diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (238) hide show
  1. diffusers/__init__.py +26 -2
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +13 -8
  4. diffusers/dependency_versions_check.py +0 -1
  5. diffusers/dependency_versions_table.py +5 -5
  6. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  7. diffusers/image_processor.py +463 -51
  8. diffusers/loaders/__init__.py +82 -0
  9. diffusers/loaders/ip_adapter.py +159 -0
  10. diffusers/loaders/lora.py +1553 -0
  11. diffusers/loaders/lora_conversion_utils.py +284 -0
  12. diffusers/loaders/single_file.py +637 -0
  13. diffusers/loaders/textual_inversion.py +455 -0
  14. diffusers/loaders/unet.py +828 -0
  15. diffusers/loaders/utils.py +59 -0
  16. diffusers/models/__init__.py +26 -9
  17. diffusers/models/activations.py +9 -6
  18. diffusers/models/attention.py +301 -29
  19. diffusers/models/attention_flax.py +9 -1
  20. diffusers/models/attention_processor.py +378 -6
  21. diffusers/models/autoencoders/__init__.py +5 -0
  22. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
  23. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
  24. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
  25. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
  26. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
  27. diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
  28. diffusers/models/controlnet.py +59 -39
  29. diffusers/models/controlnet_flax.py +19 -18
  30. diffusers/models/downsampling.py +338 -0
  31. diffusers/models/embeddings.py +112 -29
  32. diffusers/models/embeddings_flax.py +2 -0
  33. diffusers/models/lora.py +131 -1
  34. diffusers/models/modeling_flax_utils.py +14 -8
  35. diffusers/models/modeling_outputs.py +17 -0
  36. diffusers/models/modeling_utils.py +37 -29
  37. diffusers/models/normalization.py +110 -4
  38. diffusers/models/resnet.py +299 -652
  39. diffusers/models/transformer_2d.py +22 -5
  40. diffusers/models/transformer_temporal.py +183 -1
  41. diffusers/models/unet_2d_blocks_flax.py +5 -0
  42. diffusers/models/unet_2d_condition.py +46 -0
  43. diffusers/models/unet_2d_condition_flax.py +13 -13
  44. diffusers/models/unet_3d_blocks.py +957 -173
  45. diffusers/models/unet_3d_condition.py +16 -8
  46. diffusers/models/unet_kandinsky3.py +535 -0
  47. diffusers/models/unet_motion_model.py +48 -33
  48. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  49. diffusers/models/upsampling.py +454 -0
  50. diffusers/models/uvit_2d.py +471 -0
  51. diffusers/models/vae_flax.py +7 -0
  52. diffusers/models/vq_model.py +12 -3
  53. diffusers/optimization.py +16 -9
  54. diffusers/pipelines/__init__.py +137 -76
  55. diffusers/pipelines/amused/__init__.py +62 -0
  56. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  57. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  58. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  59. diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
  60. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  61. diffusers/pipelines/auto_pipeline.py +23 -13
  62. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  63. diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
  64. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
  65. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
  66. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
  67. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
  68. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
  69. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  70. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  71. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  72. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  73. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  74. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  75. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  76. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  77. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  78. diffusers/pipelines/deprecated/__init__.py +153 -0
  79. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  80. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
  81. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
  82. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  83. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  84. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  85. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  86. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  87. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  88. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  89. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  90. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  91. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  92. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  93. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
  94. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  95. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  96. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  97. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  98. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  100. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
  101. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
  102. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
  103. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
  104. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
  105. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
  106. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  107. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  108. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  109. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
  110. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  111. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
  112. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
  113. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
  114. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  115. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  116. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  117. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  118. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  119. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  120. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  122. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  123. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  124. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
  125. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
  126. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
  127. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
  128. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  129. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  130. diffusers/pipelines/onnx_utils.py +8 -5
  131. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  132. diffusers/pipelines/pipeline_flax_utils.py +11 -8
  133. diffusers/pipelines/pipeline_utils.py +63 -42
  134. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
