diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,328 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
|
19
|
+
|
20
|
+
from ...image_processor import VaeImageProcessor
|
21
|
+
from ...models import UVit2DModel, VQModel
|
22
|
+
from ...schedulers import AmusedScheduler
|
23
|
+
from ...utils import replace_example_docstring
|
24
|
+
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
25
|
+
|
26
|
+
|
27
|
+
EXAMPLE_DOC_STRING = """
|
28
|
+
Examples:
|
29
|
+
```py
|
30
|
+
>>> import torch
|
31
|
+
>>> from diffusers import AmusedPipeline
|
32
|
+
|
33
|
+
>>> pipe = AmusedPipeline.from_pretrained(
|
34
|
+
... "amused/amused-512", variant="fp16", torch_dtype=torch.float16
|
35
|
+
... )
|
36
|
+
>>> pipe = pipe.to("cuda")
|
37
|
+
|
38
|
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
39
|
+
>>> image = pipe(prompt).images[0]
|
40
|
+
```
|
41
|
+
"""
|
42
|
+
|
43
|
+
|
44
|
+
class AmusedPipeline(DiffusionPipeline):
|
45
|
+
image_processor: VaeImageProcessor
|
46
|
+
vqvae: VQModel
|
47
|
+
tokenizer: CLIPTokenizer
|
48
|
+
text_encoder: CLIPTextModelWithProjection
|
49
|
+
transformer: UVit2DModel
|
50
|
+
scheduler: AmusedScheduler
|
51
|
+
|
52
|
+
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
|
53
|
+
|
54
|
+
def __init__(
|
55
|
+
self,
|
56
|
+
vqvae: VQModel,
|
57
|
+
tokenizer: CLIPTokenizer,
|
58
|
+
text_encoder: CLIPTextModelWithProjection,
|
59
|
+
transformer: UVit2DModel,
|
60
|
+
scheduler: AmusedScheduler,
|
61
|
+
):
|
62
|
+
super().__init__()
|
63
|
+
|
64
|
+
self.register_modules(
|
65
|
+
vqvae=vqvae,
|
66
|
+
tokenizer=tokenizer,
|
67
|
+
text_encoder=text_encoder,
|
68
|
+
transformer=transformer,
|
69
|
+
scheduler=scheduler,
|
70
|
+
)
|
71
|
+
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
|
72
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
|
73
|
+
|
74
|
+
@torch.no_grad()
|
75
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
76
|
+
def __call__(
|
77
|
+
self,
|
78
|
+
prompt: Optional[Union[List[str], str]] = None,
|
79
|
+
height: Optional[int] = None,
|
80
|
+
width: Optional[int] = None,
|
81
|
+
num_inference_steps: int = 12,
|
82
|
+
guidance_scale: float = 10.0,
|
83
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
84
|
+
num_images_per_prompt: Optional[int] = 1,
|
85
|
+
generator: Optional[torch.Generator] = None,
|
86
|
+
latents: Optional[torch.IntTensor] = None,
|
87
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
88
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
89
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
90
|
+
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
|
91
|
+
output_type="pil",
|
92
|
+
return_dict: bool = True,
|
93
|
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
94
|
+
callback_steps: int = 1,
|
95
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
96
|
+
micro_conditioning_aesthetic_score: int = 6,
|
97
|
+
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
|
98
|
+
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
|
99
|
+
):
|
100
|
+
"""
|
101
|
+
The call function to the pipeline for generation.
|
102
|
+
|
103
|
+
Args:
|
104
|
+
prompt (`str` or `List[str]`, *optional*):
|
105
|
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
106
|
+
height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`):
|
107
|
+
The height in pixels of the generated image.
|
108
|
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
109
|
+
The width in pixels of the generated image.
|
110
|
+
num_inference_steps (`int`, *optional*, defaults to 16):
|
111
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
112
|
+
expense of slower inference.
|
113
|
+
guidance_scale (`float`, *optional*, defaults to 10.0):
|
114
|
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
115
|
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
116
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
117
|
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
118
|
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
119
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
120
|
+
The number of images to generate per prompt.
|
121
|
+
generator (`torch.Generator`, *optional*):
|
122
|
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
123
|
+
generation deterministic.
