diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (238) hide show
  1. diffusers/__init__.py +26 -2
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +13 -8
  4. diffusers/dependency_versions_check.py +0 -1
  5. diffusers/dependency_versions_table.py +5 -5
  6. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  7. diffusers/image_processor.py +463 -51
  8. diffusers/loaders/__init__.py +82 -0
  9. diffusers/loaders/ip_adapter.py +159 -0
  10. diffusers/loaders/lora.py +1553 -0
  11. diffusers/loaders/lora_conversion_utils.py +284 -0
  12. diffusers/loaders/single_file.py +637 -0
  13. diffusers/loaders/textual_inversion.py +455 -0
  14. diffusers/loaders/unet.py +828 -0
  15. diffusers/loaders/utils.py +59 -0
  16. diffusers/models/__init__.py +26 -9
  17. diffusers/models/activations.py +9 -6
  18. diffusers/models/attention.py +301 -29
  19. diffusers/models/attention_flax.py +9 -1
  20. diffusers/models/attention_processor.py +378 -6
  21. diffusers/models/autoencoders/__init__.py +5 -0
  22. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
  23. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
  24. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
  25. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
  26. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
  27. diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
  28. diffusers/models/controlnet.py +59 -39
  29. diffusers/models/controlnet_flax.py +19 -18
  30. diffusers/models/downsampling.py +338 -0
  31. diffusers/models/embeddings.py +112 -29
  32. diffusers/models/embeddings_flax.py +2 -0
  33. diffusers/models/lora.py +131 -1
  34. diffusers/models/modeling_flax_utils.py +14 -8
  35. diffusers/models/modeling_outputs.py +17 -0
  36. diffusers/models/modeling_utils.py +37 -29
  37. diffusers/models/normalization.py +110 -4
  38. diffusers/models/resnet.py +299 -652
  39. diffusers/models/transformer_2d.py +22 -5
  40. diffusers/models/transformer_temporal.py +183 -1
  41. diffusers/models/unet_2d_blocks_flax.py +5 -0
  42. diffusers/models/unet_2d_condition.py +46 -0
  43. diffusers/models/unet_2d_condition_flax.py +13 -13
  44. diffusers/models/unet_3d_blocks.py +957 -173
  45. diffusers/models/unet_3d_condition.py +16 -8
  46. diffusers/models/unet_kandinsky3.py +535 -0
  47. diffusers/models/unet_motion_model.py +48 -33
  48. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  49. diffusers/models/upsampling.py +454 -0
  50. diffusers/models/uvit_2d.py +471 -0
  51. diffusers/models/vae_flax.py +7 -0
  52. diffusers/models/vq_model.py +12 -3
  53. diffusers/optimization.py +16 -9
  54. diffusers/pipelines/__init__.py +137 -76
  55. diffusers/pipelines/amused/__init__.py +62 -0
  56. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  57. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  58. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  59. diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
  60. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  61. diffusers/pipelines/auto_pipeline.py +23 -13
  62. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  63. diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
  64. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
  65. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
  66. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
  67. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
  68. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
  69. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  70. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  71. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  72. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  73. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  74. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  75. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  76. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  77. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  78. diffusers/pipelines/deprecated/__init__.py +153 -0
  79. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  80. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
  81. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
  82. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  83. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  84. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  85. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  86. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  87. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  88. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  89. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  90. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  91. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  92. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  93. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
  94. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  95. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  96. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  97. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  98. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  100. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
  101. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
  102. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
  103. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
  104. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
  105. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
  106. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  107. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  108. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  109. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
  110. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  111. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
  112. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
  113. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
  114. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  115. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  116. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  117. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  118. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  119. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  120. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  122. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  123. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  124. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
  125. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
  126. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
  127. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
  128. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  129. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  130. diffusers/pipelines/onnx_utils.py +8 -5
  131. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  132. diffusers/pipelines/pipeline_flax_utils.py +11 -8
  133. diffusers/pipelines/pipeline_utils.py +63 -42
  134. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
  135. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  136. diffusers/pipelines/stable_diffusion/__init__.py +37 -65
