diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
diffusers/models/resnet.py
CHANGED
@@ -23,530 +23,23 @@ import torch.nn.functional as F
|
|
23
23
|
from ..utils import USE_PEFT_BACKEND
|
24
24
|
from .activations import get_activation
|
25
25
|
from .attention_processor import SpatialNorm
|
26
|
+
from .downsampling import ( # noqa
|
27
|
+
Downsample1D,
|
28
|
+
Downsample2D,
|
29
|
+
FirDownsample2D,
|
30
|
+
KDownsample2D,
|
31
|
+
downsample_2d,
|
32
|
+
)
|
26
33
|
from .lora import LoRACompatibleConv, LoRACompatibleLinear
|
27
34
|
from .normalization import AdaGroupNorm
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
use_conv (`bool`, default `False`):
|
37
|
-
option to use a convolution.
|
38
|
-
use_conv_transpose (`bool`, default `False`):
|
39
|
-
option to use a convolution transpose.
|
40
|
-
out_channels (`int`, optional):
|
41
|
-
number of output channels. Defaults to `channels`.
|
42
|
-
name (`str`, default `conv`):
|
43
|
-
name of the upsampling 1D layer.
|
44
|
-
"""
|
45
|
-
|
46
|
-
def __init__(
|
47
|
-
self,
|
48
|
-
channels: int,
|
49
|
-
use_conv: bool = False,
|
50
|
-
use_conv_transpose: bool = False,
|
51
|
-
out_channels: Optional[int] = None,
|
52
|
-
name: str = "conv",
|
53
|
-
):
|
54
|
-
super().__init__()
|
55
|
-
self.channels = channels
|
56
|
-
self.out_channels = out_channels or channels
|
57
|
-
self.use_conv = use_conv
|
58
|
-
self.use_conv_transpose = use_conv_transpose
|
59
|
-
self.name = name
|
60
|
-
|
61
|
-
self.conv = None
|
62
|
-
if use_conv_transpose:
|
63
|
-
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
|
64
|
-
elif use_conv:
|
65
|
-
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
|
66
|
-
|
67
|
-
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
68
|
-
assert inputs.shape[1] == self.channels
|
69
|
-
if self.use_conv_transpose:
|
70
|
-
return self.conv(inputs)
|
71
|
-
|
72
|
-
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
|
73
|
-
|
74
|
-
if self.use_conv:
|
75
|
-
outputs = self.conv(outputs)
|
76
|
-
|
77
|
-
return outputs
|
78
|
-
|
79
|
-
|
80
|
-
class Downsample1D(nn.Module):
|
81
|
-
"""A 1D downsampling layer with an optional convolution.
|
82
|
-
|
83
|
-
Parameters:
|
84
|
-
channels (`int`):
|
85
|
-
number of channels in the inputs and outputs.
|
86
|
-
use_conv (`bool`, default `False`):
|
87
|
-
option to use a convolution.
|
88
|
-
out_channels (`int`, optional):
|
89
|
-
number of output channels. Defaults to `channels`.
|
90
|
-
padding (`int`, default `1`):
|
91
|
-
padding for the convolution.
|
92
|
-
name (`str`, default `conv`):
|
93
|
-
name of the downsampling 1D layer.
|
94
|
-
"""
|
95
|
-
|
96
|
-
def __init__(
|
97
|
-
self,
|
98
|
-
channels: int,
|
99
|
-
use_conv: bool = False,
|
100
|
-
out_channels: Optional[int] = None,
|
101
|
-
padding: int = 1,
|
102
|
-
name: str = "conv",
|
103
|
-
):
|
104
|
-
super().__init__()
|
105
|
-
self.channels = channels
|
106
|
-
self.out_channels = out_channels or channels
|
107
|
-
self.use_conv = use_conv
|
108
|
-
self.padding = padding
|
109
|
-
stride = 2
|
110
|
-
self.name = name
|
111
|
-
|
112
|
-
if use_conv:
|
113
|
-
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
114
|
-
else:
|
115
|
-
assert self.channels == self.out_channels
|
116
|
-
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
|
117
|
-
|
118
|
-
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
119
|
-
assert inputs.shape[1] == self.channels
|
120
|
-
return self.conv(inputs)
|
121
|
-
|
122
|
-
|
123
|
-
class Upsample2D(nn.Module):
|
124
|
-
"""A 2D upsampling layer with an optional convolution.
|
125
|
-
|
126
|
-
Parameters:
|
127
|
-
channels (`int`):
|
128
|
-
number of channels in the inputs and outputs.
|
129
|
-
use_conv (`bool`, default `False`):
|
130
|
-
option to use a convolution.
|
131
|
-
use_conv_transpose (`bool`, default `False`):
|
132
|
-
option to use a convolution transpose.
|
133
|
-
out_channels (`int`, optional):
|
134
|
-
number of output channels. Defaults to `channels`.
|
135
|
-
name (`str`, default `conv`):
|
136
|
-
name of the upsampling 2D layer.
