diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -162,9 +162,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
162
162
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
163
163
|
elif beta_schedule == "scaled_linear":
|
164
164
|
# this schedule is very specific to the latent diffusion model.
|
165
|
-
self.betas = (
|
166
|
-
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
167
|
-
)
|
165
|
+
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
168
166
|
elif beta_schedule == "squaredcos_cap_v2":
|
169
167
|
# Glide cosine schedule
|
170
168
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
@@ -177,6 +175,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
177
175
|
self.alpha_t = torch.sqrt(self.alphas_cumprod)
|
178
176
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
|
179
177
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
|
178
|
+
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
|
180
179
|
|
181
180
|
# standard deviation of the initial noise distribution
|
182
181
|
self.init_noise_sigma = 1.0
|
@@ -199,6 +198,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
199
198
|
self.solver_p = solver_p
|
200
199
|
self.last_sample = None
|
201
200
|
self._step_index = None
|
201
|
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
202
202
|
|
203
203
|
@property
|
204
204
|
def step_index(self):
|
@@ -269,6 +269,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
269
269
|
|
270
270
|
# add an index counter for schedulers that allow duplicated timesteps
|
271
271
|
self._step_index = None
|
272
|
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
272
273
|
|
273
274
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
274
275
|
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
@@ -339,8 +340,20 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
339
340
|
def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
|
340
341
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
341
342
|
|
342
|
-
|
343
|
-
|
343
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
344
|
+
# TODO: Add this logic to the other schedulers
|
345
|
+
if hasattr(self.config, "sigma_min"):
|
346
|
+
sigma_min = self.config.sigma_min
|
347
|
+
else:
|
348
|
+
sigma_min = None
|
349
|
+
|
350
|
+
if hasattr(self.config, "sigma_max"):
|
351
|
+
sigma_max = self.config.sigma_max
|
352
|
+
else:
|
353
|
+
sigma_max = None
|
354
|
+
|
355
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
356
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
344
357
|
|
345
358
|
rho = 7.0 # 7.0 is the value used in the paper
|
346
359
|
ramp = np.linspace(0, 1, num_inference_steps)
|
@@ -817,7 +830,16 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
817
830
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
818
831
|
timesteps = timesteps.to(original_samples.device)
|
819
832
|
|
820
|
-
step_indices = [
|
833
|
+
step_indices = []
|
834
|
+
for timestep in timesteps:
|
835
|
+
index_candidates = (schedule_timesteps == timestep).nonzero()
|
836
|
+
if len(index_candidates) == 0:
|
837
|
+
step_index = len(schedule_timesteps) - 1
|
838
|
+
elif len(index_candidates) > 1:
|
839
|
+
step_index = index_candidates[1].item()
|
840
|
+
else:
|
841
|
+
step_index = index_candidates[0].item()
|
842
|
+
step_indices.append(step_index)
|
821
843
|
|
822
844
|
sigma = sigmas[step_indices].flatten()
|
823
845
|
while len(sigma.shape) < len(original_samples.shape):
|
@@ -18,6 +18,7 @@ from enum import Enum
|
|
18
18
|
from typing import Optional, Union
|
19
19
|
|
20
20
|
import torch
|
21
|
+
from huggingface_hub.utils import validate_hf_hub_args
|
21
22
|
|
22
23
|
from ..utils import BaseOutput, PushToHubMixin
|
23
24
|
|
@@ -81,6 +82,7 @@ class SchedulerMixin(PushToHubMixin):
|
|
81
82
|
has_compatibles = True
|
82
83
|
|
83
84
|
@classmethod
|
85
|
+
@validate_hf_hub_args
|
84
86
|
def from_pretrained(
|
85
87
|
cls,
|
86
88
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
|
@@ -120,7 +122,7 @@ class SchedulerMixin(PushToHubMixin):
|
|
120
122
|
local_files_only(`bool`, *optional*, defaults to `False`):
|
121
123
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
122
124
|
won't be downloaded from the Hub.