  137. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
  138. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  139. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  140. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  141. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
  142. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  143. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  144. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
  145. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
  146. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
  147. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  151. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  152. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
  153. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  154. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
  155. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  156. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
  157. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  158. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  159. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
  160. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  161. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
  162. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  163. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
  164. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  165. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  166. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
  171. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  172. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
  175. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
  179. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
  180. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  181. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  182. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  183. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  184. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  185. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  186. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  187. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
  188. diffusers/schedulers/__init__.py +4 -4
  189. diffusers/schedulers/deprecated/__init__.py +50 -0
  190. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  191. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  192. diffusers/schedulers/scheduling_amused.py +162 -0
  193. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  194. diffusers/schedulers/scheduling_ddim.py +1 -3
  195. diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
  196. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  197. diffusers/schedulers/scheduling_ddpm.py +47 -3
  198. diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
  199. diffusers/schedulers/scheduling_deis_multistep.py +28 -6
  200. diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
  201. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
  202. diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
  203. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
  204. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
  205. diffusers/schedulers/scheduling_euler_discrete.py +102 -16
  206. diffusers/schedulers/scheduling_heun_discrete.py +17 -5
  207. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
  208. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
  209. diffusers/schedulers/scheduling_lcm.py +123 -29
  210. diffusers/schedulers/scheduling_lms_discrete.py +3 -3
  211. diffusers/schedulers/scheduling_pndm.py +1 -3
  212. diffusers/schedulers/scheduling_repaint.py +1 -3
  213. diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
  214. diffusers/schedulers/scheduling_utils.py +3 -1
  215. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  216. diffusers/training_utils.py +1 -1
  217. diffusers/utils/__init__.py +1 -2
  218. diffusers/utils/constants.py +10 -12
  219. diffusers/utils/dummy_pt_objects.py +75 -0
  220. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  221. diffusers/utils/dynamic_modules_utils.py +18 -22
  222. diffusers/utils/export_utils.py +8 -3
  223. diffusers/utils/hub_utils.py +24 -36
  224. diffusers/utils/logging.py +11 -11
  225. diffusers/utils/outputs.py +5 -5
  226. diffusers/utils/peft_utils.py +88 -44
  227. diffusers/utils/state_dict_utils.py +8 -0
  228. diffusers/utils/testing_utils.py +199 -1
  229. diffusers/utils/torch_utils.py +4 -4
  230. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
  231. diffusers-0.25.0.dist-info/RECORD +360 -0
  232. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  233. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  234. diffusers/loaders.py +0 -3336
  235. diffusers-0.23.1.dist-info/RECORD +0 -323
  236. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  237. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  238. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -19,12 +19,13 @@ import numpy as np
19
19
  import PIL.Image
20
20
  import torch
21
21
  from packaging import version
22
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
22
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
23
23
 
24
24
  from ...configuration_utils import FrozenDict
25
25
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
- from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
- from ...models import AsymmetricAutoencoderKL, AutoencoderKL, UNet2DConditionModel
26
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
28
+ from ...models.attention_processor import FusedAttnProcessor2_0
28
29
  from ...models.lora import adjust_lora_scale_text_encoder
29
30
  from ...schedulers import KarrasDiffusionSchedulers
30
31
  from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
@@ -160,17 +161,66 @@ def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool
160
161
 
161
162
 
162
163
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
163
- def retrieve_latents(encoder_output, generator):
164
- if hasattr(encoder_output, "latent_dist"):
164
+ def retrieve_latents(
165
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
166
+ ):
167
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
165
168
  return encoder_output.latent_dist.sample(generator)
169
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
170
+ return encoder_output.latent_dist.mode()
166
171
  elif hasattr(encoder_output, "latents"):
167
172
  return encoder_output.latents
168
173
  else:
169
174
  raise AttributeError("Could not access latents of provided encoder_output")
170
175
 
171
176
 
177
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
178
+ def retrieve_timesteps(
179
+ scheduler,
180
+ num_inference_steps: Optional[int] = None,
181
+ device: Optional[Union[str, torch.device]] = None,
182
+ timesteps: Optional[List[int]] = None,
183
+ **kwargs,
184
+ ):
185
+ """
186
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
187
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
188
+
189
+ Args:
190
+ scheduler (`SchedulerMixin`):
191
+ The scheduler to get timesteps from.