|
137
|
-
"""
|
138
|
-
|
139
|
-
def __init__(
|
140
|
-
self,
|
141
|
-
channels: int,
|
142
|
-
use_conv: bool = False,
|
143
|
-
use_conv_transpose: bool = False,
|
144
|
-
out_channels: Optional[int] = None,
|
145
|
-
name: str = "conv",
|
146
|
-
):
|
147
|
-
super().__init__()
|
148
|
-
self.channels = channels
|
149
|
-
self.out_channels = out_channels or channels
|
150
|
-
self.use_conv = use_conv
|
151
|
-
self.use_conv_transpose = use_conv_transpose
|
152
|
-
self.name = name
|
153
|
-
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
154
|
-
|
155
|
-
conv = None
|
156
|
-
if use_conv_transpose:
|
157
|
-
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
|
158
|
-
elif use_conv:
|
159
|
-
conv = conv_cls(self.channels, self.out_channels, 3, padding=1)
|
160
|
-
|
161
|
-
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
162
|
-
if name == "conv":
|
163
|
-
self.conv = conv
|
164
|
-
else:
|
165
|
-
self.Conv2d_0 = conv
|
166
|
-
|
167
|
-
def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None, scale: float = 1.0):
|
168
|
-
assert hidden_states.shape[1] == self.channels
|
169
|
-
|
170
|
-
if self.use_conv_transpose:
|
171
|
-
return self.conv(hidden_states)
|
172
|
-
|
173
|
-
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
174
|
-
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
175
|
-
# https://github.com/pytorch/pytorch/issues/86679
|
176
|
-
dtype = hidden_states.dtype
|
177
|
-
if dtype == torch.bfloat16:
|
178
|
-
hidden_states = hidden_states.to(torch.float32)
|
179
|
-
|
180
|
-
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
181
|
-
if hidden_states.shape[0] >= 64:
|
182
|
-
hidden_states = hidden_states.contiguous()
|
183
|
-
|
184
|
-
# if `output_size` is passed we force the interpolation output
|
185
|
-
# size and do not make use of `scale_factor=2`
|
186
|
-
if output_size is None:
|
187
|
-
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
188
|
-
else:
|
189
|
-
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
190
|
-
|
191
|
-
# If the input is bfloat16, we cast back to bfloat16
|
192
|
-
if dtype == torch.bfloat16:
|
193
|
-
hidden_states = hidden_states.to(dtype)
|
194
|
-
|
195
|
-
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
196
|
-
if self.use_conv:
|
197
|
-
if self.name == "conv":
|
198
|
-
if isinstance(self.conv, LoRACompatibleConv) and not USE_PEFT_BACKEND:
|
199
|
-
hidden_states = self.conv(hidden_states, scale)
|
200
|
-
else:
|
201
|
-
hidden_states = self.conv(hidden_states)
|
202
|
-
else:
|
203
|
-
if isinstance(self.Conv2d_0, LoRACompatibleConv) and not USE_PEFT_BACKEND:
|
204
|
-
hidden_states = self.Conv2d_0(hidden_states, scale)
|
205
|
-
else:
|
206
|
-
hidden_states = self.Conv2d_0(hidden_states)
|
207
|
-
|
208
|
-
return hidden_states
|
209
|
-
|
210
|
-
|
211
|
-
class Downsample2D(nn.Module):
|
212
|
-
"""A 2D downsampling layer with an optional convolution.
|
213
|
-
|
214
|
-
Parameters:
|
215
|
-
channels (`int`):
|
216
|
-
number of channels in the inputs and outputs.
|
217
|
-
use_conv (`bool`, default `False`):
|
218
|
-
option to use a convolution.
|
219
|
-
out_channels (`int`, optional):
|
220
|
-
number of output channels. Defaults to `channels`.
|
221
|
-
padding (`int`, default `1`):
|
222
|
-
padding for the convolution.
|
223
|
-
name (`str`, default `conv`):
|
224
|
-
name of the downsampling 2D layer.
|
225
|
-
"""
|
226
|
-
|
227
|
-
def __init__(
|
228
|
-
self,
|
229
|
-
channels: int,
|
230
|
-
use_conv: bool = False,
|
231
|
-
out_channels: Optional[int] = None,
|
232
|
-
padding: int = 1,
|
233
|
-
name: str = "conv",
|
234
|
-
):
|
235
|
-
super().__init__()
|
236
|
-
self.channels = channels
|
237
|
-
self.out_channels = out_channels or channels
|
238
|
-
self.use_conv = use_conv
|
239
|
-
self.padding = padding
|
240
|
-
stride = 2
|
241
|
-
self.name = name
|
242
|
-
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
243
|
-
|
244
|
-
if use_conv:
|
245
|
-
conv = conv_cls(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
246
|
-
else:
|
247
|
-
assert self.channels == self.out_channels
|
248
|
-
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
249
|
-
|
250
|
-
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
251
|
-
if name == "conv":
|
252
|
-
self.Conv2d_0 = conv
|
253
|
-
self.conv = conv
|
254
|
-
elif name == "Conv2d_0":
|
255
|
-
self.conv = conv
|
256
|
-
else:
|
257
|
-
self.conv = conv
|
258
|
-
|
259
|
-
def forward(self, hidden_states, scale: float = 1.0):
|
260
|
-
assert hidden_states.shape[1] == self.channels
|
261
|
-
|
262
|
-
if self.use_conv and self.padding == 0:
|
263
|
-
pad = (0, 1, 0, 1)
|
264
|
-
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
|
265
|
-
|
266
|
-
assert hidden_states.shape[1] == self.channels
|
267
|
-
|
268
|
-
if not USE_PEFT_BACKEND:
|
269
|
-
if isinstance(self.conv, LoRACompatibleConv):
|
270
|
-
hidden_states = self.conv(hidden_states, scale)
|
271
|
-
else:
|
272
|
-
hidden_states = self.conv(hidden_states)
|
273
|
-
else:
|
274
|
-
hidden_states = self.conv(hidden_states)
|
275
|
-
|
276
|
-
return hidden_states
|
277
|
-
|
278
|
-
|
279
|
-
class FirUpsample2D(nn.Module):
|
280
|
-
"""A 2D FIR upsampling layer with an optional convolution.