|
124
|
+
latents (`torch.IntTensor`, *optional*):
|
125
|
+
Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image
|
126
|
+
gneration. If not provided, the starting latents will be completely masked.
|
127
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
128
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
129
|
+
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
|
130
|
+
pooled and projected final hidden states.
|
131
|
+
encoder_hidden_states (`torch.FloatTensor`, *optional*):
|
132
|
+
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
|
133
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
134
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
135
|
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
136
|
+
negative_encoder_hidden_states (`torch.FloatTensor`, *optional*):
|
137
|
+
Analogous to `encoder_hidden_states` for the positive prompt.
|
138
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
139
|
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
140
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
141
|
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
142
|
+
plain tuple.
|
143
|
+
callback (`Callable`, *optional*):
|
144
|
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
145
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
146
|
+
callback_steps (`int`, *optional*, defaults to 1):
|
147
|
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
148
|
+
every step.
|
149
|
+
cross_attention_kwargs (`dict`, *optional*):
|
150
|
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
151
|
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
152
|
+
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
|
153
|
+
The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/
|
154
|
+
and the micro-conditioning section of https://arxiv.org/abs/2307.01952.
|
155
|
+
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
156
|
+
The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952.
|
157
|
+
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
|
158
|
+
Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
|
159
|
+
|
160
|
+
Examples:
|
161
|
+
|
162
|
+
Returns:
|
163
|
+
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
|
164
|
+
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
|
165
|
+
`tuple` is returned where the first element is a list with the generated images.
|
166
|
+
"""
|
167
|
+
if (prompt_embeds is not None and encoder_hidden_states is None) or (
|
168
|
+
prompt_embeds is None and encoder_hidden_states is not None
|
169
|
+
):
|
170
|
+
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
|
171
|
+
|
172
|
+
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
|
173
|
+
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
|
174
|
+
):
|
175
|
+
raise ValueError(
|
176
|
+
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
|
177
|
+
)
|
178
|
+
|
179
|
+
if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
|
180
|
+
raise ValueError("pass only one of `prompt` or `prompt_embeds`")
|
181
|
+
|
182
|
+
if isinstance(prompt, str):
|
183
|
+
prompt = [prompt]
|
184
|
+
|
185
|
+
if prompt is not None:
|
186
|
+
batch_size = len(prompt)
|
187
|
+
else:
|
188
|
+
batch_size = prompt_embeds.shape[0]
|
189
|
+
|
190
|
+
batch_size = batch_size * num_images_per_prompt
|
191
|
+
|
192
|
+
if height is None:
|
193
|
+
height = self.transformer.config.sample_size * self.vae_scale_factor
|
194
|
+
|
195
|
+
if width is None:
|
196
|
+
width = self.transformer.config.sample_size * self.vae_scale_factor
|
197
|
+
|
198
|
+
if prompt_embeds is None:
|
199
|
+
input_ids = self.tokenizer(
|
200
|
+
prompt,
|
201
|
+
return_tensors="pt",
|
202
|
+
padding="max_length",
|
203
|
+
truncation=True,
|
204
|
+
max_length=self.tokenizer.model_max_length,
|
205
|
+
).input_ids.to(self._execution_device)
|
206
|
+
|
207
|
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
208
|
+
prompt_embeds = outputs.text_embeds
|
209
|
+
encoder_hidden_states = outputs.hidden_states[-2]
|
210
|
+
|
211
|
+
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
|
212
|
+
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
213
|
+
|
214
|
+
if guidance_scale > 1.0:
|
215
|
+
if negative_prompt_embeds is None:
|
216
|
+
if negative_prompt is None:
|
217
|
+
negative_prompt = [""] * len(prompt)