192
+ num_inference_steps (`int`):
193
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
194
+ `timesteps` must be `None`.
195
+ device (`str` or `torch.device`, *optional*):
196
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
197
+ timesteps (`List[int]`, *optional*):
198
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
199
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
200
+ must be `None`.
201
+
202
+ Returns:
203
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
204
+ second element is the number of inference steps.
205
+ """
206
+ if timesteps is not None:
207
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
208
+ if not accepts_timesteps:
209
+ raise ValueError(
210
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
211
+ f" timestep schedules. Please check whether you are using the correct scheduler."
212
+ )
213
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
214
+ timesteps = scheduler.timesteps
215
+ num_inference_steps = len(timesteps)
216
+ else:
217
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
218
+ timesteps = scheduler.timesteps
219
+ return timesteps, num_inference_steps
220
+
221
+
172
222
  class StableDiffusionInpaintPipeline(
173
- DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
223
+ DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
174
224
  ):
175
225
  r"""
176
226
  Pipeline for text-guided image inpainting using Stable Diffusion.
@@ -182,6 +232,8 @@ class StableDiffusionInpaintPipeline(
182
232
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
183
233
  - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
184
234
  - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
235
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
236
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
185
237
 
186
238
  Args:
187
239
  vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]):
@@ -202,8 +254,9 @@ class StableDiffusionInpaintPipeline(
202
254
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
203
255
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
204
256
  """
205
- model_cpu_offload_seq = "text_encoder->unet->vae"
206
- _optional_components = ["safety_checker", "feature_extractor"]
257
+
258
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
259
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
207
260
  _exclude_from_cpu_offload = ["safety_checker"]
208
261
  _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "mask", "masked_image_latents"]
209
262
 
@@ -216,6 +269,7 @@ class StableDiffusionInpaintPipeline(
216
269
  scheduler: KarrasDiffusionSchedulers,
217
270
  safety_checker: StableDiffusionSafetyChecker,
218
271
  feature_extractor: CLIPImageProcessor,
272
+ image_encoder: CLIPVisionModelWithProjection = None,
219
273
  requires_safety_checker: bool = True,
220
274
  ):
221
275
  super().__init__()
@@ -297,6 +351,7 @@ class StableDiffusionInpaintPipeline(
297
351
  scheduler=scheduler,
298
352
  safety_checker=safety_checker,
299
353
  feature_extractor=feature_extractor,
354
+ image_encoder=image_encoder,
300
355
  )
301
356
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
302
357
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@@ -520,6 +575,31 @@ class StableDiffusionInpaintPipeline(
520
575
 
521
576
  return prompt_embeds, negative_prompt_embeds
522
577
 
578
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
579
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
580
+ dtype = next(self.image_encoder.parameters()).dtype
581
+
582
+ if not isinstance(image, torch.Tensor):
583
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
584
+
585
+ image = image.to(device=device, dtype=dtype)
586
+ if output_hidden_states:
587
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
588
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
589
+ uncond_image_enc_hidden_states = self.image_encoder(
590
+ torch.zeros_like(image), output_hidden_states=True
591
+ ).hidden_states[-2]
592
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
593
+ num_images_per_prompt, dim=0
594
+ )
595
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
596
+ else:
597
+ image_embeds = self.image_encoder(image).image_embeds
598
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
599
+ uncond_image_embeds = torch.zeros_like(image_embeds)
600
+
601
+ return image_embeds, uncond_image_embeds
602
+
523
603
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
524
604
  def run_safety_checker(self, image, device, dtype):
525
605
  if self.safety_checker is None:
@@ -556,6 +636,8 @@ class StableDiffusionInpaintPipeline(
556
636
  def check_inputs(
557
637
  self,
558
638
  prompt,
639
+ image,
640
+ mask_image,
559
641
  height,
560
642
  width,
561
643
  strength,
@@ -564,6 +646,7 @@ class StableDiffusionInpaintPipeline(
564
646
  prompt_embeds=None,
565
647
  negative_prompt_embeds=None,
566
648
  callback_on_step_end_tensor_inputs=None,
649
+ padding_mask_crop=None,
567
650
  ):
568
651
  if strength < 0 or strength > 1:
569
652
  raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
@@ -609,6 +692,21 @@ class StableDiffusionInpaintPipeline(
609
692
  f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
610
693
  f" {negative_prompt_embeds.shape}."