|
281
|
-
|
282
|
-
Parameters:
|
283
|
-
channels (`int`):
|
284
|
-
number of channels in the inputs and outputs.
|
285
|
-
use_conv (`bool`, default `False`):
|
286
|
-
option to use a convolution.
|
287
|
-
out_channels (`int`, optional):
|
288
|
-
number of output channels. Defaults to `channels`.
|
289
|
-
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
|
290
|
-
kernel for the FIR filter.
|
291
|
-
"""
|
292
|
-
|
293
|
-
def __init__(
|
294
|
-
self,
|
295
|
-
channels: int = None,
|
296
|
-
out_channels: Optional[int] = None,
|
297
|
-
use_conv: bool = False,
|
298
|
-
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
|
299
|
-
):
|
300
|
-
super().__init__()
|
301
|
-
out_channels = out_channels if out_channels else channels
|
302
|
-
if use_conv:
|
303
|
-
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
|
304
|
-
self.use_conv = use_conv
|
305
|
-
self.fir_kernel = fir_kernel
|
306
|
-
self.out_channels = out_channels
|
307
|
-
|
308
|
-
def _upsample_2d(
|
309
|
-
self,
|
310
|
-
hidden_states: torch.Tensor,
|
311
|
-
weight: Optional[torch.Tensor] = None,
|
312
|
-
kernel: Optional[torch.FloatTensor] = None,
|
313
|
-
factor: int = 2,
|
314
|
-
gain: float = 1,
|
315
|
-
) -> torch.Tensor:
|
316
|
-
"""Fused `upsample_2d()` followed by `Conv2d()`.
|
317
|
-
|
318
|
-
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
319
|
-
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
|
320
|
-
arbitrary order.
|
321
|
-
|
322
|
-
Args:
|
323
|
-
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
324
|
-
weight: Weight tensor of the shape `[filterH, filterW, inChannels,
|
325
|
-
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
|
326
|
-
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
327
|
-
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
328
|
-
factor: Integer upsampling factor (default: 2).
|
329
|
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
330
|
-
|
331
|
-
Returns:
|
332
|
-
output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
|
333
|
-
datatype as `hidden_states`.
|
334
|
-
"""
|
335
|
-
|
336
|
-
assert isinstance(factor, int) and factor >= 1
|
337
|
-
|
338
|
-
# Setup filter kernel.
|
339
|
-
if kernel is None:
|
340
|
-
kernel = [1] * factor
|
341
|
-
|
342
|
-
# setup kernel
|
343
|
-
kernel = torch.tensor(kernel, dtype=torch.float32)
|
344
|
-
if kernel.ndim == 1:
|
345
|
-
kernel = torch.outer(kernel, kernel)
|
346
|
-
kernel /= torch.sum(kernel)
|
347
|
-
|
348
|
-
kernel = kernel * (gain * (factor**2))
|
349
|
-
|
350
|
-
if self.use_conv:
|
351
|
-
convH = weight.shape[2]
|
352
|
-
convW = weight.shape[3]
|
353
|
-
inC = weight.shape[1]
|
354
|
-
|
355
|
-
pad_value = (kernel.shape[0] - factor) - (convW - 1)
|
356
|
-
|
357
|
-
stride = (factor, factor)
|
358
|
-
# Determine data dimensions.
|
359
|
-
output_shape = (
|
360
|
-
(hidden_states.shape[2] - 1) * factor + convH,
|
361
|
-
(hidden_states.shape[3] - 1) * factor + convW,
|
362
|
-
)
|
363
|
-
output_padding = (
|
364
|
-
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
|
365
|
-
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
|
366
|
-
)
|
367
|
-
assert output_padding[0] >= 0 and output_padding[1] >= 0
|
368
|
-
num_groups = hidden_states.shape[1] // inC
|
369
|
-
|
370
|
-
# Transpose weights.
|
371
|
-
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
|
372
|
-
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
|
373
|
-
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
|
374
|
-
|
375
|
-
inverse_conv = F.conv_transpose2d(
|
376
|
-
hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
|
377
|
-
)
|
378
|
-
|
379
|
-
output = upfirdn2d_native(
|
380
|
-
inverse_conv,
|
381
|
-
torch.tensor(kernel, device=inverse_conv.device),
|
382
|
-
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
|
383
|
-
)
|
384
|
-
else:
|
385
|
-
pad_value = kernel.shape[0] - factor
|
386
|
-
output = upfirdn2d_native(
|
387
|
-
hidden_states,
|
388
|
-
torch.tensor(kernel, device=hidden_states.device),
|
389
|
-
up=factor,
|
390
|
-
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
|
391
|
-
)
|
392
|
-
|
393
|
-
return output
|
394
|
-
|
395
|
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
396
|
-
if self.use_conv:
|
397
|
-
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
|
398
|
-
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
399
|
-
else:
|
400
|
-
height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
|
401
|
-
|
402
|
-
return height
|
403
|
-
|
404
|
-
|
405
|
-
class FirDownsample2D(nn.Module):
|
406
|
-
"""A 2D FIR downsampling layer with an optional convolution.
|
407
|
-
|
408
|
-
Parameters:
|
409
|
-
channels (`int`):
|
410
|
-
number of channels in the inputs and outputs.
