diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,589 @@
|
|
1
|
+
from typing import Callable, Dict, List, Optional, Union
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from transformers import T5EncoderModel, T5Tokenizer
|
5
|
+
|
6
|
+
from ...loaders import LoraLoaderMixin
|
7
|
+
from ...models import Kandinsky3UNet, VQModel
|
8
|
+
from ...schedulers import DDPMScheduler
|
9
|
+
from ...utils import (
|
10
|
+
deprecate,
|
11
|
+
is_accelerate_available,
|
12
|
+
logging,
|
13
|
+
replace_example_docstring,
|
14
|
+
)
|
15
|
+
from ...utils.torch_utils import randn_tensor
|
16
|
+
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
17
|
+
|
18
|
+
|
19
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20
|
+
|
21
|
+
EXAMPLE_DOC_STRING = """
|
22
|
+
Examples:
|
23
|
+
```py
|
24
|
+
>>> from diffusers import AutoPipelineForText2Image
|
25
|
+
>>> import torch
|
26
|
+
|
27
|
+
>>> pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
|
28
|
+
>>> pipe.enable_model_cpu_offload()
|
29
|
+
|
30
|
+
>>> prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."
|
31
|
+
|
32
|
+
>>> generator = torch.Generator(device="cpu").manual_seed(0)
|
33
|
+
>>> image = pipe(prompt, num_inference_steps=25, generator=generator).images[0]
|
34
|
+
```
|
35
|
+
|
36
|
+
"""
|
37
|
+
|
38
|
+
|
39
|
+
def downscale_height_and_width(height, width, scale_factor=8):
|
40
|
+
new_height = height // scale_factor**2
|
41
|
+
if height % scale_factor**2 != 0:
|
42
|
+
new_height += 1
|
43
|
+
new_width = width // scale_factor**2
|
44
|
+
if width % scale_factor**2 != 0:
|
45
|
+
new_width += 1
|
46
|
+
return new_height * scale_factor, new_width * scale_factor
|
47
|
+
|
48
|
+
|
49
|
+
class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
50
|
+
model_cpu_offload_seq = "text_encoder->unet->movq"
|
51
|
+
_callback_tensor_inputs = [
|
52
|
+
"latents",
|
53
|
+
"prompt_embeds",
|
54
|
+
"negative_prompt_embeds",
|
55
|
+
"negative_attention_mask",
|
56
|
+
"attention_mask",
|
57
|
+
]
|
58
|
+
|
59
|
+
def __init__(
|
60
|
+
self,
|
61
|
+
tokenizer: T5Tokenizer,
|
62
|
+
text_encoder: T5EncoderModel,
|
63
|
+
unet: Kandinsky3UNet,
|
64
|
+
scheduler: DDPMScheduler,
|
65
|
+
movq: VQModel,
|
66
|
+
):
|
67
|
+
super().__init__()
|
68
|
+
|
69
|
+
self.register_modules(
|
70
|
+
tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq
|
71
|
+
)
|
72
|
+
|
73
|
+
def remove_all_hooks(self):
|
74
|
+
if is_accelerate_available():
|
75
|
+
from accelerate.hooks import remove_hook_from_module
|
76
|
+
else:
|
77
|
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
78
|
+
|
79
|
+
for model in [self.text_encoder, self.unet, self.movq]:
|
80
|
+
if model is not None:
|
81
|
+
remove_hook_from_module(model, recurse=True)
|
82
|
+
|
83
|
+
self.unet_offload_hook = None
|
84
|
+
self.text_encoder_offload_hook = None
|
85
|
+
self.final_offload_hook = None
|
86
|
+
|
87
|
+
def process_embeds(self, embeddings, attention_mask, cut_context):
|
88
|
+
if cut_context:
|
89
|
+
embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0])
|
90
|
+
max_seq_length = attention_mask.sum(-1).max() + 1
|
91
|
+
embeddings = embeddings[:, :max_seq_length]
|
92
|
+
attention_mask = attention_mask[:, :max_seq_length]
|
93
|
+
return embeddings, attention_mask
|
94
|
+
|
95
|
+
@torch.no_grad()
|
96
|
+
def encode_prompt(
|
97
|
+
self,
|
98
|
+
prompt,
|
99
|
+
do_classifier_free_guidance=True,
|
100
|
+
num_images_per_prompt=1,
|
101
|
+
device=None,
|
102
|
+
negative_prompt=None,
|
103
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
104
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
105
|
+
_cut_context=False,
|
106
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
107
|
+
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
108
|
+
):
|
109
|
+
r"""
|
110
|
+
Encodes the prompt into text encoder hidden states.