611
694
  )
695
+ if padding_mask_crop is not None:
696
+ if self.unet.config.in_channels != 4:
697
+ raise ValueError(
698
+ f"The UNet should have 4 input channels for inpainting mask crop, but has"
699
+ f" {self.unet.config.in_channels} input channels."
700
+ )
701
+ if not isinstance(image, PIL.Image.Image):
702
+ raise ValueError(
703
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
704
+ )
705
+ if not isinstance(mask_image, PIL.Image.Image):
706
+ raise ValueError(
707
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
708
+ f" {type(mask_image)}."
709
+ )
612
710
 
613
711
  def prepare_latents(
614
712
  self,
@@ -765,6 +863,67 @@ class StableDiffusionInpaintPipeline(
765
863
  """Disables the FreeU mechanism if enabled."""
766
864
  self.unet.disable_freeu()
767
865
 
866
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
867
+ def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
868
+ """
869
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
870
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
871
+
872
+ <Tip warning={true}>
873
+
874
+ This API is 🧪 experimental.
875
+
876
+ </Tip>
877
+
878
+ Args:
879
+ unet (`bool`, defaults to `True`): To apply fusion on the UNet.
880
+ vae (`bool`, defaults to `True`): To apply fusion on the VAE.
881
+ """
882
+ self.fusing_unet = False
883
+ self.fusing_vae = False
884
+
885
+ if unet:
886
+ self.fusing_unet = True
887
+ self.unet.fuse_qkv_projections()
888
+ self.unet.set_attn_processor(FusedAttnProcessor2_0())
889
+
890
+ if vae:
891
+ if not isinstance(self.vae, AutoencoderKL):
892
+ raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
893
+
894
+ self.fusing_vae = True
895
+ self.vae.fuse_qkv_projections()
896
+ self.vae.set_attn_processor(FusedAttnProcessor2_0())
897
+
898
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
899
+ def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
900
+ """Disable QKV projection fusion if enabled.
901
+
902
+ <Tip warning={true}>
903
+
904
+ This API is 🧪 experimental.
905
+
906
+ </Tip>
907
+
908
+ Args:
909
+ unet (`bool`, defaults to `True`): To apply fusion on the UNet.
910
+ vae (`bool`, defaults to `True`): To apply fusion on the VAE.