|
411
|
-
use_conv (`bool`, default `False`):
|
412
|
-
option to use a convolution.
|
413
|
-
out_channels (`int`, optional):
|
414
|
-
number of output channels. Defaults to `channels`.
|
415
|
-
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
|
416
|
-
kernel for the FIR filter.
|
417
|
-
"""
|
418
|
-
|
419
|
-
def __init__(
|
420
|
-
self,
|
421
|
-
channels: int = None,
|
422
|
-
out_channels: Optional[int] = None,
|
423
|
-
use_conv: bool = False,
|
424
|
-
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
|
425
|
-
):
|
426
|
-
super().__init__()
|
427
|
-
out_channels = out_channels if out_channels else channels
|
428
|
-
if use_conv:
|
429
|
-
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
|
430
|
-
self.fir_kernel = fir_kernel
|
431
|
-
self.use_conv = use_conv
|
432
|
-
self.out_channels = out_channels
|
433
|
-
|
434
|
-
def _downsample_2d(
|
435
|
-
self,
|
436
|
-
hidden_states: torch.Tensor,
|
437
|
-
weight: Optional[torch.Tensor] = None,
|
438
|
-
kernel: Optional[torch.FloatTensor] = None,
|
439
|
-
factor: int = 2,
|
440
|
-
gain: float = 1,
|
441
|
-
) -> torch.Tensor:
|
442
|
-
"""Fused `Conv2d()` followed by `downsample_2d()`.
|
443
|
-
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
444
|
-
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
|
445
|
-
arbitrary order.
|
446
|
-
|
447
|
-
Args:
|
448
|
-
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
449
|
-
weight:
|
450
|
-
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
|
451
|
-
performed by `inChannels = x.shape[0] // numGroups`.
|
452
|
-
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
|
453
|
-
factor`, which corresponds to average pooling.
|
454
|
-
factor: Integer downsampling factor (default: 2).
|
455
|
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
456
|
-
|
457
|
-
Returns:
|
458
|
-
output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and
|
459
|
-
same datatype as `x`.
|
460
|
-
"""
|
461
|
-
|
462
|
-
assert isinstance(factor, int) and factor >= 1
|
463
|
-
if kernel is None:
|
464
|
-
kernel = [1] * factor
|
465
|
-
|
466
|
-
# setup kernel
|
467
|
-
kernel = torch.tensor(kernel, dtype=torch.float32)
|
468
|
-
if kernel.ndim == 1:
|
469
|
-
kernel = torch.outer(kernel, kernel)
|
470
|
-
kernel /= torch.sum(kernel)
|
471
|
-
|
472
|
-
kernel = kernel * gain
|
473
|
-
|
474
|
-
if self.use_conv:
|
475
|
-
_, _, convH, convW = weight.shape
|
476
|
-
pad_value = (kernel.shape[0] - factor) + (convW - 1)
|
477
|
-
stride_value = [factor, factor]
|
478
|
-
upfirdn_input = upfirdn2d_native(
|
479
|
-
hidden_states,
|
480
|
-
torch.tensor(kernel, device=hidden_states.device),
|
481
|
-
pad=((pad_value + 1) // 2, pad_value // 2),
|
482
|
-
)
|
483
|
-
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
|
484
|
-
else:
|
485
|
-
pad_value = kernel.shape[0] - factor
|
486
|
-
output = upfirdn2d_native(
|
487
|
-
hidden_states,
|
488
|
-
torch.tensor(kernel, device=hidden_states.device),
|
489
|
-
down=factor,
|
490
|
-
pad=((pad_value + 1) // 2, pad_value // 2),
|
491
|
-
)
|
492
|
-
|
493
|
-
return output
|
494
|
-
|
495
|
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
496
|
-
if self.use_conv:
|
497
|
-
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
|
498
|
-
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
499
|
-
else:
|
500
|
-
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
|
501
|
-
|
502
|
-
return hidden_states
|
503
|
-
|
504
|
-
|
505
|
-
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
|
506
|
-
class KDownsample2D(nn.Module):
|
507
|
-
r"""A 2D K-downsampling layer.
|
508
|
-
|
509
|
-
Parameters:
|
510
|
-
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
|
511
|
-
"""
|
512
|
-
|
513
|
-
def __init__(self, pad_mode: str = "reflect"):
|
514
|
-
super().__init__()
|
515
|
-
self.pad_mode = pad_mode
|
516
|
-
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
|
517
|
-
self.pad = kernel_1d.shape[1] // 2 - 1
|
518
|
-
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
|
519
|
-
|
520
|
-
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
521
|
-
inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode)
|
522
|
-
weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
|
523
|
-
indices = torch.arange(inputs.shape[1], device=inputs.device)
|
524
|
-
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
|
525
|
-
weight[indices, indices] = kernel
|
526
|
-
return F.conv2d(inputs, weight, stride=2)
|
527
|
-
|
528
|
-
|
529
|
-
class KUpsample2D(nn.Module):
|
530
|
-
r"""A 2D K-upsampling layer.