  135. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  136. diffusers/pipelines/stable_diffusion/__init__.py +37 -65
  137. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
  138. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  139. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  140. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  141. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
  142. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  143. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  144. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
  145. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
  146. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
  147. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  151. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  152. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
  153. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  154. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
  155. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  156. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
  157. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  158. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  159. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
  160. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  161. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
  162. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  163. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
  164. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  165. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  166. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
  171. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  172. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
  175. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
  179. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
  180. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  181. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  182. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  183. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  184. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  185. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  186. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  187. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
  188. diffusers/schedulers/__init__.py +4 -4
  189. diffusers/schedulers/deprecated/__init__.py +50 -0
  190. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  191. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  192. diffusers/schedulers/scheduling_amused.py +162 -0
  193. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  194. diffusers/schedulers/scheduling_ddim.py +1 -3
  195. diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
  196. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  197. diffusers/schedulers/scheduling_ddpm.py +47 -3
  198. diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
  199. diffusers/schedulers/scheduling_deis_multistep.py +28 -6
  200. diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
  201. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
  202. diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
  203. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
  204. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
  205. diffusers/schedulers/scheduling_euler_discrete.py +102 -16
  206. diffusers/schedulers/scheduling_heun_discrete.py +17 -5
  207. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
  208. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
  209. diffusers/schedulers/scheduling_lcm.py +123 -29
  210. diffusers/schedulers/scheduling_lms_discrete.py +3 -3
  211. diffusers/schedulers/scheduling_pndm.py +1 -3
  212. diffusers/schedulers/scheduling_repaint.py +1 -3
  213. diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
  214. diffusers/schedulers/scheduling_utils.py +3 -1
  215. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  216. diffusers/training_utils.py +1 -1
  217. diffusers/utils/__init__.py +1 -2
  218. diffusers/utils/constants.py +10 -12
  219. diffusers/utils/dummy_pt_objects.py +75 -0
  220. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  221. diffusers/utils/dynamic_modules_utils.py +18 -22
  222. diffusers/utils/export_utils.py +8 -3
  223. diffusers/utils/hub_utils.py +24 -36
  224. diffusers/utils/logging.py +11 -11
  225. diffusers/utils/outputs.py +5 -5
  226. diffusers/utils/peft_utils.py +88 -44
  227. diffusers/utils/state_dict_utils.py +8 -0
  228. diffusers/utils/testing_utils.py +199 -1
  229. diffusers/utils/torch_utils.py +4 -4
  230. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
  231. diffusers-0.25.0.dist-info/RECORD +360 -0
  232. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  233. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  234. diffusers/loaders.py +0 -3336
  235. diffusers-0.23.1.dist-info/RECORD +0 -323
  236. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  237. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  238. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -20,11 +20,11 @@ from typing import Any, Callable, Dict, List, Optional, Union
20
20
 
21
21
  import PIL.Image
22
22
  import torch
23
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
23
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
24
24
 
25
25
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
- from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
- from ...models import AutoencoderKL, UNet2DConditionModel
26
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
28
28
  from ...models.lora import adjust_lora_scale_text_encoder
29
29
  from ...schedulers import LCMScheduler
30
30
  from ...utils import (
@@ -44,15 +44,64 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
44
 
45
45
 
46
46
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
47
- def retrieve_latents(encoder_output, generator):
48
- if hasattr(encoder_output, "latent_dist"):
47
+ def retrieve_latents(
48
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
49
+ ):
50
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
49
51
  return encoder_output.latent_dist.sample(generator)
52
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
53
+ return encoder_output.latent_dist.mode()
50
54
  elif hasattr(encoder_output, "latents"):
51
55
  return encoder_output.latents
52
56
  else:
53
57
  raise AttributeError("Could not access latents of provided encoder_output")
54
58
 
55
59
 
60
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
61
+ def retrieve_timesteps(
62
+ scheduler,
63
+ num_inference_steps: Optional[int] = None,
64
+ device: Optional[Union[str, torch.device]] = None,
65
+ timesteps: Optional[List[int]] = None,
66
+ **kwargs,
67
+ ):
68
+ """
69
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
70
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
71
+
72
+ Args:
73
+ scheduler (`SchedulerMixin`):
74
+ The scheduler to get timesteps from.
75
+ num_inference_steps (`int`):
76
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
77
+ `timesteps` must be `None`.