|
218
|
+
|
219
|
+
if isinstance(negative_prompt, str):
|
220
|
+
negative_prompt = [negative_prompt]
|
221
|
+
|
222
|
+
input_ids = self.tokenizer(
|
223
|
+
negative_prompt,
|
224
|
+
return_tensors="pt",
|
225
|
+
padding="max_length",
|
226
|
+
truncation=True,
|
227
|
+
max_length=self.tokenizer.model_max_length,
|
228
|
+
).input_ids.to(self._execution_device)
|
229
|
+
|
230
|
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
231
|
+
negative_prompt_embeds = outputs.text_embeds
|
232
|
+
negative_encoder_hidden_states = outputs.hidden_states[-2]
|
233
|
+
|
234
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
|
235
|
+
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
236
|
+
|
237
|
+
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
|
238
|
+
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
|
239
|
+
|
240
|
+
# Note that the micro conditionings _do_ flip the order of width, height for the original size
|
241
|
+
# and the crop coordinates. This is how it was done in the original code base
|
242
|
+
micro_conds = torch.tensor(
|
243
|
+
[
|
244
|
+
width,
|
245
|
+
height,
|
246
|
+
micro_conditioning_crop_coord[0],
|
247
|
+
micro_conditioning_crop_coord[1],
|
248
|
+
micro_conditioning_aesthetic_score,
|
249
|
+
],
|
250
|
+
device=self._execution_device,
|
251
|
+
dtype=encoder_hidden_states.dtype,
|
252
|
+
)
|
253
|
+
micro_conds = micro_conds.unsqueeze(0)
|
254
|
+
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
|
255
|
+
|
256
|
+
shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
257
|
+
|
258
|
+
if latents is None:
|
259
|
+
latents = torch.full(
|
260
|
+
shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device
|
261
|
+
)
|
262
|
+
|
263
|
+
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
|
264
|
+
|
265
|
+
num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order
|
266
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
267
|
+
for i, timestep in enumerate(self.scheduler.timesteps):
|
268
|
+
if guidance_scale > 1.0:
|
269
|
+
model_input = torch.cat([latents] * 2)
|
270
|
+
else:
|
271
|
+
model_input = latents
|
272
|
+
|
273
|
+
model_output = self.transformer(
|
274
|
+
model_input,
|
275
|
+
micro_conds=micro_conds,
|
276
|
+
pooled_text_emb=prompt_embeds,
|
277
|
+
encoder_hidden_states=encoder_hidden_states,
|
278
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
279
|
+
)
|
280
|
+
|
281
|
+
if guidance_scale > 1.0:
|
282
|
+
uncond_logits, cond_logits = model_output.chunk(2)
|
283
|
+
model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
|
284
|
+
|
285
|
+
latents = self.scheduler.step(
|
286
|
+
model_output=model_output,
|
287
|
+
timestep=timestep,
|
288
|
+
sample=latents,
|
289
|
+
generator=generator,
|
290
|
+
).prev_sample
|
291
|
+
|
292
|
+
if i == len(self.scheduler.timesteps) - 1 or (
|
293
|
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
294
|
+
):
|
295
|
+
progress_bar.update()
|
296
|
+
if callback is not None and i % callback_steps == 0:
|
297
|
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
298
|
+
callback(step_idx, timestep, latents)
|
299
|
+
|
300
|
+
if output_type == "latent":
|
301
|
+
output = latents
|
302
|
+
else:
|
303
|
+
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
|
304
|
+
|
305
|
+
if needs_upcasting:
|
306
|
+
self.vqvae.float()
|
307
|
+
|
308
|
+
output = self.vqvae.decode(
|
309
|
+
latents,
|
310
|
+
force_not_quantize=True,
|
311
|
+
shape=(
|
312
|
+
batch_size,
|
313
|
+
height // self.vae_scale_factor,
|
314
|
+
width // self.vae_scale_factor,
|
315
|
+
self.vqvae.config.latent_channels,
|
316
|
+
),
|
317
|
+
).sample.clip(0, 1)
|
318
|
+
output = self.image_processor.postprocess(output, output_type)
|
319
|
+
|
320
|
+
if needs_upcasting:
|
321
|
+
self.vqvae.half()
|
322
|
+
|
323
|
+
self.maybe_free_model_hooks()
|
324
|
+
|
325
|
+
if not return_dict:
|
326
|
+
return (output,)
|
327
|
+
|
328
|
+
return ImagePipelineOutput(output)
|
@@ -0,0 +1,347 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
|
19
|
+
|
20
|
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
21
|
+
from ...models import UVit2DModel, VQModel
|
22
|
+
from ...schedulers import AmusedScheduler
|
23
|
+
from ...utils import replace_example_docstring
|
24
|
+
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