911
+
912
+ """
913
+ if unet:
914
+ if not self.fusing_unet:
915
+ logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
916
+ else:
917
+ self.unet.unfuse_qkv_projections()
918
+ self.fusing_unet = False
919
+
920
+ if vae:
921
+ if not self.fusing_vae:
922
+ logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
923
+ else:
924
+ self.vae.unfuse_qkv_projections()
925
+ self.fusing_vae = False
926
+
768
927
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
769
928
  def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
770
929
  """
@@ -817,6 +976,10 @@ class StableDiffusionInpaintPipeline(
817
976
  def num_timesteps(self):
818
977
  return self._num_timesteps
819
978
 
979
+ @property
980
+ def interrupt(self):
981
+ return self._interrupt
982
+
820
983
  @torch.no_grad()
821
984
  def __call__(
822
985
  self,
@@ -826,8 +989,10 @@ class StableDiffusionInpaintPipeline(
826
989
  masked_image_latents: torch.FloatTensor = None,
827
990
  height: Optional[int] = None,
828
991
  width: Optional[int] = None,
992
+ padding_mask_crop: Optional[int] = None,
829
993
  strength: float = 1.0,
830
994
  num_inference_steps: int = 50,
995
+ timesteps: List[int] = None,
831
996
  guidance_scale: float = 7.5,
832
997
  negative_prompt: Optional[Union[str, List[str]]] = None,
833
998
  num_images_per_prompt: Optional[int] = 1,
@@ -836,6 +1001,7 @@ class StableDiffusionInpaintPipeline(
836
1001
  latents: Optional[torch.FloatTensor] = None,
837
1002
  prompt_embeds: Optional[torch.FloatTensor] = None,
838
1003
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
1004
+ ip_adapter_image: Optional[PipelineImageInput] = None,
839
1005
  output_type: Optional[str] = "pil",
840
1006
  return_dict: bool = True,
841
1007
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -868,6 +1034,12 @@ class StableDiffusionInpaintPipeline(
868
1034
  The height in pixels of the generated image.
869
1035
  width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
870
1036
  The width in pixels of the generated image.
1037
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
1038
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If
1039
+ `padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and
1040
+ contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on
1041
+ the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large
1042
+ and contain information inreleant for inpainging, such as background.
871
1043
  strength (`float`, *optional*, defaults to 1.0):
872
1044
  Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
873
1045
  starting point and more noise is added the higher the `strength`. The number of denoising steps depends
@@ -877,6 +1049,10 @@ class StableDiffusionInpaintPipeline(
877
1049
  num_inference_steps (`int`, *optional*, defaults to 50):
878
1050
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
879
1051
  expense of slower inference. This parameter is modulated by `strength`.
1052
+ timesteps (`List[int]`, *optional*):
1053
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
1054
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
1055
+ passed will be used. Must be in descending order.
880
1056
  guidance_scale (`float`, *optional*, defaults to 7.5):
881
1057
  A higher guidance scale value encourages the model to generate images closely linked to the text
882
1058
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -901,6 +1077,7 @@ class StableDiffusionInpaintPipeline(
901
1077
  negative_prompt_embeds (`torch.FloatTensor`, *optional*):
902
1078
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
903
1079
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1080
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
904
1081
  output_type (`str`, *optional*, defaults to `"pil"`):
905
1082
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
906
1083
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -920,7 +1097,7 @@ class StableDiffusionInpaintPipeline(
920
1097
  callback_on_step_end_tensor_inputs (`List`, *optional*):
921
1098
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
922
1099
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
923
- `._callback_tensor_inputs` attribute of your pipeine class.
1100
+ `._callback_tensor_inputs` attribute of your pipeline class.