|
123
|
-
|
125
|
+
token (`str` or *bool*, *optional*):
|
124
126
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
125
127
|
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
126
128
|
revision (`str`, *optional*, defaults to `"main"`):
|
@@ -20,6 +20,7 @@ from typing import Optional, Tuple, Union
|
|
20
20
|
|
21
21
|
import flax
|
22
22
|
import jax.numpy as jnp
|
23
|
+
from huggingface_hub.utils import validate_hf_hub_args
|
23
24
|
|
24
25
|
from ..utils import BaseOutput, PushToHubMixin
|
25
26
|
|
@@ -70,6 +71,7 @@ class FlaxSchedulerMixin(PushToHubMixin):
|
|
70
71
|
has_compatibles = True
|
71
72
|
|
72
73
|
@classmethod
|
74
|
+
@validate_hf_hub_args
|
73
75
|
def from_pretrained(
|
74
76
|
cls,
|
75
77
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
|
@@ -110,7 +112,7 @@ class FlaxSchedulerMixin(PushToHubMixin):
|
|
110
112
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
111
113
|
local_files_only(`bool`, *optional*, defaults to `False`):
|
112
114
|
Whether or not to only look at local files (i.e., do not try to download the model).
|
113
|
-
|
115
|
+
token (`str` or *bool*, *optional*):
|
114
116
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
115
117
|
when running `transformers-cli login` (stored in `~/.huggingface`).
|
116
118
|
revision (`str`, *optional*, defaults to `"main"`):
|
diffusers/training_utils.py
CHANGED
@@ -67,7 +67,7 @@ def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:
|
|
67
67
|
current_lora_layer_sd = lora_layer.state_dict()
|
68
68
|
for lora_layer_matrix_name, lora_param in current_lora_layer_sd.items():
|
69
69
|
# The matrix name can either be "down" or "up".
|
70
|
-
lora_state_dict[f"
|
70
|
+
lora_state_dict[f"{name}.lora.{lora_layer_matrix_name}"] = lora_param
|
71
71
|
|
72
72
|
return lora_state_dict
|
73
73
|
|
diffusers/utils/__init__.py
CHANGED
@@ -21,7 +21,6 @@ from .. import __version__
|
|
21
21
|
from .constants import (
|
22
22
|
CONFIG_NAME,
|
23
23
|
DEPRECATED_REVISION_ARGS,
|
24
|
-
DIFFUSERS_CACHE,
|
25
24
|
DIFFUSERS_DYNAMIC_MODULE_NAME,
|
26
25
|
FLAX_WEIGHTS_NAME,
|
27
26
|
HF_MODULES_CACHE,
|
@@ -38,7 +37,6 @@ from .doc_utils import replace_example_docstring
|
|
38
37
|
from .dynamic_modules_utils import get_class_from_dynamic_module
|
39
38
|
from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video
|
40
39
|
from .hub_utils import (
|
41
|
-
HF_HUB_OFFLINE,
|
42
40
|
PushToHubMixin,
|
43
41
|
_add_variant,
|
44
42
|
_get_model_file,
|
@@ -89,6 +87,7 @@ from .logging import get_logger
|
|
89
87
|
from .outputs import BaseOutput
|
90
88
|
from .peft_utils import (
|
91
89
|
check_peft_version,
|
90
|
+
delete_adapter_layers,
|
92
91
|
get_adapter_name,
|
93
92
|
get_peft_kwargs,
|
94
93
|
recurse_remove_peft_layers,
|
diffusers/utils/constants.py
CHANGED
@@ -14,17 +14,16 @@
|
|
14
14
|
import importlib
|
15
15
|
import os
|
16
16
|
|
17
|
-
from huggingface_hub.constants import
|
17
|
+
from huggingface_hub.constants import HF_HOME
|
18
18
|
from packaging import version
|
19
19
|
|
20
|
-
from .import_utils import is_peft_available, is_transformers_available
|
21
20
|
from ..dependency_versions_check import dep_version_check
|
21
|
+
from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available
|
22
22
|
|
23
23
|
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
MIN_TRANSFORMERS_VERSION = "4.33.3"
|
24
|
+
MIN_PEFT_VERSION = "0.6.0"
|
25
|
+
MIN_TRANSFORMERS_VERSION = "4.34.0"
|
26
|
+
_CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES
|
28
27
|
|
29
28
|
|
30
29
|
CONFIG_NAME = "config.json"
|
@@ -34,23 +33,22 @@ ONNX_WEIGHTS_NAME = "model.onnx"
|
|
34
33
|
SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors"
|
35
34
|
ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb"
|
36
35
|
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
|
37
|
-
DIFFUSERS_CACHE = default_cache_path
|
38
36
|
DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules"
|
39
|
-
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(
|
37
|
+
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules"))
|
40
38
|
DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"]