78
+ device (`str` or `torch.device`, *optional*):
79
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
80
+ timesteps (`List[int]`, *optional*):
81
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
82
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
83
+ must be `None`.
84
+
85
+ Returns:
86
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
87
+ second element is the number of inference steps.
88
+ """
89
+ if timesteps is not None:
90
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
91
+ if not accepts_timesteps:
92
+ raise ValueError(
93
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
94
+ f" timestep schedules. Please check whether you are using the correct scheduler."
95
+ )
96
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
97
+ timesteps = scheduler.timesteps
98
+ num_inference_steps = len(timesteps)
99
+ else:
100
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
101
+ timesteps = scheduler.timesteps
102
+ return timesteps, num_inference_steps
103
+
104
+
56
105
  EXAMPLE_DOC_STRING = """
57
106
  Examples:
58
107
  ```py
@@ -80,7 +129,7 @@ EXAMPLE_DOC_STRING = """
80
129
 
81
130
 
82
131
  class LatentConsistencyModelImg2ImgPipeline(
83
- DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
132
+ DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
84
133
  ):
85
134
  r"""
86
135
  Pipeline for image-to-image generation using a latent consistency model.
@@ -93,6 +142,7 @@ class LatentConsistencyModelImg2ImgPipeline(
93
142
  - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
94
143
  - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
95
144
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
145
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
96
146
 
97
147
  Args:
98
148
  vae ([`AutoencoderKL`]):
@@ -115,8 +165,9 @@ class LatentConsistencyModelImg2ImgPipeline(
115
165
  requires_safety_checker (`bool`, *optional*, defaults to `True`):
116
166
  Whether the pipeline requires a safety checker component.
117
167
  """
168
+
118
169
  model_cpu_offload_seq = "text_encoder->unet->vae"
119
- _optional_components = ["safety_checker", "feature_extractor"]
170
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
120
171
  _exclude_from_cpu_offload = ["safety_checker"]
121
172
  _callback_tensor_inputs = ["latents", "denoised", "prompt_embeds", "w_embedding"]
122
173
 
@@ -129,6 +180,7 @@ class LatentConsistencyModelImg2ImgPipeline(
129
180
  scheduler: LCMScheduler,
130
181
  safety_checker: StableDiffusionSafetyChecker,
131
182
  feature_extractor: CLIPImageProcessor,
183
+ image_encoder: Optional[CLIPVisionModelWithProjection] = None,
132
184
  requires_safety_checker: bool = True,
133
185
  ):
134
186
  super().__init__()
@@ -141,6 +193,7 @@ class LatentConsistencyModelImg2ImgPipeline(
141
193
  scheduler=scheduler,
142
194
  safety_checker=safety_checker,
143
195
  feature_extractor=feature_extractor,
196
+ image_encoder=image_encoder,
144
197
  )
145
198
 
146
199
  if safety_checker is None and requires_safety_checker:
@@ -399,6 +452,31 @@ class LatentConsistencyModelImg2ImgPipeline(
399
452
 
400
453
  return prompt_embeds, negative_prompt_embeds
401
454
 
455
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
456
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
457
+ dtype = next(self.image_encoder.parameters()).dtype
458
+
459
+ if not isinstance(image, torch.Tensor):
460
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
461
+
462
+ image = image.to(device=device, dtype=dtype)
463
+ if output_hidden_states:
464
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
465
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
466
+ uncond_image_enc_hidden_states = self.image_encoder(
467
+ torch.zeros_like(image), output_hidden_states=True
468
+ ).hidden_states[-2]
469
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
470
+ num_images_per_prompt, dim=0
471
+ )
472
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
473
+ else:
474
+ image_embeds = self.image_encoder(image).image_embeds
475
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
476
+ uncond_image_embeds = torch.zeros_like(image_embeds)
477
+
478
+ return image_embeds, uncond_image_embeds
479
+
402
480
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
403
481
  def run_safety_checker(self, image, device, dtype):
404
482
  if self.safety_checker is None:
@@ -591,11 +669,13 @@ class LatentConsistencyModelImg2ImgPipeline(
591
669
  num_inference_steps: int = 4,
592
670
  strength: float = 0.8,
593
671
  original_inference_steps: int = None,
672
+ timesteps: List[int] = None,
594
673
  guidance_scale: float = 8.5,
595
674
  num_images_per_prompt: Optional[int] = 1,
596
675
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
597
676
  latents: Optional[torch.FloatTensor] = None,
598
677
  prompt_embeds: Optional[torch.FloatTensor] = None,
678
+ ip_adapter_image: Optional[PipelineImageInput] = None,
599
679
  output_type: Optional[str] = "pil",
600
680
  return_dict: bool = True,
601
681
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -622,6 +702,10 @@ class LatentConsistencyModelImg2ImgPipeline(
622
702
  we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule,
623
703
  following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the
624
704
  scheduler's `original_inference_steps` attribute.