924
1101
  Examples:
925
1102
 
926
1103
  ```py
@@ -983,6 +1160,8 @@ class StableDiffusionInpaintPipeline(
983
1160
  # 1. Check inputs
984
1161
  self.check_inputs(
985
1162
  prompt,
1163
+ image,
1164
+ mask_image,
986
1165
  height,
987
1166
  width,
988
1167
  strength,
@@ -991,11 +1170,13 @@ class StableDiffusionInpaintPipeline(
991
1170
  prompt_embeds,
992
1171
  negative_prompt_embeds,
993
1172
  callback_on_step_end_tensor_inputs,
1173
+ padding_mask_crop,
994
1174
  )
995
1175
 
996
1176
  self._guidance_scale = guidance_scale
997
1177
  self._clip_skip = clip_skip
998
1178
  self._cross_attention_kwargs = cross_attention_kwargs
1179
+ self._interrupt = False
999
1180
 
1000
1181
  # 2. Define call parameters
1001
1182
  if prompt is not None and isinstance(prompt, str):
@@ -1028,8 +1209,16 @@ class StableDiffusionInpaintPipeline(
1028
1209
  if self.do_classifier_free_guidance:
1029
1210
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1030
1211
 
1212
+ if ip_adapter_image is not None:
1213
+ output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
1214
+ image_embeds, negative_image_embeds = self.encode_image(
1215
+ ip_adapter_image, device, num_images_per_prompt, output_hidden_state
1216
+ )
1217
+ if self.do_classifier_free_guidance:
1218
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
1219
+
1031
1220
  # 4. set timesteps
1032
- self.scheduler.set_timesteps(num_inference_steps, device=device)
1221
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1033
1222
  timesteps, num_inference_steps = self.get_timesteps(
1034
1223
  num_inference_steps=num_inference_steps, strength=strength, device=device
1035
1224
  )
@@ -1046,7 +1235,17 @@ class StableDiffusionInpaintPipeline(
1046
1235
 
1047
1236
  # 5. Preprocess mask and image
1048
1237
 
1049
- init_image = self.image_processor.preprocess(image, height=height, width=width)
1238
+ if padding_mask_crop is not None:
1239
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1240
+ resize_mode = "fill"
1241
+ else:
1242
+ crops_coords = None
1243
+ resize_mode = "default"
1244
+
1245
+ original_image = image
1246
+ init_image = self.image_processor.preprocess(
1247
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1248
+ )
1050
1249
  init_image = init_image.to(dtype=torch.float32)
1051
1250
 
1052
1251
  # 6. Prepare latent variables
@@ -1076,7 +1275,9 @@ class StableDiffusionInpaintPipeline(
1076
1275
  latents, noise = latents_outputs
1077
1276
 
1078
1277
  # 7. Prepare mask latent variables
1079
- mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width)
1278
+ mask_condition = self.mask_processor.preprocess(
1279
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1280
+ )
1080
1281
 
1081
1282
  if masked_image_latents is None:
1082
1283
  masked_image = init_image * (mask_condition < 0.5)
@@ -1116,7 +1317,10 @@ class StableDiffusionInpaintPipeline(
1116
1317
  # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1117
1318
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1118
1319
 
1119
- # 9.5 Optionally get Guidance Scale Embedding
1320
+ # 9.1 Add image embeds for IP-Adapter
1321
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
1322
+
1323
+ # 9.2 Optionally get Guidance Scale Embedding
1120
1324
  timestep_cond = None
1121
1325
  if self.unet.config.time_cond_proj_dim is not None:
1122
1326
  guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
@@ -1129,6 +1333,9 @@ class StableDiffusionInpaintPipeline(
1129
1333
  self._num_timesteps = len(timesteps)
1130
1334
  with self.progress_bar(total=num_inference_steps) as progress_bar:
1131
1335
  for i, t in enumerate(timesteps):
1336
+ if self.interrupt:
1337
+ continue
1338
+
1132
1339
  # expand the latents if we are doing classifier free guidance
1133
1340
  latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1134
1341
 
@@ -1145,6 +1352,7 @@ class StableDiffusionInpaintPipeline(
1145
1352
  encoder_hidden_states=prompt_embeds,
1146
1353
  timestep_cond=timestep_cond,
1147
1354
  cross_attention_kwargs=self.cross_attention_kwargs,
1355
+ added_cond_kwargs=added_cond_kwargs,
1148
1356
  return_dict=False,
1149
1357
  )[0]
1150
1358
 
@@ -1212,6 +1420,9 @@ class StableDiffusionInpaintPipeline(
1212
1420
 
1213
1421
  image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1214
1422
 
1423
+ if padding_mask_crop is not None:
1424
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1425
+
1215
1426
  # Offload all models
1216
1427
  self.maybe_free_model_hooks()
1217
1428
 
@@ -18,11 +18,11 @@ from typing import Callable, Dict, List, Optional, Union
18
18