|
41
39
|
|
42
40
|
# Below should be `True` if the current version of `peft` and `transformers` are compatible with
|
43
41
|
# PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are
|
44
42
|
# available.
|
45
|
-
# For PEFT it is has to be greater than 0.6.0 and for transformers it has to be greater than 4.
|
43
|
+
# For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0.
|
46
44
|
_required_peft_version = is_peft_available() and version.parse(
|
47
45
|
version.parse(importlib.metadata.version("peft")).base_version
|
48
|
-
)
|
46
|
+
) >= version.parse(MIN_PEFT_VERSION)
|
49
47
|
_required_transformers_version = is_transformers_available() and version.parse(
|
50
48
|
version.parse(importlib.metadata.version("transformers")).base_version
|
51
|
-
)
|
49
|
+
) >= version.parse(MIN_TRANSFORMERS_VERSION)
|
52
50
|
|
53
51
|
USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version
|
54
52
|
|
55
|
-
if USE_PEFT_BACKEND:
|
53
|
+
if USE_PEFT_BACKEND and _CHECK_PEFT:
|
56
54
|
dep_version_check("peft")
|
@@ -32,6 +32,21 @@ class AutoencoderKL(metaclass=DummyObject):
|
|
32
32
|
requires_backends(cls, ["torch"])
|
33
33
|
|
34
34
|
|
35
|
+
class AutoencoderKLTemporalDecoder(metaclass=DummyObject):
|
36
|
+
_backends = ["torch"]
|
37
|
+
|
38
|
+
def __init__(self, *args, **kwargs):
|
39
|
+
requires_backends(self, ["torch"])
|
40
|
+
|
41
|
+
@classmethod
|
42
|
+
def from_config(cls, *args, **kwargs):
|
43
|
+
requires_backends(cls, ["torch"])
|
44
|
+
|
45
|
+
@classmethod
|
46
|
+
def from_pretrained(cls, *args, **kwargs):
|
47
|
+
requires_backends(cls, ["torch"])
|
48
|
+
|
49
|
+
|
35
50
|
class AutoencoderTiny(metaclass=DummyObject):
|
36
51
|
_backends = ["torch"]
|
37
52
|
|
@@ -77,6 +92,21 @@ class ControlNetModel(metaclass=DummyObject):
|
|
77
92
|
requires_backends(cls, ["torch"])
|
78
93
|
|
79
94
|
|
95
|
+
class Kandinsky3UNet(metaclass=DummyObject):
|
96
|
+
_backends = ["torch"]
|
97
|
+
|
98
|
+
def __init__(self, *args, **kwargs):
|
99
|
+
requires_backends(self, ["torch"])
|
100
|
+
|
101
|
+
@classmethod
|
102
|
+
def from_config(cls, *args, **kwargs):
|
103
|
+
requires_backends(cls, ["torch"])
|
104
|
+
|
105
|
+
@classmethod
|
106
|
+
def from_pretrained(cls, *args, **kwargs):
|
107
|
+
requires_backends(cls, ["torch"])
|
108
|
+
|
109
|
+
|
80
110
|
class ModelMixin(metaclass=DummyObject):
|
81
111
|
_backends = ["torch"]
|
82
112
|
|
@@ -257,6 +287,36 @@ class UNetMotionModel(metaclass=DummyObject):
|
|
257
287
|
requires_backends(cls, ["torch"])
|
258
288
|
|
259
289
|
|
290
|
+
class UNetSpatioTemporalConditionModel(metaclass=DummyObject):
|
291
|
+
_backends = ["torch"]
|
292
|
+
|
293
|
+
def __init__(self, *args, **kwargs):
|
294
|
+
requires_backends(self, ["torch"])
|
295
|
+
|
296
|
+
@classmethod
|
297
|
+
def from_config(cls, *args, **kwargs):
|
298
|
+
requires_backends(cls, ["torch"])
|
299
|
+
|
300
|
+
@classmethod
|
301
|
+
def from_pretrained(cls, *args, **kwargs):
|
302
|
+
requires_backends(cls, ["torch"])
|
303
|
+
|
304
|
+
|
305
|
+
class UVit2DModel(metaclass=DummyObject):