705
+ timesteps (`List[int]`, *optional*):
706
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
707
+ timesteps on the original LCM training/distillation timestep schedule are used. Must be in descending
708
+ order.
625
709
  guidance_scale (`float`, *optional*, defaults to 7.5):
626
710
  A higher guidance scale value encourages the model to generate images closely linked to the text
627
711
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -640,6 +724,8 @@ class LatentConsistencyModelImg2ImgPipeline(
640
724
  prompt_embeds (`torch.FloatTensor`, *optional*):
641
725
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
642
726
  provided, text embeddings are generated from the `prompt` input argument.
727
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
728
+ Optional image input to work with IP Adapters.
643
729
  output_type (`str`, *optional*, defaults to `"pil"`):
644
730
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
645
731
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -659,7 +745,7 @@ class LatentConsistencyModelImg2ImgPipeline(
659
745
  callback_on_step_end_tensor_inputs (`List`, *optional*):
660
746
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
661
747
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
662
- `._callback_tensor_inputs` attribute of your pipeine class.
748
+ `._callback_tensor_inputs` attribute of your pipeline class.
663
749
 
664
750
  Examples:
665
751
 
@@ -703,6 +789,12 @@ class LatentConsistencyModelImg2ImgPipeline(
703
789
  device = self._execution_device
704
790
  # do_classifier_free_guidance = guidance_scale > 1.0
705
791
 
792
+ if ip_adapter_image is not None:
793
+ output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
794
+ image_embeds, negative_image_embeds = self.encode_image(
795
+ ip_adapter_image, device, num_images_per_prompt, output_hidden_state
796
+ )
797
+
706
798
  # 3. Encode input prompt
707
799
  lora_scale = (
708
800
  self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
@@ -727,10 +819,14 @@ class LatentConsistencyModelImg2ImgPipeline(
727
819
  image = self.image_processor.preprocess(image)
728
820
 
729
821
  # 5. Prepare timesteps
730
- self.scheduler.set_timesteps(
731
- num_inference_steps, device, original_inference_steps=original_inference_steps, strength=strength
822
+ timesteps, num_inference_steps = retrieve_timesteps(
823
+ self.scheduler,
824
+ num_inference_steps,
825
+ device,
826
+ timesteps,
827
+ original_inference_steps=original_inference_steps,
828
+ strength=strength,
732
829
  )
733
- timesteps = self.scheduler.timesteps
734
830
 
735
831
  # 6. Prepare latent variables
736
832
  original_inference_steps = (
@@ -756,6 +852,9 @@ class LatentConsistencyModelImg2ImgPipeline(
756
852
  # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
757
853
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None)
758
854
 
855
+ # 7.1 Add image embeds for IP-Adapter
856
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
857
+
759
858
  # 8. LCM Multistep Sampling Loop
760
859
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
761
860
  self._num_timesteps = len(timesteps)
@@ -770,6 +869,7 @@ class LatentConsistencyModelImg2ImgPipeline(
770
869
  timestep_cond=w_embedding,
771
870
  encoder_hidden_states=prompt_embeds,
772
871
  cross_attention_kwargs=self.cross_attention_kwargs,
872
+ added_cond_kwargs=added_cond_kwargs,
773
873
  return_dict=False,
774
874
  )[0]
775
875
 
@@ -19,11 +19,11 @@ import inspect
19
19
  from typing import Any, Callable, Dict, List, Optional, Union
20
20
 
21
21
  import torch
22
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
22
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
23
23
 
24
- from ...image_processor import VaeImageProcessor
25
- from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
26
- from ...models import AutoencoderKL, UNet2DConditionModel
24
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
25
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
26
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
27
27
  from ...models.lora import adjust_lora_scale_text_encoder
28
28
  from ...schedulers import LCMScheduler
29
29
  from ...utils import (
@@ -61,8 +61,53 @@ EXAMPLE_DOC_STRING = """
61
61
  """
62
62
 
63
63
 
64
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
65
+ def retrieve_timesteps(
66
+ scheduler,
67
+ num_inference_steps: Optional[int] = None,
68
+ device: Optional[Union[str, torch.device]] = None,
69
+ timesteps: Optional[List[int]] = None,
70
+ **kwargs,
71
+ ):
72
+ """
73
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
74
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
75
+
76
+ Args:
77
+ scheduler (`SchedulerMixin`):
78
+ The scheduler to get timesteps from.