25
|
+
|
26
|
+
|
27
|
+
EXAMPLE_DOC_STRING = """
|
28
|
+
Examples:
|
29
|
+
```py
|
30
|
+
>>> import torch
|
31
|
+
>>> from diffusers import AmusedImg2ImgPipeline
|
32
|
+
>>> from diffusers.utils import load_image
|
33
|
+
|
34
|
+
>>> pipe = AmusedImg2ImgPipeline.from_pretrained(
|
35
|
+
... "amused/amused-512", variant="fp16", torch_dtype=torch.float16
|
36
|
+
... )
|
37
|
+
>>> pipe = pipe.to("cuda")
|
38
|
+
|
39
|
+
>>> prompt = "winter mountains"
|
40
|
+
>>> input_image = (
|
41
|
+
... load_image(
|
42
|
+
... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg"
|
43
|
+
... )
|
44
|
+
... .resize((512, 512))
|
45
|
+
... .convert("RGB")
|
46
|
+
... )
|
47
|
+
>>> image = pipe(prompt, input_image).images[0]
|
48
|
+
```
|
49
|
+
"""
|
50
|
+
|
51
|
+
|
52
|
+
class AmusedImg2ImgPipeline(DiffusionPipeline):
|
53
|
+
image_processor: VaeImageProcessor
|
54
|
+
vqvae: VQModel
|
55
|
+
tokenizer: CLIPTokenizer
|
56
|
+
text_encoder: CLIPTextModelWithProjection
|
57
|
+
transformer: UVit2DModel
|
58
|
+
scheduler: AmusedScheduler
|
59
|
+
|
60
|
+
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
|
61
|
+
|
62
|
+
# TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before
|
63
|
+
# the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter
|
64
|
+
# off the meta device. There should be a way to fix this instead of just not offloading it
|
65
|
+
_exclude_from_cpu_offload = ["vqvae"]
|
66
|
+
|
67
|
+
def __init__(
|
68
|
+
self,
|
69
|
+
vqvae: VQModel,
|
70
|
+
tokenizer: CLIPTokenizer,
|
71
|
+
text_encoder: CLIPTextModelWithProjection,
|
72
|
+
transformer: UVit2DModel,
|
73
|
+
scheduler: AmusedScheduler,
|
74
|
+
):
|
75
|
+
super().__init__()
|
76
|
+
|
77
|
+
self.register_modules(
|
78
|
+
vqvae=vqvae,
|
79
|
+
tokenizer=tokenizer,
|
80
|
+
text_encoder=text_encoder,
|
81
|
+
transformer=transformer,
|
82
|
+
scheduler=scheduler,
|
83
|
+
)
|
84
|
+
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
|
85
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
|
86
|
+
|
87
|
+
@torch.no_grad()
|
88
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
89
|
+
def __call__(
|
90
|
+
self,
|
91
|
+
prompt: Optional[Union[List[str], str]] = None,
|
92
|
+
image: PipelineImageInput = None,
|
93
|
+
strength: float = 0.5,
|
94
|
+
num_inference_steps: int = 12,
|
95
|
+
guidance_scale: float = 10.0,
|
96
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
97
|
+
num_images_per_prompt: Optional[int] = 1,
|
98
|
+
generator: Optional[torch.Generator] = None,
|
99
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
100
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
101
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
102
|
+
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
|
103
|
+
output_type="pil",
|
104
|
+
return_dict: bool = True,
|
105
|
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
106
|
+
callback_steps: int = 1,
|
107
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
108
|
+
micro_conditioning_aesthetic_score: int = 6,
|
109
|
+
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
|
110
|
+
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
|
111
|
+
):
|
112
|
+
"""
|
113
|
+
The call function to the pipeline for generation.
|
114
|
+
|
115
|
+
Args:
|
116
|
+
prompt (`str` or `List[str]`, *optional*):
|
117
|
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
118
|
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
119
|
+
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
120
|
+
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
121
|
+
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
122
|
+
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
123
|
+
latents as `image`, but if passing latents directly it is not encoded again.
|
124
|
+
strength (`float`, *optional*, defaults to 0.5):
|
125
|
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
126
|
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
127
|
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
128
|
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
129
|
+
essentially ignores `image`.
|
130
|
+
num_inference_steps (`int`, *optional*, defaults to 16):
|
131
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
132
|
+
expense of slower inference.