|
531
|
-
|
532
|
-
Parameters:
|
533
|
-
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
|
534
|
-
"""
|
535
|
-
|
536
|
-
def __init__(self, pad_mode: str = "reflect"):
|
537
|
-
super().__init__()
|
538
|
-
self.pad_mode = pad_mode
|
539
|
-
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
|
540
|
-
self.pad = kernel_1d.shape[1] // 2 - 1
|
541
|
-
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
|
542
|
-
|
543
|
-
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
544
|
-
inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode)
|
545
|
-
weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
|
546
|
-
indices = torch.arange(inputs.shape[1], device=inputs.device)
|
547
|
-
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
|
548
|
-
weight[indices, indices] = kernel
|
549
|
-
return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)
|
35
|
+
from .upsampling import ( # noqa
|
36
|
+
FirUpsample2D,
|
37
|
+
KUpsample2D,
|
38
|
+
Upsample1D,
|
39
|
+
Upsample2D,
|
40
|
+
upfirdn2d_native,
|
41
|
+
upsample_2d,
|
42
|
+
)
|
550
43
|
|
551
44
|
|
552
45
|
class ResnetBlock2D(nn.Module):
|
@@ -679,10 +172,20 @@ class ResnetBlock2D(nn.Module):
|
|
679
172
|
self.conv_shortcut = None
|
680
173
|
if self.use_in_shortcut:
|
681
174
|
self.conv_shortcut = conv_cls(
|
682
|
-
in_channels,
|
175
|
+
in_channels,
|
176
|
+
conv_2d_out_channels,
|
177
|
+
kernel_size=1,
|
178
|
+
stride=1,
|
179
|
+
padding=0,
|
180
|
+
bias=conv_shortcut_bias,
|
683
181
|
)
|
684
182
|
|
685
|
-
def forward(
|
183
|
+
def forward(
|
184
|
+
self,
|
185
|
+
input_tensor: torch.FloatTensor,
|
186
|
+
temb: torch.FloatTensor,
|
187
|
+
scale: float = 1.0,
|
188
|
+
) -> torch.FloatTensor:
|
686
189
|
hidden_states = input_tensor
|
687
190
|
|
688
191
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
@@ -778,7 +281,7 @@ class Conv1dBlock(nn.Module):
|
|
778
281
|
out_channels (`int`): Number of output channels.
|
779
282
|
kernel_size (`int` or `tuple`): Size of the convolving kernel.
|
780
283
|
n_groups (`int`, default `8`): Number of groups to separate the channels into.
|
781
|
-
activation (`str`, defaults `mish`): Name of the activation function.
|
284
|
+
activation (`str`, defaults to `mish`): Name of the activation function.
|
782
285
|
"""
|
783
286
|
|
784
287
|
def __init__(
|
@@ -852,128 +355,6 @@ class ResidualTemporalBlock1D(nn.Module):
|
|
852
355
|
return out + self.residual_conv(inputs)
|
853
356
|
|
854
357
|
|
855
|
-
def upsample_2d(
|
856
|
-
hidden_states: torch.Tensor, kernel: Optional[torch.FloatTensor] = None, factor: int = 2, gain: float = 1
|
857
|
-
) -> torch.Tensor:
|
858
|
-
r"""Upsample2D a batch of 2D images with the given filter.
|
859
|
-
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
|
860
|
-
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
|
861
|
-
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
|
862
|
-
a: multiple of the upsampling factor.
|
863
|
-
|
864
|
-
Args:
|
865
|
-
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
866
|
-
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
867
|
-
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
868
|
-
factor: Integer upsampling factor (default: 2).
|
869
|
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
870
|
-
|
871
|
-
Returns:
|
872
|
-
output: Tensor of the shape `[N, C, H * factor, W * factor]`
|
873
|
-
"""
|
874
|
-
assert isinstance(factor, int) and factor >= 1
|
875
|
-
if kernel is None:
|
876
|
-
kernel = [1] * factor
|
877
|
-
|
878
|
-
kernel = torch.tensor(kernel, dtype=torch.float32)
|
879
|
-
if kernel.ndim == 1:
|
880
|
-
kernel = torch.outer(kernel, kernel)
|
881
|
-
kernel /= torch.sum(kernel)
|
882
|
-
|
883
|
-
kernel = kernel * (gain * (factor**2))
|
884
|
-
pad_value = kernel.shape[0] - factor
|
885
|
-
output = upfirdn2d_native(
|
886
|
-
hidden_states,
|
887
|
-
kernel.to(device=hidden_states.device),
|
888
|
-
up=factor,
|
889
|
-
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
|
890
|
-
)
|
891
|
-
return output
|
892
|
-
|
893
|
-
|
894
|
-
def downsample_2d(
|
895
|
-
hidden_states: torch.Tensor, kernel: Optional[torch.FloatTensor] = None, factor: int = 2, gain: float = 1
|
896
|
-
) -> torch.Tensor:
|
897
|
-
r"""Downsample2D a batch of 2D images with the given filter.
|
898
|
-
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
899
|
-
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
900
|
-
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
|
901
|
-
shape is a multiple of the downsampling factor.
|
902
|
-
|
903
|
-
Args:
|
904
|
-
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
905
|
-
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
906
|
-
(separable). The default is `[1] * factor`, which corresponds to average pooling.
|
907
|
-
factor: Integer downsampling factor (default: 2).
|
908
|
-
gain: Scaling factor for signal magnitude (default: 1.0).