|
306
|
+
_backends = ["torch"]
|
307
|
+
|
308
|
+
def __init__(self, *args, **kwargs):
|
309
|
+
requires_backends(self, ["torch"])
|
310
|
+
|
311
|
+
@classmethod
|
312
|
+
def from_config(cls, *args, **kwargs):
|
313
|
+
requires_backends(cls, ["torch"])
|
314
|
+
|
315
|
+
@classmethod
|
316
|
+
def from_pretrained(cls, *args, **kwargs):
|
317
|
+
requires_backends(cls, ["torch"])
|
318
|
+
|
319
|
+
|
260
320
|
class VQModel(metaclass=DummyObject):
|
261
321
|
_backends = ["torch"]
|
262
322
|
|
@@ -600,6 +660,21 @@ class ScoreSdeVePipeline(metaclass=DummyObject):
|
|
600
660
|
requires_backends(cls, ["torch"])
|
601
661
|
|
602
662
|
|
663
|
+
class AmusedScheduler(metaclass=DummyObject):
|
664
|
+
_backends = ["torch"]
|
665
|
+
|
666
|
+
def __init__(self, *args, **kwargs):
|
667
|
+
requires_backends(self, ["torch"])
|
668
|
+
|
669
|
+
@classmethod
|
670
|
+
def from_config(cls, *args, **kwargs):
|
671
|
+
requires_backends(cls, ["torch"])
|
672
|
+
|
673
|
+
@classmethod
|
674
|
+
def from_pretrained(cls, *args, **kwargs):
|
675
|
+
requires_backends(cls, ["torch"])
|
676
|
+
|
677
|
+
|
603
678
|
class CMStochasticIterativeScheduler(metaclass=DummyObject):
|
604
679
|
_backends = ["torch"]
|
605
680
|
|
@@ -32,6 +32,51 @@ class AltDiffusionPipeline(metaclass=DummyObject):
|
|
32
32
|
requires_backends(cls, ["torch", "transformers"])
|
33
33
|
|
34
34
|
|
35
|
+
class AmusedImg2ImgPipeline(metaclass=DummyObject):
|
36
|
+
_backends = ["torch", "transformers"]
|
37
|
+
|
38
|
+
def __init__(self, *args, **kwargs):
|
39
|
+
requires_backends(self, ["torch", "transformers"])
|
40
|
+
|
41
|
+
@classmethod
|
42
|
+
def from_config(cls, *args, **kwargs):
|
43
|
+
requires_backends(cls, ["torch", "transformers"])
|
44
|
+
|
45
|
+
@classmethod
|
46
|
+
def from_pretrained(cls, *args, **kwargs):
|
47
|
+
requires_backends(cls, ["torch", "transformers"])
|
48
|
+
|
49
|
+
|
50
|
+
class AmusedInpaintPipeline(metaclass=DummyObject):
|
51
|
+
_backends = ["torch", "transformers"]
|
52
|
+
|
53
|
+
def __init__(self, *args, **kwargs):
|
54
|
+
requires_backends(self, ["torch", "transformers"])
|
55
|
+
|
56
|
+
@classmethod
|
57
|
+
def from_config(cls, *args, **kwargs):
|
58
|
+
requires_backends(cls, ["torch", "transformers"])
|
59
|
+
|
60
|
+
@classmethod
|
61
|
+
def from_pretrained(cls, *args, **kwargs):
|
62
|
+
requires_backends(cls, ["torch", "transformers"])
|
63
|
+
|
64
|
+
|
65
|
+
class AmusedPipeline(metaclass=DummyObject):
|
66
|
+
_backends = ["torch", "transformers"]
|
67
|
+
|
68
|
+
def __init__(self, *args, **kwargs):
|
69
|
+
requires_backends(self, ["torch", "transformers"])
|
70
|
+
|
71
|
+
@classmethod
|
72
|
+
def from_config(cls, *args, **kwargs):
|
73
|
+
requires_backends(cls, ["torch", "transformers"])
|
74
|
+
|
75
|
+
@classmethod
|
76
|
+
def from_pretrained(cls, *args, **kwargs):
|
77
|
+
requires_backends(cls, ["torch", "transformers"])
|
78
|
+
|
79
|
+
|
35
80
|
class AnimateDiffPipeline(metaclass=DummyObject):
|
36
81
|
_backends = ["torch", "transformers"]
|
37
82
|
|