|
133
|
+
guidance_scale (`float`, *optional*, defaults to 10.0):
|
134
|
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
135
|
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
136
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
137
|
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
138
|
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
139
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
140
|
+
The number of images to generate per prompt.
|
141
|
+
generator (`torch.Generator`, *optional*):
|
142
|
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
143
|
+
generation deterministic.
|
144
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
145
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
146
|
+
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
|
147
|
+
pooled and projected final hidden states.
|
148
|
+
encoder_hidden_states (`torch.FloatTensor`, *optional*):
|
149
|
+
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
|
150
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
151
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
152
|
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
153
|
+
negative_encoder_hidden_states (`torch.FloatTensor`, *optional*):
|
154
|
+
Analogous to `encoder_hidden_states` for the positive prompt.
|
155
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
156
|
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
157
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
158
|
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
159
|
+
plain tuple.
|
160
|
+
callback (`Callable`, *optional*):
|
161
|
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
162
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
163
|
+
callback_steps (`int`, *optional*, defaults to 1):
|
164
|
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
165
|
+
every step.
|
166
|
+
cross_attention_kwargs (`dict`, *optional*):
|
167
|
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
168
|
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
169
|
+
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
|
170
|
+
The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/
|
171
|
+
and the micro-conditioning section of https://arxiv.org/abs/2307.01952.
|
172
|
+
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
173
|
+
The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952.
|
174
|
+
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
|
175
|
+
Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
|
176
|
+
|
177
|
+
Examples:
|
178
|
+
|
179
|
+
Returns:
|
180
|
+
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
|
181
|
+
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
|
182
|
+
`tuple` is returned where the first element is a list with the generated images.
|
183
|
+
"""
|
184
|
+
|
185
|
+
if (prompt_embeds is not None and encoder_hidden_states is None) or (
|
186
|
+
prompt_embeds is None and encoder_hidden_states is not None
|
187
|
+
):
|
188
|
+
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
|
189
|
+
|
190
|
+
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
|
191
|
+
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
|
192
|
+
):
|
193
|
+
raise ValueError(
|
194
|
+
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
|
195
|
+
)
|
196
|
+
|
197
|
+
if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
|
198
|
+
raise ValueError("pass only one of `prompt` or `prompt_embeds`")
|
199
|
+
|
200
|
+
if isinstance(prompt, str):
|
201
|
+
prompt = [prompt]
|
202
|
+
|
203
|
+
if prompt is not None:
|
204
|
+
batch_size = len(prompt)
|
205
|
+
else:
|
206
|
+
batch_size = prompt_embeds.shape[0]
|
207
|
+
|
208
|
+
batch_size = batch_size * num_images_per_prompt
|
209
|
+
|
210
|
+
if prompt_embeds is None:
|
211
|
+
input_ids = self.tokenizer(
|
212
|
+
prompt,
|
213
|
+
return_tensors="pt",
|
214
|
+
padding="max_length",
|
215
|
+
truncation=True,
|
216
|
+
max_length=self.tokenizer.model_max_length,
|
217
|
+
).input_ids.to(self._execution_device)
|
218
|
+
|
219
|
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
220
|
+
prompt_embeds = outputs.text_embeds
|
221
|
+
encoder_hidden_states = outputs.hidden_states[-2]
|
222
|
+
|
223
|
+
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
|
224
|
+
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
225
|
+
|
226
|
+
if guidance_scale > 1.0:
|
227
|
+
if negative_prompt_embeds is None:
|
228
|
+