|
909
|
-
|
910
|
-
Returns:
|
911
|
-
output: Tensor of the shape `[N, C, H // factor, W // factor]`
|
912
|
-
"""
|
913
|
-
|
914
|
-
assert isinstance(factor, int) and factor >= 1
|
915
|
-
if kernel is None:
|
916
|
-
kernel = [1] * factor
|
917
|
-
|
918
|
-
kernel = torch.tensor(kernel, dtype=torch.float32)
|
919
|
-
if kernel.ndim == 1:
|
920
|
-
kernel = torch.outer(kernel, kernel)
|
921
|
-
kernel /= torch.sum(kernel)
|
922
|
-
|
923
|
-
kernel = kernel * gain
|
924
|
-
pad_value = kernel.shape[0] - factor
|
925
|
-
output = upfirdn2d_native(
|
926
|
-
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
|
927
|
-
)
|
928
|
-
return output
|
929
|
-
|
930
|
-
|
931
|
-
def upfirdn2d_native(
|
932
|
-
tensor: torch.Tensor, kernel: torch.Tensor, up: int = 1, down: int = 1, pad: Tuple[int, int] = (0, 0)
|
933
|
-
) -> torch.Tensor:
|
934
|
-
up_x = up_y = up
|
935
|
-
down_x = down_y = down
|
936
|
-
pad_x0 = pad_y0 = pad[0]
|
937
|
-
pad_x1 = pad_y1 = pad[1]
|
938
|
-
|
939
|
-
_, channel, in_h, in_w = tensor.shape
|
940
|
-
tensor = tensor.reshape(-1, in_h, in_w, 1)
|
941
|
-
|
942
|
-
_, in_h, in_w, minor = tensor.shape
|
943
|
-
kernel_h, kernel_w = kernel.shape
|
944
|
-
|
945
|
-
out = tensor.view(-1, in_h, 1, in_w, 1, minor)
|
946
|
-
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
947
|
-
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
948
|
-
|
949
|
-
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
950
|
-
out = out.to(tensor.device) # Move back to mps if necessary
|
951
|
-
out = out[
|
952
|
-
:,
|
953
|
-
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
954
|
-
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
955
|
-
:,
|
956
|
-
]
|
957
|
-
|
958
|
-
out = out.permute(0, 3, 1, 2)
|
959
|
-
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
960
|
-
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
961
|
-
out = F.conv2d(out, w)
|
962
|
-
out = out.reshape(
|
963
|
-
-1,
|
964
|
-
minor,
|
965
|
-
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
966
|
-
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
967
|
-
)
|
968
|
-
out = out.permute(0, 2, 3, 1)
|
969
|
-
out = out[:, ::down_y, ::down_x, :]
|
970
|
-
|
971
|
-
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
972
|
-
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
973
|
-
|
974
|
-
return out.view(-1, channel, out_h, out_w)
|
975
|
-
|
976
|
-
|
977
358
|
class TemporalConvLayer(nn.Module):
|
978
359
|
"""
|
979
360
|
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
|
@@ -985,7 +366,13 @@ class TemporalConvLayer(nn.Module):
|
|
985
366
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
986
367
|
"""
|
987
368
|
|
988
|
-
def __init__(
|
369
|
+
def __init__(
|
370
|
+
self,
|
371
|
+
in_dim: int,
|
372
|
+
out_dim: Optional[int] = None,
|
373
|
+
dropout: float = 0.0,
|
374
|
+
norm_num_groups: int = 32,
|
375
|
+
):
|
989
376
|
super().__init__()
|
990
377
|
out_dim = out_dim or in_dim
|
991
378
|
self.in_dim = in_dim
|
@@ -993,22 +380,24 @@ class TemporalConvLayer(nn.Module):
|
|
993
380
|
|
994
381
|
# conv layers
|
995
382
|
self.conv1 = nn.Sequential(
|
996
|
-
nn.GroupNorm(
|
383
|
+
nn.GroupNorm(norm_num_groups, in_dim),
|
384
|
+
nn.SiLU(),
|
385
|
+
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)),
|
997
386
|
)
|
998
387
|
self.conv2 = nn.Sequential(
|
999
|
-
nn.GroupNorm(
|
388
|
+
nn.GroupNorm(norm_num_groups, out_dim),
|
1000
389
|
nn.SiLU(),
|
1001
390
|
nn.Dropout(dropout),
|
1002
391
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
1003
392
|
)
|
1004
393
|
self.conv3 = nn.Sequential(
|
1005
|
-
nn.GroupNorm(
|
394
|
+
nn.GroupNorm(norm_num_groups, out_dim),
|
1006
395
|
nn.SiLU(),
|
1007
396
|
nn.Dropout(dropout),
|
1008
397
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
1009
398
|
)
|
1010
399
|
self.conv4 = nn.Sequential(
|
1011
|
-
nn.GroupNorm(
|
400
|
+
nn.GroupNorm(norm_num_groups, out_dim),
|
1012
401
|
nn.SiLU(),
|
1013
402
|
nn.Dropout(dropout),
|
1014
403
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
@@ -1035,3 +424,261 @@ class TemporalConvLayer(nn.Module):
|
|
1035
424
|
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
|
1036
425
|
)
|
1037
426
|
return hidden_states
|
427
|
+
|
428
|
+
|
429
|
+
class TemporalResnetBlock(nn.Module):
|
430
|
+
r"""
|
431
|
+
A Resnet block.
|
432
|
+
|
433
|
+
Parameters:
|
434
|
+
in_channels (`int`): The number of channels in the input.