79
+ num_inference_steps (`int`):
80
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
81
+ `timesteps` must be `None`.
82
+ device (`str` or `torch.device`, *optional*):
83
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
84
+ timesteps (`List[int]`, *optional*):
85
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
86
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
87
+ must be `None`.
88
+
89
+ Returns:
90
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
91
+ second element is the number of inference steps.
92
+ """
93
+ if timesteps is not None:
94
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
95
+ if not accepts_timesteps:
96
+ raise ValueError(
97
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
98
+ f" timestep schedules. Please check whether you are using the correct scheduler."
99
+ )
100
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
101
+ timesteps = scheduler.timesteps
102
+ num_inference_steps = len(timesteps)
103
+ else:
104
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
105
+ timesteps = scheduler.timesteps
106
+ return timesteps, num_inference_steps
107
+
108
+
64
109
  class LatentConsistencyModelPipeline(
65
- DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
110
+ DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
66
111
  ):
67
112
  r"""
68
113
  Pipeline for text-to-image generation using a latent consistency model.
@@ -75,6 +120,7 @@ class LatentConsistencyModelPipeline(
75
120
  - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
76
121
  - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
77
122
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
123
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
78
124
 
79
125
  Args:
80
126
  vae ([`AutoencoderKL`]):
@@ -97,8 +143,9 @@ class LatentConsistencyModelPipeline(
97
143
  requires_safety_checker (`bool`, *optional*, defaults to `True`):
98
144
  Whether the pipeline requires a safety checker component.
99
145
  """
146
+
100
147
  model_cpu_offload_seq = "text_encoder->unet->vae"
101
- _optional_components = ["safety_checker", "feature_extractor"]
148
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
102
149
  _exclude_from_cpu_offload = ["safety_checker"]
103
150
  _callback_tensor_inputs = ["latents", "denoised", "prompt_embeds", "w_embedding"]
104
151
 
@@ -111,6 +158,7 @@ class LatentConsistencyModelPipeline(
111
158
  scheduler: LCMScheduler,
112
159
  safety_checker: StableDiffusionSafetyChecker,
113
160
  feature_extractor: CLIPImageProcessor,
161
+ image_encoder: Optional[CLIPVisionModelWithProjection] = None,
114
162
  requires_safety_checker: bool = True,
115
163
  ):
116
164
  super().__init__()
@@ -139,6 +187,7 @@ class LatentConsistencyModelPipeline(
139
187
  scheduler=scheduler,
140
188
  safety_checker=safety_checker,
141
189
  feature_extractor=feature_extractor,
190
+ image_encoder=image_encoder,
142
191
  )
143
192
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
144
193
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@@ -387,6 +436,31 @@ class LatentConsistencyModelPipeline(
387
436
 
388
437
  return prompt_embeds, negative_prompt_embeds
389
438
 
439
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
440
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
441
+ dtype = next(self.image_encoder.parameters()).dtype
442
+
443
+ if not isinstance(image, torch.Tensor):
444
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
445
+
446
+ image = image.to(device=device, dtype=dtype)
447
+ if output_hidden_states:
448
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
449
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
450
+ uncond_image_enc_hidden_states = self.image_encoder(
451
+ torch.zeros_like(image), output_hidden_states=True
452
+ ).hidden_states[-2]
453
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
454
+ num_images_per_prompt, dim=0
455
+ )
456
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
457
+ else:
458
+ image_embeds = self.image_encoder(image).image_embeds
459