if negative_prompt is None:
|
229
|
+
negative_prompt = [""] * len(prompt)
|
230
|
+
|
231
|
+
if isinstance(negative_prompt, str):
|
232
|
+
negative_prompt = [negative_prompt]
|
233
|
+
|
234
|
+
input_ids = self.tokenizer(
|
235
|
+
negative_prompt,
|
236
|
+
return_tensors="pt",
|
237
|
+
padding="max_length",
|
238
|
+
truncation=True,
|
239
|
+
max_length=self.tokenizer.model_max_length,
|
240
|
+
).input_ids.to(self._execution_device)
|
241
|
+
|
242
|
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
243
|
+
negative_prompt_embeds = outputs.text_embeds
|
244
|
+
negative_encoder_hidden_states = outputs.hidden_states[-2]
|
245
|
+
|
246
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
|
247
|
+
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
248
|
+
|
249
|
+
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
|
250
|
+
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
|
251
|
+
|
252
|
+
image = self.image_processor.preprocess(image)
|
253
|
+
|
254
|
+
height, width = image.shape[-2:]
|
255
|
+
|
256
|
+
# Note that the micro conditionings _do_ flip the order of width, height for the original size
|
257
|
+
# and the crop coordinates. This is how it was done in the original code base
|
258
|
+
micro_conds = torch.tensor(
|
259
|
+
[
|
260
|
+
width,
|
261
|
+
height,
|
262
|
+
micro_conditioning_crop_coord[0],
|
263
|
+
micro_conditioning_crop_coord[1],
|
264
|
+
micro_conditioning_aesthetic_score,
|
265
|
+
],
|
266
|
+
device=self._execution_device,
|
267
|
+
dtype=encoder_hidden_states.dtype,
|
268
|
+
)
|
269
|
+
|
270
|
+
micro_conds = micro_conds.unsqueeze(0)
|
271
|
+
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
|
272
|
+
|
273
|
+
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
|
274
|
+
num_inference_steps = int(len(self.scheduler.timesteps) * strength)
|
275
|
+
start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps
|
276
|
+
|
277
|
+
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
|
278
|
+
|
279
|
+
if needs_upcasting:
|
280
|
+
self.vqvae.float()
|
281
|
+
|
282
|
+
latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents
|
283
|
+
latents_bsz, channels, latents_height, latents_width = latents.shape
|
284
|
+
latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width)
|
285
|
+
latents = self.scheduler.add_noise(
|
286
|
+
latents, self.scheduler.timesteps[start_timestep_idx - 1], generator=generator
|
287
|
+
)
|
288
|
+
latents = latents.repeat(num_images_per_prompt, 1, 1)
|
289
|
+
|
290
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
291
|
+
for i in range(start_timestep_idx, len(self.scheduler.timesteps)):
|
292
|
+
timestep = self.scheduler.timesteps[i]
|
293
|
+
|
294
|
+
if guidance_scale > 1.0:
|
295
|
+
model_input = torch.cat([latents] * 2)
|
296
|
+
else:
|
297
|
+
model_input = latents
|
298
|
+
|
299
|
+
model_output = self.transformer(
|
300
|
+
model_input,
|
301
|
+
micro_conds=micro_conds,
|
302
|
+
pooled_text_emb=prompt_embeds,
|
303
|
+
encoder_hidden_states=encoder_hidden_states,
|
304
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
305
|
+
)
|
306
|
+
|
307
|
+
if guidance_scale > 1.0:
|
308
|
+
uncond_logits, cond_logits = model_output.chunk(2)
|
309
|
+
model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
|
310
|
+
|
311
|
+
latents = self.scheduler.step(
|
312
|
+
model_output=model_output,
|
313
|
+
timestep=timestep,
|
314
|
+
sample=latents,
|
315
|
+
generator=generator,
|
316
|
+
).prev_sample
|
317
|
+
|
318
|
+
if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
|
319
|
+
progress_bar.update()
|
320
|
+
if callback is not None and i % callback_steps == 0:
|
321
|
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
322
|
+
callback(step_idx, timestep, latents)
|
323
|
+
|
324
|
+
if output_type == "latent":
|
325
|
+
output = latents
|
326
|
+
else:
|
327
|
+
output = self.vqvae.decode(
|
328
|
+
latents,
|
329
|
+
force_not_quantize=True,
|
330
|
+
shape=(
|
331
|
+
batch_size,
|
332
|
+
height // self.vae_scale_factor,
|
333
|
+
width // self.vae_scale_factor,
|
334
|
+
self.vqvae.config.latent_channels,
|
335
|
+
),
|
336
|
+
).sample.clip(0, 1)
|
337
|
+
output = self.image_processor.postprocess(output, output_type)
|
338
|
+
|
339
|
+
if needs_upcasting:
|
340
|
+
self.vqvae.half()
|
341
|
+
|
342
|
+
self.maybe_free_model_hooks()
|
343
|
+
|
344
|
+
if not return_dict:
|
345
|
+
return (output,)
|
346
|
+
|
347
|
+
return ImagePipelineOutput(output)
|