|
435
|
+
out_channels (`int`, *optional*, default to be `None`):
|
436
|
+
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
|
437
|
+
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
|
438
|
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
439
|
+
"""
|
440
|
+
|
441
|
+
def __init__(
|
442
|
+
self,
|
443
|
+
in_channels: int,
|
444
|
+
out_channels: Optional[int] = None,
|
445
|
+
temb_channels: int = 512,
|
446
|
+
eps: float = 1e-6,
|
447
|
+
):
|
448
|
+
super().__init__()
|
449
|
+
self.in_channels = in_channels
|
450
|
+
out_channels = in_channels if out_channels is None else out_channels
|
451
|
+
self.out_channels = out_channels
|
452
|
+
|
453
|
+
kernel_size = (3, 1, 1)
|
454
|
+
padding = [k // 2 for k in kernel_size]
|
455
|
+
|
456
|
+
self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True)
|
457
|
+
self.conv1 = nn.Conv3d(
|
458
|
+
in_channels,
|
459
|
+
out_channels,
|
460
|
+
kernel_size=kernel_size,
|
461
|
+
stride=1,
|
462
|
+
padding=padding,
|
463
|
+
)
|
464
|
+
|
465
|
+
if temb_channels is not None:
|
466
|
+
self.time_emb_proj = nn.Linear(temb_channels, out_channels)
|
467
|
+
else:
|
468
|
+
self.time_emb_proj = None
|
469
|
+
|
470
|
+
self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True)
|
471
|
+
|
472
|
+
self.dropout = torch.nn.Dropout(0.0)
|
473
|
+
self.conv2 = nn.Conv3d(
|
474
|
+
out_channels,
|
475
|
+
out_channels,
|
476
|
+
kernel_size=kernel_size,
|
477
|
+
stride=1,
|
478
|
+
padding=padding,
|
479
|
+
)
|
480
|
+
|
481
|
+
self.nonlinearity = get_activation("silu")
|
482
|
+
|
483
|
+
self.use_in_shortcut = self.in_channels != out_channels
|
484
|
+
|
485
|
+
self.conv_shortcut = None
|
486
|
+
if self.use_in_shortcut:
|
487
|
+
self.conv_shortcut = nn.Conv3d(
|
488
|
+
in_channels,
|
489
|
+
out_channels,
|
490
|
+
kernel_size=1,
|
491
|
+
stride=1,
|
492
|
+
padding=0,
|
493
|
+
)
|
494
|
+
|
495
|
+
def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
|
496
|
+
hidden_states = input_tensor
|
497
|
+
|
498
|
+
hidden_states = self.norm1(hidden_states)
|
499
|
+
hidden_states = self.nonlinearity(hidden_states)
|
500
|
+
hidden_states = self.conv1(hidden_states)
|
501
|
+
|
502
|
+
if self.time_emb_proj is not None:
|
503
|
+
temb = self.nonlinearity(temb)
|
504
|
+
temb = self.time_emb_proj(temb)[:, :, :, None, None]
|
505
|
+
temb = temb.permute(0, 2, 1, 3, 4)
|
506
|
+
hidden_states = hidden_states + temb
|
507
|
+
|
508
|
+
hidden_states = self.norm2(hidden_states)
|
509
|
+
hidden_states = self.nonlinearity(hidden_states)
|
510
|
+
hidden_states = self.dropout(hidden_states)
|
511
|
+
hidden_states = self.conv2(hidden_states)
|
512
|
+
|
513
|
+
if self.conv_shortcut is not None:
|
514
|
+
input_tensor = self.conv_shortcut(input_tensor)
|
515
|
+
|
516
|
+
output_tensor = input_tensor + hidden_states
|
517
|
+
|
518
|
+
return output_tensor
|
519
|
+
|
520
|
+
|
521
|
+
# VideoResBlock
|
522
|
+
class SpatioTemporalResBlock(nn.Module):
|
523
|
+
r"""
|
524
|
+
A SpatioTemporal Resnet block.
|
525
|
+
|
526
|
+
Parameters:
|
527
|
+
in_channels (`int`): The number of channels in the input.
|
528
|
+
out_channels (`int`, *optional*, default to be `None`):
|
529
|
+
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
|
530
|
+
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
|
531
|
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet.
|
532
|
+
temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet.
|
533
|
+
merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing.
|
534
|
+
merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
|
535
|
+
The merge strategy to use for the temporal mixing.
|
536
|
+
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
|
537
|
+
If `True`, switch the spatial and temporal mixing.