@@ -242,6 +287,36 @@ class ImageTextPipelineOutput(metaclass=DummyObject):
|
|
242
287
|
requires_backends(cls, ["torch", "transformers"])
|
243
288
|
|
244
289
|
|
290
|
+
class Kandinsky3Img2ImgPipeline(metaclass=DummyObject):
|
291
|
+
_backends = ["torch", "transformers"]
|
292
|
+
|
293
|
+
def __init__(self, *args, **kwargs):
|
294
|
+
requires_backends(self, ["torch", "transformers"])
|
295
|
+
|
296
|
+
@classmethod
|
297
|
+
def from_config(cls, *args, **kwargs):
|
298
|
+
requires_backends(cls, ["torch", "transformers"])
|
299
|
+
|
300
|
+
@classmethod
|
301
|
+
def from_pretrained(cls, *args, **kwargs):
|
302
|
+
requires_backends(cls, ["torch", "transformers"])
|
303
|
+
|
304
|
+
|
305
|
+
class Kandinsky3Pipeline(metaclass=DummyObject):
|
306
|
+
_backends = ["torch", "transformers"]
|
307
|
+
|
308
|
+
def __init__(self, *args, **kwargs):
|
309
|
+
requires_backends(self, ["torch", "transformers"])
|
310
|
+
|
311
|
+
@classmethod
|
312
|
+
def from_config(cls, *args, **kwargs):
|
313
|
+
requires_backends(cls, ["torch", "transformers"])
|
314
|
+
|
315
|
+
@classmethod
|
316
|
+
def from_pretrained(cls, *args, **kwargs):
|
317
|
+
requires_backends(cls, ["torch", "transformers"])
|
318
|
+
|
319
|
+
|
245
320
|
class KandinskyCombinedPipeline(metaclass=DummyObject):
|
246
321
|
_backends = ["torch", "transformers"]
|
247
322
|
|
@@ -1142,6 +1217,21 @@ class StableUnCLIPPipeline(metaclass=DummyObject):
|
|
1142
1217
|
requires_backends(cls, ["torch", "transformers"])
|
1143
1218
|
|
1144
1219
|
|
1220
|
+
class StableVideoDiffusionPipeline(metaclass=DummyObject):
|
1221
|
+
_backends = ["torch", "transformers"]
|
1222
|
+
|
1223
|
+
def __init__(self, *args, **kwargs):
|
1224
|
+
requires_backends(self, ["torch", "transformers"])
|
1225
|
+
|
1226
|
+
@classmethod
|
1227
|
+
def from_config(cls, *args, **kwargs):
|
1228
|
+
requires_backends(cls, ["torch", "transformers"])
|
1229
|
+
|
1230
|
+
@classmethod
|
1231
|
+
def from_pretrained(cls, *args, **kwargs):
|
1232
|
+
requires_backends(cls, ["torch", "transformers"])
|
1233
|
+
|
1234
|
+
|
1145
1235
|
class TextToVideoSDPipeline(metaclass=DummyObject):
|
1146
1236
|
_backends = ["torch", "transformers"]
|
1147
1237
|
|
@@ -1172,6 +1262,21 @@ class TextToVideoZeroPipeline(metaclass=DummyObject):
|
|
1172
1262
|
requires_backends(cls, ["torch", "transformers"])
|
1173
1263
|
|
1174
1264
|
|
1265
|
+
class TextToVideoZeroSDXLPipeline(metaclass=DummyObject):
|
1266
|
+
_backends = ["torch", "transformers"]
|
1267
|
+
|
1268
|
+
def __init__(self, *args, **kwargs):
|
1269
|
+
requires_backends(self, ["torch", "transformers"])
|
1270
|
+
|
1271
|
+
@classmethod
|
1272
|
+
def from_config(cls, *args, **kwargs):
|
1273
|
+
requires_backends(cls, ["torch", "transformers"])
|
1274
|
+
|
1275
|
+
@classmethod
|
1276
|
+
def from_pretrained(cls, *args, **kwargs):
|
1277
|
+
requires_backends(cls, ["torch", "transformers"])
|
1278
|
+
|
1279
|
+
|
1175
1280
|
class UnCLIPImageVariationPipeline(metaclass=DummyObject):
|
1176
1281
|
_backends = ["torch", "transformers"]
|
1177