|
111
|
+
|
112
|
+
Args:
|
113
|
+
prompt (`str` or `List[str]`, *optional*):
|
114
|
+
prompt to be encoded
|
115
|
+
device: (`torch.device`, *optional*):
|
116
|
+
torch device to place the resulting embeddings on
|
117
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
118
|
+
number of images that should be generated per prompt
|
119
|
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
120
|
+
whether to use classifier free guidance or not
|
121
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
122
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
123
|
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
124
|
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
125
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
126
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
127
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
128
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
129
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
130
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
131
|
+
argument.
|
132
|
+
attention_mask (`torch.FloatTensor`, *optional*):
|
133
|
+
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
134
|
+
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
135
|
+
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
136
|
+
"""
|
137
|
+
if prompt is not None and negative_prompt is not None:
|
138
|
+
if type(prompt) is not type(negative_prompt):
|
139
|
+
raise TypeError(
|
140
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
141
|
+
f" {type(prompt)}."
|
142
|
+
)
|
143
|
+
|
144
|
+
if device is None:
|
145
|
+
device = self._execution_device
|
146
|
+
|
147
|
+
if prompt is not None and isinstance(prompt, str):
|
148
|
+
batch_size = 1
|
149
|
+
elif prompt is not None and isinstance(prompt, list):
|
150
|
+
batch_size = len(prompt)
|
151
|
+
else:
|
152
|
+
batch_size = prompt_embeds.shape[0]
|
153
|
+
|
154
|
+
max_length = 128
|
155
|
+
|
156
|
+
if prompt_embeds is None:
|
157
|
+
text_inputs = self.tokenizer(
|
158
|
+
prompt,
|
159
|
+
padding="max_length",
|
160
|
+
max_length=max_length,
|
161
|
+
truncation=True,
|
162
|
+
return_tensors="pt",
|
163
|
+
)
|
164
|
+
text_input_ids = text_inputs.input_ids.to(device)
|
165
|
+
attention_mask = text_inputs.attention_mask.to(device)
|
166
|
+
prompt_embeds = self.text_encoder(
|
167
|
+
text_input_ids,
|
168
|
+
attention_mask=attention_mask,
|
169
|
+
)
|
170
|
+
prompt_embeds = prompt_embeds[0]
|
171
|
+
prompt_embeds, attention_mask = self.process_embeds(prompt_embeds, attention_mask, _cut_context)
|
172
|
+
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2)
|
173
|
+
|
174
|
+
if self.text_encoder is not None:
|
175
|
+
dtype = self.text_encoder.dtype
|
176
|
+
else:
|
177
|
+
dtype = None
|
178
|
+
|
179
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
180
|
+
|
181
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
182
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
183
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
184
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
185
|
+
attention_mask = attention_mask.repeat(num_images_per_prompt, 1)
|
186
|
+
# get unconditional embeddings for classifier free guidance
|
187
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
188
|
+
uncond_tokens: List[str]
|
189
|
+
|
190
|
+
if negative_prompt is None:
|
191
|
+
uncond_tokens = [""] * batch_size
|
192
|
+
elif isinstance(negative_prompt, str):
|
193
|
+
uncond_tokens = [negative_prompt]
|
194
|
+
elif batch_size != len(negative_prompt):
|
195
|
+
raise ValueError(
|
196
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
197
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
198
|
+
" the batch size of `prompt`."