|
538
|
+
"""
|
539
|
+
|
540
|
+
def __init__(
|
541
|
+
self,
|
542
|
+
in_channels: int,
|
543
|
+
out_channels: Optional[int] = None,
|
544
|
+
temb_channels: int = 512,
|
545
|
+
eps: float = 1e-6,
|
546
|
+
temporal_eps: Optional[float] = None,
|
547
|
+
merge_factor: float = 0.5,
|
548
|
+
merge_strategy="learned_with_images",
|
549
|
+
switch_spatial_to_temporal_mix: bool = False,
|
550
|
+
):
|
551
|
+
super().__init__()
|
552
|
+
|
553
|
+
self.spatial_res_block = ResnetBlock2D(
|
554
|
+
in_channels=in_channels,
|
555
|
+
out_channels=out_channels,
|
556
|
+
temb_channels=temb_channels,
|
557
|
+
eps=eps,
|
558
|
+
)
|
559
|
+
|
560
|
+
self.temporal_res_block = TemporalResnetBlock(
|
561
|
+
in_channels=out_channels if out_channels is not None else in_channels,
|
562
|
+
out_channels=out_channels if out_channels is not None else in_channels,
|
563
|
+
temb_channels=temb_channels,
|
564
|
+
eps=temporal_eps if temporal_eps is not None else eps,
|
565
|
+
)
|
566
|
+
|
567
|
+
self.time_mixer = AlphaBlender(
|
568
|
+
alpha=merge_factor,
|
569
|
+
merge_strategy=merge_strategy,
|
570
|
+
switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix,
|
571
|
+
)
|
572
|
+
|
573
|
+
def forward(
|
574
|
+
self,
|
575
|
+
hidden_states: torch.FloatTensor,
|
576
|
+
temb: Optional[torch.FloatTensor] = None,
|
577
|
+
image_only_indicator: Optional[torch.Tensor] = None,
|
578
|
+
):
|
579
|
+
num_frames = image_only_indicator.shape[-1]
|
580
|
+
hidden_states = self.spatial_res_block(hidden_states, temb)
|
581
|
+
|
582
|
+
batch_frames, channels, height, width = hidden_states.shape
|
583
|
+
batch_size = batch_frames // num_frames
|
584
|
+
|
585
|
+
hidden_states_mix = (
|
586
|
+
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
|
587
|
+
)
|
588
|
+
hidden_states = (
|
589
|
+
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
|
590
|
+
)
|
591
|
+
|
592
|
+
if temb is not None:
|
593
|
+
temb = temb.reshape(batch_size, num_frames, -1)
|
594
|
+
|
595
|
+
hidden_states = self.temporal_res_block(hidden_states, temb)
|
596
|
+
hidden_states = self.time_mixer(
|
597
|
+
x_spatial=hidden_states_mix,
|
598
|
+
x_temporal=hidden_states,
|
599
|
+
image_only_indicator=image_only_indicator,
|
600
|
+
)
|
601
|
+
|
602
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
|
603
|
+
return hidden_states
|
604
|
+
|
605
|
+
|
606
|
+
class AlphaBlender(nn.Module):
|
607
|
+
r"""
|
608
|
+
A module to blend spatial and temporal features.
|
609
|
+
|
610
|
+
Parameters:
|
611
|
+
alpha (`float`): The initial value of the blending factor.
|
612
|
+
merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
|
613
|
+
The merge strategy to use for the temporal mixing.
|
614
|
+
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
|
615
|
+
If `True`, switch the spatial and temporal mixing.
|
616
|
+
"""
|
617
|
+
|
618
|
+
strategies = ["learned", "fixed", "learned_with_images"]
|
619
|
+
|
620
|
+
def __init__(
|
621
|
+
self,
|
622
|
+
alpha: float,
|
623
|
+
merge_strategy: str = "learned_with_images",
|
624
|
+
switch_spatial_to_temporal_mix: bool = False,
|
625
|
+
):
|
626
|
+
super().__init__()
|
627
|
+
self.merge_strategy = merge_strategy
|
628
|
+
self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix # For TemporalVAE
|
629
|
+
|
630
|
+
if merge_strategy not in self.strategies:
|
631
|
+
raise ValueError(f"merge_strategy needs to be in {self.strategies}")
|
632
|
+
|
633
|
+
if self.merge_strategy == "fixed":
|
634
|
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
635
|
+
elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images":
|
636
|
+
self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha])))
|
637
|
+
else:
|
638
|
+
raise ValueError(f"Unknown merge strategy {self.merge_strategy}")
|
639
|
+
|
640
|
+
def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor:
|
641
|
+
if self.merge_strategy == "fixed":
|
642
|
+
alpha = self.mix_factor
|
643
|
+
|
644
|
+
elif self.merge_strategy == "learned":
|
645
|
+
alpha = torch.sigmoid(self.mix_factor)
|
646
|
+
|
647
|
+
elif self.merge_strategy == "learned_with_images":
|
648
|
+
if image_only_indicator is None:
|
649
|
+
raise ValueError("Please provide image_only_indicator to use learned_with_images merge strategy")
|
650
|
+
|
651
|
+
alpha = torch.where(
|
652
|
+
image_only_indicator.bool(),
|
653
|
+
torch.ones(1, 1, device=image_only_indicator.device),
|
654
|
+
torch.sigmoid(self.mix_factor)[..., None],
|
655
|
+
)
|
656
|
+
|
657
|
+
# (batch, channel, frames, height, width)
|
658
|
+
if ndims == 5:
|
659
|
+
alpha = alpha[:, None, :, None, None]
|
660
|
+
# (batch*frames, height*width, channels)
|
661
|
+
elif ndims == 3:
|
662
|
+
alpha = alpha.reshape(-1)[:, None, None]
|
663
|
+
else:
|
664
|
+
raise ValueError(f"Unexpected ndims {ndims}. Dimensions should be 3 or 5")
|
665
|
+
|
666
|
+
else:
|
667
|
+
raise NotImplementedError
|
668
|
+
|
669
|
+
return alpha
|
670
|
+
|
671
|
+
def forward(
|
672
|
+
self,
|
673
|
+
x_spatial: torch.Tensor,
|
674
|
+
x_temporal: torch.Tensor,
|
675
|
+
image_only_indicator: Optional[torch.Tensor] = None,
|
676
|
+
) -> torch.Tensor:
|
677
|
+
alpha = self.get_alpha(image_only_indicator, x_spatial.ndim)
|
678
|
+
alpha = alpha.to(x_spatial.dtype)
|
679
|
+
|
680
|
+
if self.switch_spatial_to_temporal_mix:
|
681
|
+
alpha = 1.0 - alpha
|
682
|
+
|
683
|
+
x = alpha * x_spatial + (1.0 - alpha) * x_temporal
|
684
|
+
return x
|