1282
|
|
@@ -25,7 +25,8 @@ from pathlib import Path
|
|
25
25
|
from typing import Dict, Optional, Union
|
26
26
|
from urllib import request
|
27
27
|
|
28
|
-
from huggingface_hub import
|
28
|
+
from huggingface_hub import cached_download, hf_hub_download, model_info
|
29
|
+
from huggingface_hub.utils import validate_hf_hub_args
|
29
30
|
from packaging import version
|
30
31
|
|
31
32
|
from .. import __version__
|
@@ -87,9 +88,9 @@ def get_relative_imports(module_file):
|
|
87
88
|
content = f.read()
|
88
89
|
|
89
90
|
# Imports of the form `import .xxx`
|
90
|
-
relative_imports = re.findall("^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
|
91
|
+
relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
|
91
92
|
# Imports of the form `from .xxx import yyy`
|
92
|
-
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
|
93
|
+
relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
|
93
94
|
# Unique-ify
|
94
95
|
return list(set(relative_imports))
|
95
96
|
|
@@ -131,9 +132,9 @@ def check_imports(filename):
|
|
131
132
|
content = f.read()
|
132
133
|
|
133
134
|
# Imports of the form `import xxx`
|
134
|
-
imports = re.findall("^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
|
135
|
+
imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
|
135
136
|
# Imports of the form `from xxx import yyy`
|
136
|
-
imports += re.findall("^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
|
137
|
+
imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
|
137
138
|
# Only keep the top-level module
|
138
139
|
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
|
139
140
|
|
@@ -194,6 +195,7 @@ def find_pipeline_class(loaded_module):
|
|
194
195
|
return pipeline_class
|
195
196
|
|
196
197
|
|
198
|
+
@validate_hf_hub_args
|
197
199
|
def get_cached_module_file(
|
198
200
|
pretrained_model_name_or_path: Union[str, os.PathLike],
|
199
201
|
module_file: str,
|
@@ -201,7 +203,7 @@ def get_cached_module_file(
|
|
201
203
|
force_download: bool = False,
|
202
204
|
resume_download: bool = False,
|
203
205
|
proxies: Optional[Dict[str, str]] = None,
|
204
|
-
|
206
|
+
token: Optional[Union[bool, str]] = None,
|
205
207
|
revision: Optional[str] = None,
|
206
208
|
local_files_only: bool = False,
|
207
209
|
):
|
@@ -232,7 +234,7 @@ def get_cached_module_file(
|
|
232
234
|
proxies (`Dict[str, str]`, *optional*):
|
233
235
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
234
236
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
235
|
-
|
237
|
+
token (`str` or *bool*, *optional*):
|
236
238
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
237
239
|
when running `transformers-cli login` (stored in `~/.huggingface`).
|
238
240
|
revision (`str`, *optional*, defaults to `"main"`):
|
@@ -244,7 +246,7 @@ def get_cached_module_file(
|
|
244
246
|
|
245
247
|
<Tip>
|
246
248
|
|
247
|
-
You may pass a token in `
|
249
|
+
You may pass a token in `token` if you are not logged in (`huggingface-cli login`) and want to use private
|
248
250
|
or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models).