  import numpy as np
19
19
  import PIL.Image
20
20
  import torch
21
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
21
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
22
22
 
23
23
  from ...image_processor import PipelineImageInput, VaeImageProcessor
24
- from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
25
- from ...models import AutoencoderKL, UNet2DConditionModel
24
+ from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
26
26
  from ...schedulers import KarrasDiffusionSchedulers
27
27
  from ...utils import PIL_INTERPOLATION, deprecate, logging
28
28
  from ...utils.torch_utils import randn_tensor
@@ -58,7 +58,23 @@ def preprocess(image):
58
58
  return image
59
59
 
60
60
 
61
- class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
61
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
62
+ def retrieve_latents(
63
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
64
+ ):
65
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
66
+ return encoder_output.latent_dist.sample(generator)
67
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
68
+ return encoder_output.latent_dist.mode()
69
+ elif hasattr(encoder_output, "latents"):
70
+ return encoder_output.latents
71
+ else:
72
+ raise AttributeError("Could not access latents of provided encoder_output")
73
+
74
+
75
+ class StableDiffusionInstructPix2PixPipeline(
76
+ DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin
77
+ ):
62
78
  r"""
63
79
  Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion).
64
80
 
@@ -69,6 +85,7 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
69
85
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
70
86
  - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
71
87
  - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
88
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
72
89
 
73
90
  Args:
74
91
  vae ([`AutoencoderKL`]):
@@ -89,8 +106,9 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
89
106
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
90
107
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
91
108
  """
109
+
92
110
  model_cpu_offload_seq = "text_encoder->unet->vae"
93
- _optional_components = ["safety_checker", "feature_extractor"]
111
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
94
112
  _exclude_from_cpu_offload = ["safety_checker"]
95
113
  _callback_tensor_inputs = ["latents", "prompt_embeds", "image_latents"]
96
114
 
@@ -103,6 +121,7 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
103
121
  scheduler: KarrasDiffusionSchedulers,
104
122
  safety_checker: StableDiffusionSafetyChecker,
105
123
  feature_extractor: CLIPImageProcessor,
124
+ image_encoder: Optional[CLIPVisionModelWithProjection] = None,
106
125
  requires_safety_checker: bool = True,
107
126
  ):
108
127
  super().__init__()
@@ -131,6 +150,7 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
131
150
  scheduler=scheduler,
132
151
  safety_checker=safety_checker,
133
152
  feature_extractor=feature_extractor,
153
+ image_encoder=image_encoder,
134
154
  )
135
155
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
136
156
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@@ -151,6 +171,7 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
151
171
  latents: Optional[torch.FloatTensor] = None,
152
172
  prompt_embeds: Optional[torch.FloatTensor] = None,
153
173
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
174
+ ip_adapter_image: Optional[PipelineImageInput] = None,
154
175
  output_type: Optional[str] = "pil",
155
176
  return_dict: bool = True,
156
177
  callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -198,6 +219,8 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
198
219
  negative_prompt_embeds (`torch.FloatTensor`, *optional*):
199
220
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
200
221
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
222
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
223
+ Optional image input to work with IP Adapters.
201
224
  output_type (`str`, *optional*, defaults to `"pil"`):
202
225
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
203
226
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -211,7 +234,7 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
211
234
  callback_on_step_end_tensor_inputs (`List`, *optional*):
212
235
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
213
236
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
214
- `._callback_tensor_inputs` attribute of your pipeine class.
237
+ `._callback_tensor_inputs` attribute of your pipeline class.