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
460
+ uncond_image_embeds = torch.zeros_like(image_embeds)
461
+
462
+ return image_embeds, uncond_image_embeds
463
+
390
464
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
391
465
  def run_safety_checker(self, image, device, dtype):
392
466
  if self.safety_checker is None:
@@ -529,11 +603,13 @@ class LatentConsistencyModelPipeline(
529
603
  width: Optional[int] = None,
530
604
  num_inference_steps: int = 4,
531
605
  original_inference_steps: int = None,
606
+ timesteps: List[int] = None,
532
607
  guidance_scale: float = 8.5,
533
608
  num_images_per_prompt: Optional[int] = 1,
534
609
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
535
610
  latents: Optional[torch.FloatTensor] = None,
536
611
  prompt_embeds: Optional[torch.FloatTensor] = None,
612
+ ip_adapter_image: Optional[PipelineImageInput] = None,
537
613
  output_type: Optional[str] = "pil",
538
614
  return_dict: bool = True,
539
615
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -560,6 +636,10 @@ class LatentConsistencyModelPipeline(
560
636
  we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule,
561
637
  following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the
562
638
  scheduler's `original_inference_steps` attribute.
639
+ timesteps (`List[int]`, *optional*):
640
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
641
+ timesteps on the original LCM training/distillation timestep schedule are used. Must be in descending
642
+ order.
563
643
  guidance_scale (`float`, *optional*, defaults to 7.5):
564
644
  A higher guidance scale value encourages the model to generate images closely linked to the text
565
645
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -578,6 +658,8 @@ class LatentConsistencyModelPipeline(
578
658
  prompt_embeds (`torch.FloatTensor`, *optional*):
579
659
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
580
660
  provided, text embeddings are generated from the `prompt` input argument.
661
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
662
+ Optional image input to work with IP Adapters.
581
663
  output_type (`str`, *optional*, defaults to `"pil"`):
582
664
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
583
665
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -597,7 +679,7 @@ class LatentConsistencyModelPipeline(
597
679
  callback_on_step_end_tensor_inputs (`List`, *optional*):
598
680
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
599
681
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
600
- `._callback_tensor_inputs` attribute of your pipeine class.
682
+ `._callback_tensor_inputs` attribute of your pipeline class.
601
683
 
602
684
  Examples:
603
685
 
@@ -646,6 +728,12 @@ class LatentConsistencyModelPipeline(
646
728
  device = self._execution_device
647
729
  # do_classifier_free_guidance = guidance_scale > 1.0
648
730
 
731
+ if ip_adapter_image is not None:
732
+ output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
733
+ image_embeds, negative_image_embeds = self.encode_image(
734
+ ip_adapter_image, device, num_images_per_prompt, output_hidden_state
735
+ )
736
+
649
737
  # 3. Encode input prompt
650
738
  lora_scale = (
651
739
  self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
@@ -667,8 +755,9 @@ class LatentConsistencyModelPipeline(
667
755
  )
668
756
 
669
757
  # 4. Prepare timesteps
670
- self.scheduler.set_timesteps(num_inference_steps, device, original_inference_steps=original_inference_steps)
671
- timesteps = self.scheduler.timesteps
758
+ timesteps, num_inference_steps = retrieve_timesteps(
759
+ self.scheduler, num_inference_steps, device, timesteps, original_inference_steps=original_inference_steps
760
+ )
672
761
 
673
762
  # 5. Prepare latent variable
674
763
  num_channels_latents = self.unet.config.in_channels
@@ -696,6 +785,9 @@ class LatentConsistencyModelPipeline(
696
785
  # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
697
786
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None)
698
787
 
788
+ # 7.1 Add image embeds for IP-Adapter
789