|
199
|
+
)
|
200
|
+
else:
|
201
|
+
uncond_tokens = negative_prompt
|
202
|
+
if negative_prompt is not None:
|
203
|
+
uncond_input = self.tokenizer(
|
204
|
+
uncond_tokens,
|
205
|
+
padding="max_length",
|
206
|
+
max_length=128,
|
207
|
+
truncation=True,
|
208
|
+
return_attention_mask=True,
|
209
|
+
return_tensors="pt",
|
210
|
+
)
|
211
|
+
text_input_ids = uncond_input.input_ids.to(device)
|
212
|
+
negative_attention_mask = uncond_input.attention_mask.to(device)
|
213
|
+
|
214
|
+
negative_prompt_embeds = self.text_encoder(
|
215
|
+
text_input_ids,
|
216
|
+
attention_mask=negative_attention_mask,
|
217
|
+
)
|
218
|
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
219
|
+
negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]]
|
220
|
+
negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]]
|
221
|
+
negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2)
|
222
|
+
|
223
|
+
else:
|
224
|
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
225
|
+
negative_attention_mask = torch.zeros_like(attention_mask)
|
226
|
+
|
227
|
+
if do_classifier_free_guidance:
|
228
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
229
|
+
seq_len = negative_prompt_embeds.shape[1]
|
230
|
+
|
231
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
232
|
+
if negative_prompt_embeds.shape != prompt_embeds.shape:
|
233
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
234
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
235
|
+
negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1)
|
236
|
+
|
237
|
+
# For classifier free guidance, we need to do two forward passes.
|
238
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
239
|
+
# to avoid doing two forward passes
|
240
|
+
else:
|
241
|
+
negative_prompt_embeds = None
|
242
|
+
negative_attention_mask = None
|
243
|
+
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
|
244
|
+
|
245
|
+
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
|
246
|
+
if latents is None:
|
247
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
248
|
+
else:
|
249
|
+
if latents.shape != shape:
|
250
|
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
251
|
+
latents = latents.to(device)
|
252
|
+
|
253
|
+
latents = latents * scheduler.init_noise_sigma
|
254
|
+
return latents
|
255
|
+
|
256
|
+
def check_inputs(
|
257
|
+
self,
|
258
|
+
prompt,
|
259
|
+
callback_steps,
|
260
|
+
negative_prompt=None,
|
261
|
+
prompt_embeds=None,
|
262
|
+
negative_prompt_embeds=None,
|
263
|
+
callback_on_step_end_tensor_inputs=None,
|
264
|
+
attention_mask=None,
|
265
|
+
negative_attention_mask=None,
|
266
|
+
):
|
267
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
268
|
+
raise ValueError(
|
269
|
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
270
|
+
f" {type(callback_steps)}."
|
271
|
+
)
|
272
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
273
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
274
|
+
):
|
275
|
+
raise ValueError(
|
276
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
277
|
+
)
|
278
|
+
|
279
|
+
if prompt is not None and prompt_embeds is not None:
|
280
|
+
raise ValueError(
|
281
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
282
|
+
" only forward one of the two."
|
283
|
+
)
|
284
|
+
elif prompt is None and prompt_embeds is None:
|
285
|
+
raise ValueError(
|
286
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
287
|
+
)
|
288
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
289
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
290
|
+
|
291
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
292
|
+
raise ValueError(
|
293
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
294
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
295
|
+
)
|
296
|
+
|
297
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
298
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
299
|
+
raise ValueError(
|
300
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
301
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
302
|
+
f" {negative_prompt_embeds.shape}."
|
303
|
+
)
|
304
|
+
if negative_prompt_embeds is not None and negative_attention_mask is None:
|
305
|
+
raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`")
|
306
|
+
|
307
|
+
if negative_prompt_embeds is not None and negative_attention_mask is not None:
|
308
|
+
if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape:
|
309
|
+
raise ValueError(
|
310
|
+
"`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but"
|
311
|
+
f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`"
|
312
|
+
f" {negative_attention_mask.shape}."
|
313
|
+
)
|
314
|
+
|
315
|
+
if prompt_embeds is not None and attention_mask is None:
|
316
|
+
raise ValueError("Please provide `attention_mask` along with `prompt_embeds`")
|
317
|
+
|
318
|
+
if prompt_embeds is not None and attention_mask is not None:
|
319
|
+
if prompt_embeds.shape[:2] != attention_mask.shape:
|
320
|
+
raise ValueError(
|
321
|
+
"`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but"
|
322
|
+
f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`"
|
323
|
+
f" {attention_mask.shape}."