|
249
251
|
|
250
252
|
</Tip>
|
@@ -289,7 +291,7 @@ def get_cached_module_file(
|
|
289
291
|
proxies=proxies,
|
290
292
|
resume_download=resume_download,
|
291
293
|
local_files_only=local_files_only,
|
292
|
-
|
294
|
+
token=False,
|
293
295
|
)
|
294
296
|
submodule = "git"
|
295
297
|
module_file = pretrained_model_name_or_path + ".py"
|
@@ -307,7 +309,7 @@ def get_cached_module_file(
|
|
307
309
|
proxies=proxies,
|
308
310
|
resume_download=resume_download,
|
309
311
|
local_files_only=local_files_only,
|
310
|
-
|
312
|
+
token=token,
|
311
313
|
)
|
312
314
|
submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/")))
|
313
315
|
except EnvironmentError:
|
@@ -332,13 +334,6 @@ def get_cached_module_file(
|
|
332
334
|
else:
|
333
335
|
# Get the commit hash
|
334
336
|
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
|
335
|
-
if isinstance(use_auth_token, str):
|
336
|
-
token = use_auth_token
|
337
|
-
elif use_auth_token is True:
|
338
|
-
token = HfFolder.get_token()
|
339
|
-
else:
|
340
|
-
token = None
|
341
|
-
|
342
337
|
commit_hash = model_info(pretrained_model_name_or_path, revision=revision, token=token).sha
|
343
338
|
|
344
339
|
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
|
@@ -359,13 +354,14 @@ def get_cached_module_file(
|
|
359
354
|
force_download=force_download,
|
360
355
|
resume_download=resume_download,
|
361
356
|
proxies=proxies,
|
362
|
-
|
357
|
+
token=token,
|
363
358
|
revision=revision,
|
364
359
|
local_files_only=local_files_only,
|
365
360
|
)
|
366
361
|
return os.path.join(full_submodule, module_file)
|
367
362
|
|
368
363
|
|
364
|
+
@validate_hf_hub_args
|
369
365
|
def get_class_from_dynamic_module(
|
370
366
|
pretrained_model_name_or_path: Union[str, os.PathLike],
|
371
367
|
module_file: str,
|
@@ -374,7 +370,7 @@ def get_class_from_dynamic_module(
|
|
374
370
|
force_download: bool = False,
|
375
371
|
resume_download: bool = False,
|
376
372
|
proxies: Optional[Dict[str, str]] = None,
|
377
|
-
|
373
|
+
token: Optional[Union[bool, str]] = None,
|
378
374
|
revision: Optional[str] = None,
|
379
375
|
local_files_only: bool = False,
|
380
376
|
**kwargs,
|
@@ -414,7 +410,7 @@ def get_class_from_dynamic_module(
|
|
414
410
|
proxies (`Dict[str, str]`, *optional*):
|
415
411
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
416
412
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
417
|
-
|
413
|
+
token (`str` or `bool`, *optional*):
|
418
414
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
419
415
|
when running `transformers-cli login` (stored in `~/.huggingface`).
|
420
416
|
revision (`str`, *optional*, defaults to `"main"`):
|
@@ -426,7 +422,7 @@ def get_class_from_dynamic_module(
|
|
426
422
|
|
427
423
|
<Tip>
|
428
424
|
|
429
|
-
You may pass a token in `
|
425
|
+
You may pass a token in `token` if you are not logged in (`huggingface-cli login`) and want to use private
|
430
426
|
or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models).
|
431
427
|
|
432
428
|
</Tip>
|
@@ -449,7 +445,7 @@ def get_class_from_dynamic_module(
|
|
449
445
|
force_download=force_download,
|
450
446
|
resume_download=resume_download,
|
451
447
|
proxies=proxies,
|
452
|
-
|
448
|
+
token=token,
|
453
449
|
revision=revision,
|
454
450
|
local_files_only=local_files_only,
|
455
451
|
)
|
diffusers/utils/export_utils.py
CHANGED
@@ -3,7 +3,7 @@ import random
|
|
3
3
|
import struct
|
4
4
|
import tempfile
|
5
5
|
from contextlib import contextmanager
|
6
|
-
from typing import List
|
6
|
+
from typing import List, Union
|
7
7
|
|
8
8
|
import numpy as np
|
9
9
|
import PIL.Image
|
@@ -115,7 +115,9 @@ def export_to_obj(mesh, output_obj_path: str = None):
|
|
115
115
|
f.writelines("\n".join(combined_data))
|
116
116
|
|
117
117
|
|
118
|
-
def export_to_video(
|
118
|
+
def export_to_video(
|
119
|
+
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
|
120
|
+
) -> str:
|
119
121
|
if is_opencv_available():
|
120
122
|
import cv2
|
121
123
|
else:
|
@@ -123,9 +125,12 @@ def export_to_video(video_frames: List[np.ndarray], output_video_path: str = Non
|
|
123
125
|
if output_video_path is None:
|
124
126
|
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
|
125
127
|
|
128
|
+
if isinstance(video_frames[0], PIL.Image.Image):
|
129
|
+
video_frames = [np.array(frame) for frame in video_frames]
|
130
|
+
|
126
131
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
127
132
|
h, w, c = video_frames[0].shape
|
128
|
-
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=
|
133
|
+
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))
|
129
134
|
for i in range(len(video_frames)):
|
130
135
|
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
|
131
136
|
video_writer.write(img)
|