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
790
+
699
791
  # 8. LCM MultiStep Sampling Loop:
700
792
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
701
793
  self._num_timesteps = len(timesteps)
@@ -710,6 +802,7 @@ class LatentConsistencyModelPipeline(
710
802
  timestep_cond=w_embedding,
711
803
  encoder_hidden_states=prompt_embeds,
712
804
  cross_attention_kwargs=self.cross_attention_kwargs,
805
+ added_cond_kwargs=added_cond_kwargs,
713
806
  return_dict=False,
714
807
  )[0]
715
808
 
@@ -49,6 +49,7 @@ class LDMTextToImagePipeline(DiffusionPipeline):
49
49
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
50
50
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
51
51
  """
52
+
52
53
  model_cpu_offload_seq = "bert->unet->vqvae"
53
54
 
54
55
  def __init__(
@@ -51,7 +51,7 @@ EXAMPLE_DOC_STRING = """
51
51
  >>> import torch
52
52
  >>> import scipy
53
53
 
54
- >>> repo_id = "cvssp/audioldm-s-full-v2"
54
+ >>> repo_id = "ucsd-reach/musicldm"
55
55
  >>> pipe = MusicLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
56
56
  >>> pipe = pipe.to("cuda")
57
57
 
@@ -22,6 +22,7 @@ from typing import Optional, Union
22
22
 
23
23
  import numpy as np
24
24
  from huggingface_hub import hf_hub_download
25
+ from huggingface_hub.utils import validate_hf_hub_args
25
26
 
26
27
  from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
27
28
 
@@ -130,10 +131,11 @@ class OnnxRuntimeModel:
130
131
  self._save_pretrained(save_directory, **kwargs)
131
132
 
132
133
  @classmethod
134
+ @validate_hf_hub_args
133
135
  def _from_pretrained(
134
136
  cls,
135
137
  model_id: Union[str, Path],
136
- use_auth_token: Optional[Union[bool, str, None]] = None,
138
+ token: Optional[Union[bool, str, None]] = None,
137
139
  revision: Optional[Union[str, None]] = None,
138
140
  force_download: bool = False,
139
141
  cache_dir: Optional[str] = None,
@@ -148,7 +150,7 @@ class OnnxRuntimeModel:
148
150
  Arguments:
149
151
  model_id (`str` or `Path`):
150
152
  Directory from which to load
151
- use_auth_token (`str` or `bool`):
153
+ token (`str` or `bool`):
152
154
  Is needed to load models from a private or gated repository
153
155
  revision (`str`):
154
156
  Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id
@@ -179,7 +181,7 @@ class OnnxRuntimeModel:
179
181
  model_cache_path = hf_hub_download(
180
182
  repo_id=model_id,
181
183
  filename=model_file_name,
182
- use_auth_token=use_auth_token,
184
+ token=token,
183
185
  revision=revision,
184
186
  cache_dir=cache_dir,
185
187
  force_download=force_download,
@@ -190,11 +192,12 @@ class OnnxRuntimeModel:
190
192
  return cls(model=model, **kwargs)
191
193
 
192
194
  @classmethod
195
+ @validate_hf_hub_args
193
196
  def from_pretrained(
194
197
  cls,
195
198
  model_id: Union[str, Path],
196
199
  force_download: bool = True,
197
- use_auth_token: Optional[str] = None,
200
+ token: Optional[str] = None,
198
201
  cache_dir: Optional[str] = None,
199
202
  **model_kwargs,
200
203
  ):
@@ -207,6 +210,6 @@ class OnnxRuntimeModel:
207
210
  revision=revision,
208
211
  cache_dir=cache_dir,
209
212
  force_download=force_download,
210
- use_auth_token=use_auth_token,
213
+ token=token,
211
214
  **model_kwargs,
212
215
  )
@@ -35,9 +35,13 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
35
35
 
36
36
 
37
37
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
38
- def retrieve_latents(encoder_output, generator):
39
- if hasattr(encoder_output, "latent_dist"):
38
+ def retrieve_latents(
39
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
40
+ ):
41
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
40
42
  return encoder_output.latent_dist.sample(generator)
43
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
44
+ return encoder_output.latent_dist.mode()
41
45
  elif hasattr(encoder_output, "latents"):
42
46
  return encoder_output.latents
43
47
  else:
@@ -177,6 +181,7 @@ class PaintByExamplePipeline(DiffusionPipeline):
177
181
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
178
182
 
179
183
  """