|
324
|
+
)
|
325
|
+
|
326
|
+
@property
|
327
|
+
def guidance_scale(self):
|
328
|
+
return self._guidance_scale
|
329
|
+
|
330
|
+
@property
|
331
|
+
def do_classifier_free_guidance(self):
|
332
|
+
return self._guidance_scale > 1
|
333
|
+
|
334
|
+
@property
|
335
|
+
def num_timesteps(self):
|
336
|
+
return self._num_timesteps
|
337
|
+
|
338
|
+
@torch.no_grad()
|
339
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
340
|
+
def __call__(
|
341
|
+
self,
|
342
|
+
prompt: Union[str, List[str]] = None,
|
343
|
+
num_inference_steps: int = 25,
|
344
|
+
guidance_scale: float = 3.0,
|
345
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
346
|
+
num_images_per_prompt: Optional[int] = 1,
|
347
|
+
height: Optional[int] = 1024,
|
348
|
+
width: Optional[int] = 1024,
|
349
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
350
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
351
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
352
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
353
|
+
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
354
|
+
output_type: Optional[str] = "pil",
|
355
|
+
return_dict: bool = True,
|
356
|
+
latents=None,
|
357
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
358
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
359
|
+
**kwargs,
|
360
|
+
):
|
361
|
+
"""
|
362
|
+
Function invoked when calling the pipeline for generation.
|
363
|
+
|
364
|
+
Args:
|
365
|
+
prompt (`str` or `List[str]`, *optional*):
|
366
|
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
367
|
+
instead.
|
368
|
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
369
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
370
|
+
expense of slower inference.
|
371
|
+
timesteps (`List[int]`, *optional*):
|
372
|
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
373
|
+
timesteps are used. Must be in descending order.
|
374
|
+
guidance_scale (`float`, *optional*, defaults to 3.0):
|
375
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
376
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
377
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
378
|
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
379
|
+
usually at the expense of lower image quality.
|
380
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
381
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
382
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
383
|
+
less than `1`).
|
384
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
385
|
+
The number of images to generate per prompt.
|
386
|
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
387
|
+
The height in pixels of the generated image.
|
388
|
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
389
|
+
The width in pixels of the generated image.
|
390
|
+
eta (`float`, *optional*, defaults to 0.0):
|
391
|
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
392
|
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
393
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
394
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
395
|
+
to make generation deterministic.
|
396
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
397
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
398
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
399
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
400
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
401
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
402
|
+
argument.
|
403
|
+
attention_mask (`torch.FloatTensor`, *optional*):
|
404
|
+
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
405
|
+
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
406
|
+
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
407
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
408
|
+
The output format of the generate image. Choose between
|
409
|
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
410
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
411
|
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
412
|
+
callback (`Callable`, *optional*):
|
413
|
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
414
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
415
|
+
callback_steps (`int`, *optional*, defaults to 1):
|
416
|
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
417
|
+
called at every step.
|
418
|
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
419
|
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
420
|
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
421
|
+
prompt.
|
422
|
+
cross_attention_kwargs (`dict`, *optional*):
|
423
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
424
|
+
`self.processor` in
|
425
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
426
|
+
|
427
|
+
Examples:
|
428
|
+
|
429
|
+
Returns:
|
430
|
+
[`~pipelines.ImagePipelineOutput`] or `tuple`
|
431
|
+
|
432
|
+
"""
|
433
|
+
|
434
|
+
callback = kwargs.pop("callback", None)
|
435
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
436
|
+
|
437
|
+
if callback is not None:
|
438
|
+
deprecate(
|
439
|
+
"callback",
|
440
|
+
"1.0.0",
|
441
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
442
|
+
)