215
238
 
216
239
  Examples:
217
240
 
@@ -278,6 +301,16 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
278
301
  self._guidance_scale = guidance_scale
279
302
  self._image_guidance_scale = image_guidance_scale
280
303
 
304
+ device = self._execution_device
305
+
306
+ if ip_adapter_image is not None:
307
+ output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
308
+ image_embeds, negative_image_embeds = self.encode_image(
309
+ ip_adapter_image, device, num_images_per_prompt, output_hidden_state
310
+ )
311
+ if self.do_classifier_free_guidance:
312
+ image_embeds = torch.cat([image_embeds, negative_image_embeds, negative_image_embeds])
313
+
281
314
  if image is None:
282
315
  raise ValueError("`image` input cannot be undefined.")
283
316
 
@@ -319,7 +352,6 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
319
352
  prompt_embeds.dtype,
320
353
  device,
321
354
  self.do_classifier_free_guidance,
322
- generator,
323
355
  )
324
356
 
325
357
  height, width = image_latents.shape[-2:]
@@ -353,6 +385,9 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
353
385
  # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
354
386
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
355
387
 
388
+ # 8.1 Add image embeds for IP-Adapter
389
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
390
+
356
391
  # 9. Denoising loop
357
392
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
358
393
  self._num_timesteps = len(timesteps)
@@ -369,7 +404,11 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
369
404
 
370
405
  # predict the noise residual
371
406
  noise_pred = self.unet(
372
- scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, return_dict=False
407
+ scaled_latent_model_input,
408
+ t,
409
+ encoder_hidden_states=prompt_embeds,
410
+ added_cond_kwargs=added_cond_kwargs,
411
+ return_dict=False,
373
412
  )[0]
374
413
 
375
414
  # Hack:
@@ -584,11 +623,36 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
584
623
  # For classifier free guidance, we need to do two forward passes.
585
624
  # Here we concatenate the unconditional and text embeddings into a single batch
586
625
  # to avoid doing two forward passes
587
- # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]
626
+ # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]
588
627
  prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds])
589
628
 
590
629
  return prompt_embeds
591
630
 
631
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
632
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
633
+ dtype = next(self.image_encoder.parameters()).dtype
634
+
635
+ if not isinstance(image, torch.Tensor):
636
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
637
+
638
+ image = image.to(device=device, dtype=dtype)
639
+ if output_hidden_states:
640
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
641
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
642
+ uncond_image_enc_hidden_states = self.image_encoder(
643
+ torch.zeros_like(image), output_hidden_states=True
644
+ ).hidden_states[-2]
645
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
646
+ num_images_per_prompt, dim=0
647
+ )
648
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
649
+ else:
650
+ image_embeds = self.image_encoder(image).image_embeds
651
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
652
+ uncond_image_embeds = torch.zeros_like(image_embeds)
653
+
654
+ return image_embeds, uncond_image_embeds
655
+
592
656
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
593
657
  def run_safety_checker(self, image, device, dtype):
594
658
  if self.safety_checker is None:
@@ -715,17 +779,7 @@ class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, TextualInversion
715
779
  if image.shape[1] == 4:
716
780
  image_latents = image
717
781
  else:
718
- if isinstance(generator, list) and len(generator) != batch_size:
719
- raise ValueError(
720
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
721
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
722
- )
723
-
724
- if isinstance(generator, list):
725
- image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
726
- image_latents = torch.cat(image_latents, dim=0)
727
- else:
728
- image_latents = self.vae.encode(image).latent_dist.mode()
782
+ image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax")
729
783
 
730
784
  if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
731
785
  # expand image_latents for batch_size
@@ -67,6 +67,9 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, FromSingleFileMixi
67
67
  This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
68
68
  implemented for all pipelines (downloading, saving, running on a particular device, etc.).
69
69
 
70
+ The pipeline also inherits the following loading methods:
71
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
72
+
70
73
  Args:
71
74
  vae ([`AutoencoderKL`]):
72
75
  Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
@@ -79,6 +82,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, FromSingleFileMixi
79
82
  scheduler ([`SchedulerMixin`]):
80
83
  A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents.
81
84
  """
85
+
82
86
  model_cpu_offload_seq = "text_encoder->unet->vae"
83
87
 
84
88
  def __init__(