184
+
180
185
  # TODO: feature_extractor is required to encode initial images (if they are in PIL format),
181
186
  # we should give a descriptive message if the pipeline doesn't have one.
182
187
 
@@ -24,6 +24,7 @@ import numpy as np
24
24
  import PIL.Image
25
25
  from flax.core.frozen_dict import FrozenDict
26
26
  from huggingface_hub import create_repo, snapshot_download
27
+ from huggingface_hub.utils import validate_hf_hub_args
27
28
  from PIL import Image
28
29
  from tqdm.auto import tqdm
29
30
 
@@ -32,7 +33,6 @@ from ..models.modeling_flax_utils import FLAX_WEIGHTS_NAME, FlaxModelMixin
32
33
  from ..schedulers.scheduling_utils_flax import SCHEDULER_CONFIG_NAME, FlaxSchedulerMixin
33
34
  from ..utils import (
34
35
  CONFIG_NAME,
35
- DIFFUSERS_CACHE,
36
36
  BaseOutput,
37
37
  PushToHubMixin,
38
38
  http_user_agent,
@@ -112,6 +112,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
112
112
  - **config_name** ([`str`]) -- The configuration filename that stores the class and module names of all the
113
113
  diffusion pipeline's components.
114
114
  """
115
+
115
116
  config_name = "model_index.json"
116
117
 
117
118
  def register_modules(self, **kwargs):
@@ -226,6 +227,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
226
227
  )
227
228
 
228
229
  @classmethod
230
+ @validate_hf_hub_args
229
231
  def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
230
232
  r"""
231
233
  Instantiate a Flax-based diffusion pipeline from pretrained pipeline weights.
@@ -263,7 +265,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
263
265
  local_files_only (`bool`, *optional*, defaults to `False`):
264
266
  Whether to only load local model weights and configuration files or not. If set to `True`, the model
265
267
  won't be downloaded from the Hub.
266
- use_auth_token (`str` or *bool*, *optional*):
268
+ token (`str` or *bool*, *optional*):
267
269
  The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
268
270
  `diffusers-cli login` (stored in `~/.huggingface`) is used.
269
271
  revision (`str`, *optional*, defaults to `"main"`):
@@ -313,11 +315,11 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
313
315
  >>> dpm_params["scheduler"] = dpmpp_state
314
316
  ```
315
317
  """
316
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
318
+ cache_dir = kwargs.pop("cache_dir", None)
317
319
  resume_download = kwargs.pop("resume_download", False)
318
320
  proxies = kwargs.pop("proxies", None)
319
321
  local_files_only = kwargs.pop("local_files_only", False)
320
- use_auth_token = kwargs.pop("use_auth_token", None)
322
+ token = kwargs.pop("token", None)
321
323
  revision = kwargs.pop("revision", None)
322
324
  from_pt = kwargs.pop("from_pt", False)
323
325
  use_memory_efficient_attention = kwargs.pop("use_memory_efficient_attention", False)
@@ -333,7 +335,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
333
335
  resume_download=resume_download,
334
336
  proxies=proxies,
335
337
  local_files_only=local_files_only,
336
- use_auth_token=use_auth_token,
338
+ token=token,
337
339
  revision=revision,
338
340
  )
339
341
  # make sure we only download sub-folders and `diffusers` filenames
@@ -364,7 +366,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
364
366
  resume_download=resume_download,
365
367
  proxies=proxies,
366
368
  local_files_only=local_files_only,
367
- use_auth_token=use_auth_token,
369
+ token=token,
368
370
  revision=revision,
369
371
  allow_patterns=allow_patterns,
370
372
  ignore_patterns=ignore_patterns,
@@ -537,12 +539,13 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
537
539
  model = pipeline_class(**init_kwargs, dtype=dtype)
538
540
  return model, params
539
541
 
540
- @staticmethod
541
- def _get_signature_keys(obj):
542
+ @classmethod
543
+ def _get_signature_keys(cls, obj):
542
544
  parameters = inspect.signature(obj.__init__).parameters
543
545
  required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
544
546
  optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
545
547
  expected_modules = set(required_parameters.keys()) - {"self"}
548
+
546
549
  return expected_modules, optional_parameters
547
550
 
548
551
  @property