|
443
|
+
if callback_steps is not None:
|
444
|
+
deprecate(
|
445
|
+
"callback_steps",
|
446
|
+
"1.0.0",
|
447
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
448
|
+
)
|
449
|
+
|
450
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
451
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
452
|
+
):
|
453
|
+
raise ValueError(
|
454
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
455
|
+
)
|
456
|
+
|
457
|
+
cut_context = True
|
458
|
+
device = self._execution_device
|
459
|
+
|
460
|
+
# 1. Check inputs. Raise error if not correct
|
461
|
+
self.check_inputs(
|
462
|
+
prompt,
|
463
|
+
callback_steps,
|
464
|
+
negative_prompt,
|
465
|
+
prompt_embeds,
|
466
|
+
negative_prompt_embeds,
|
467
|
+
callback_on_step_end_tensor_inputs,
|
468
|
+
attention_mask,
|
469
|
+
negative_attention_mask,
|
470
|
+
)
|
471
|
+
|
472
|
+
self._guidance_scale = guidance_scale
|
473
|
+
|
474
|
+
if prompt is not None and isinstance(prompt, str):
|
475
|
+
batch_size = 1
|
476
|
+
elif prompt is not None and isinstance(prompt, list):
|
477
|
+
batch_size = len(prompt)
|
478
|
+
else:
|
479
|
+
batch_size = prompt_embeds.shape[0]
|
480
|
+
|
481
|
+
# 3. Encode input prompt
|
482
|
+
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
|
483
|
+
prompt,
|
484
|
+
self.do_classifier_free_guidance,
|
485
|
+
num_images_per_prompt=num_images_per_prompt,
|
486
|
+
device=device,
|
487
|
+
negative_prompt=negative_prompt,
|
488
|
+
prompt_embeds=prompt_embeds,
|
489
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
490
|
+
_cut_context=cut_context,
|
491
|
+
attention_mask=attention_mask,
|
492
|
+
negative_attention_mask=negative_attention_mask,
|
493
|
+
)
|
494
|
+
|
495
|
+
if self.do_classifier_free_guidance:
|
496
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
497
|
+
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
|
498
|
+
# 4. Prepare timesteps
|
499
|
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
500
|
+
timesteps = self.scheduler.timesteps
|
501
|
+
|
502
|
+
# 5. Prepare latents
|
503
|
+
height, width = downscale_height_and_width(height, width, 8)
|
504
|
+
|
505
|
+
latents = self.prepare_latents(
|
506
|
+
(batch_size * num_images_per_prompt, 4, height, width),
|
507
|
+
prompt_embeds.dtype,
|
508
|
+
device,
|
509
|
+
generator,
|
510
|
+
latents,
|
511
|
+
self.scheduler,
|
512
|
+
)
|
513
|
+
|
514
|
+
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
|
515
|
+
self.text_encoder_offload_hook.offload()
|
516
|
+
|
517
|
+
# 7. Denoising loop
|
518
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
519
|
+
self._num_timesteps = len(timesteps)
|
520
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
521
|
+
for i, t in enumerate(timesteps):
|
522
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
523
|
+
|
524
|
+
# predict the noise residual
|
525
|
+
noise_pred = self.unet(
|
526
|
+
latent_model_input,
|
527
|
+
t,
|
528
|
+
encoder_hidden_states=prompt_embeds,
|
529
|
+
encoder_attention_mask=attention_mask,
|
530
|
+
return_dict=False,
|
531
|
+
)[0]
|
532
|
+
|
533
|
+
if self.do_classifier_free_guidance:
|
534
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
535
|
+
|
536
|
+
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
|
537
|
+
# noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
538
|
+
|
539
|
+
# compute the previous noisy sample x_t -> x_t-1
|
540
|
+
latents = self.scheduler.step(
|
541
|
+
noise_pred,
|
542
|
+
t,
|
543
|
+
latents,
|
544
|
+
generator=generator,
|
545
|
+
).prev_sample
|
546
|
+
|
547
|
+
if callback_on_step_end is not None:
|
548
|
+
callback_kwargs = {}
|
549
|
+
for k in callback_on_step_end_tensor_inputs:
|
550
|
+
callback_kwargs[k] = locals()[k]
|
551
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
552
|
+
|
553
|
+
latents = callback_outputs.pop("latents", latents)
|
554
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
555
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
556
|
+
attention_mask = callback_outputs.pop("attention_mask", attention_mask)
|
557
|
+
negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask)
|
558
|
+
|
559
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
560
|
+
progress_bar.update()
|
561
|
+
if callback is not None and i % callback_steps == 0:
|
562
|
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
563
|
+
callback(step_idx, t, latents)
|
564
|
+
|
565
|
+
# post-processing
|
566
|
+
if output_type not in ["pt", "np", "pil", "latent"]:
|
567
|
+
raise ValueError(
|
568
|
+
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}"
|
569
|
+
)
|
570
|
+
|
571
|
+
if not output_type == "latent":
|
572
|
+
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
573
|
+
|
574
|
+
if output_type in ["np", "pil"]:
|
575
|
+
image = image * 0.5 + 0.5
|
576
|
+
image = image.clamp(0, 1)
|
577
|
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
578
|
+
|
579
|
+
if output_type == "pil":
|
580
|
+
image = self.numpy_to_pil(image)
|
581
|
+
else:
|
582
|
+
image = latents
|
583
|
+
|
584
|
+
self.maybe_free_model_hooks()
|
585
|
+
|
586
|
+
if not return_dict:
|
587
|
+
return (image,)
|
588
|
+
|
589
|
+
return ImagePipelineOutput(images=image)
|