
21
|
+
from ....schedulers import PNDMScheduler
|
22
|
+
from ....utils.torch_utils import randn_tensor
|
23
|
+
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
24
24
|
|
25
25
|
|
26
26
|
class PNDMPipeline(DiffusionPipeline):
|
@@ -19,11 +19,11 @@ import numpy as np
|
|
19
19
|
import PIL.Image
|
20
20
|
import torch
|
21
21
|
|
22
|
-
from
|
23
|
-
from
|
24
|
-
from
|
25
|
-
from
|
26
|
-
from
|
22
|
+
from ....models import UNet2DModel
|
23
|
+
from ....schedulers import RePaintScheduler
|
24
|
+
from ....utils import PIL_INTERPOLATION, deprecate, logging
|
25
|
+
from ....utils.torch_utils import randn_tensor
|
26
|
+
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
27
27
|
|
28
28
|
|
29
29
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -16,10 +16,10 @@ from typing import List, Optional, Tuple, Union
|
|
16
16
|
|
17
17
|
import torch
|
18
18
|
|
19
|
-
from
|
20
|
-
from
|
21
|
-
from
|
22
|
-
from
|
19
|
+
from ....models import UNet2DModel
|
20
|
+
from ....schedulers import ScoreSdeVeScheduler
|
21
|
+
from ....utils.torch_utils import randn_tensor
|
22
|
+
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
23
23
|
|
24
24
|
|
25
25
|
class ScoreSdeVePipeline(DiffusionPipeline):
|
@@ -35,6 +35,7 @@ class ScoreSdeVePipeline(DiffusionPipeline):
|
|
35
35
|
scheduler ([`ScoreSdeVeScheduler`]):
|
36
36
|
A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image.
|
37
37
|
"""
|
38
|
+
|
38
39
|
unet: UNet2DModel
|
39
40
|
scheduler: ScoreSdeVeScheduler
|
40
41
|
|
@@ -1,7 +1,7 @@
|
|
1
1
|
# flake8: noqa
|
2
2
|
from typing import TYPE_CHECKING
|
3
|
-
from
|
4
|
-
|
3
|
+
from ....utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
5
|
_LazyModule,
|
6
6
|
is_note_seq_available,
|
7
7
|
OptionalDependencyNotAvailable,
|
@@ -17,7 +17,7 @@ try:
|
|
17
17
|
if not (is_transformers_available() and is_torch_available()):
|
18
18
|
raise OptionalDependencyNotAvailable()
|
19
19
|
except OptionalDependencyNotAvailable:
|
20
|
-
from
|
20
|
+
from ....utils import dummy_torch_and_transformers_objects # noqa F403
|
21
21
|
|
22
22
|
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
23
23
|
else:
|
@@ -32,7 +32,7 @@ try:
|
|
32
32
|
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
33
33
|
raise OptionalDependencyNotAvailable()
|
34
34
|
except OptionalDependencyNotAvailable:
|
35
|
-
from
|
35
|
+
from ....utils import dummy_transformers_and_torch_and_note_seq_objects
|
36
36
|
|
37
37
|
_dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects))
|
38
38
|
else:
|
@@ -45,7 +45,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
45
45
|
raise OptionalDependencyNotAvailable()
|
46
46
|
|
47
47
|
except OptionalDependencyNotAvailable:
|
48
|
-
from
|
48
|
+
from ....utils.dummy_torch_and_transformers_objects import *
|
49
49
|
else:
|
50
50
|
from .pipeline_spectrogram_diffusion import SpectrogramDiffusionPipeline
|
51
51
|
from .pipeline_spectrogram_diffusion import SpectrogramContEncoder
|
@@ -56,7 +56,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
56
56
|
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
57
57
|
raise OptionalDependencyNotAvailable()
|
58
58
|
except OptionalDependencyNotAvailable:
|
59
|
-
from
|
59
|
+
from ....utils.dummy_transformers_and_torch_and_note_seq_objects import *
|
60
60
|
|
61
61
|
else:
|
62
62
|
from .midi_utils import MidiProcessor
|
@@ -22,8 +22,8 @@ from transformers.models.t5.modeling_t5 import (
|
|
22
22
|
T5LayerNorm,
|
23
23
|
)
|
24
24
|
|
25
|
-
from
|
26
|
-
from
|
25
|
+
from ....configuration_utils import ConfigMixin, register_to_config
|
26
|
+
from ....models import ModelMixin
|
27
27
|
|
28
28
|
|
29
29
|
class SpectrogramContEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
|
diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py
RENAMED
@@ -18,8 +18,8 @@ import torch.nn as nn
|
|
18
18
|
from transformers.modeling_utils import ModuleUtilsMixin
|
19
19
|
from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm
|
20
20
|
|
21
|
-
from
|
22
|
-
from
|
21
|
+
from ....configuration_utils import ConfigMixin, register_to_config
|
22
|
+
from ....models import ModelMixin
|
23
23
|
|
24
24
|
|
25
25
|
class SpectrogramNotesEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
|
@@ -19,17 +19,17 @@ from typing import Any, Callable, List, Optional, Tuple, Union
|
|
19
19
|
import numpy as np
|
20
20
|
import torch
|
21
21
|
|
22
|
-
from
|
23
|
-
from
|
24
|
-
from
|
25
|
-
from
|
22
|
+
from ....models import T5FilmDecoder
|
23
|
+
from ....schedulers import DDPMScheduler
|
24
|
+
from ....utils import is_onnx_available, logging
|
25
|
+
from ....utils.torch_utils import randn_tensor
|
26
26
|
|
27
27
|
|
28
28
|
if is_onnx_available():
|
29
|
-
from
|
29
|
+
from ...onnx_utils import OnnxRuntimeModel
|
30
30
|
|
31
|
-
from
|
32
|
-
from .
|
31
|
+
from ...pipeline_utils import AudioPipelineOutput, DiffusionPipeline
|
32
|
+
from .continuous_encoder import SpectrogramContEncoder
|
33
33
|
from .notes_encoder import SpectrogramNotesEncoder
|
34
34
|
|
35
35
|
|
@@ -54,6 +54,7 @@ class SpectrogramDiffusionPipeline(DiffusionPipeline):
|
|
54
54
|
A scheduler to be used in combination with `decoder` to denoise the encoded audio latents.
|
55
55
|
melgan ([`OnnxRuntimeModel`]):
|
56
56
|
"""
|
57
|
+
|
57
58
|
_optional_components = ["melgan"]
|
58
59
|
|
59
60
|
def __init__(
|