diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,471 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2023 The HuggingFace Inc. team.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
from typing import Dict, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn.functional as F
|
20
|
+
from torch import nn
|
21
|
+
from torch.utils.checkpoint import checkpoint
|
22
|
+
|
23
|
+
from ..configuration_utils import ConfigMixin, register_to_config
|
24
|
+
from .attention import BasicTransformerBlock, SkipFFTransformerBlock
|
25
|
+
from .attention_processor import (
|
26
|
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27
|
+
CROSS_ATTENTION_PROCESSORS,
|
28
|
+
AttentionProcessor,
|
29
|
+
AttnAddedKVProcessor,
|
30
|
+
AttnProcessor,
|
31
|
+
)
|
32
|
+
from .embeddings import TimestepEmbedding, get_timestep_embedding
|
33
|
+
from .modeling_utils import ModelMixin
|
34
|
+
from .normalization import GlobalResponseNorm, RMSNorm
|
35
|
+
from .resnet import Downsample2D, Upsample2D
|
36
|
+
|
37
|
+
|
38
|
+
class UVit2DModel(ModelMixin, ConfigMixin):
|
39
|
+
_supports_gradient_checkpointing = True
|
40
|
+
|
41
|
+
@register_to_config
|
42
|
+
def __init__(
|
43
|
+
self,
|
44
|
+
# global config
|
45
|
+
hidden_size: int = 1024,
|
46
|
+
use_bias: bool = False,
|
47
|
+
hidden_dropout: float = 0.0,
|
48
|
+
# conditioning dimensions
|
49
|
+
cond_embed_dim: int = 768,
|
50
|
+
micro_cond_encode_dim: int = 256,
|
51
|
+
micro_cond_embed_dim: int = 1280,
|
52
|
+
encoder_hidden_size: int = 768,
|
53
|
+
# num tokens
|
54
|
+
vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded
|
55
|
+
codebook_size: int = 8192,
|
56
|
+
# `UVit2DConvEmbed`
|
57
|
+
in_channels: int = 768,
|
58
|
+
block_out_channels: int = 768,
|
59
|
+
num_res_blocks: int = 3,
|
60
|
+
downsample: bool = False,
|
61
|
+
upsample: bool = False,
|
62
|
+
block_num_heads: int = 12,
|
63
|
+
# `TransformerLayer`
|
64
|
+
num_hidden_layers: int = 22,
|
65
|
+
num_attention_heads: int = 16,
|
66
|
+
# `Attention`
|
67
|
+
attention_dropout: float = 0.0,
|
68
|
+
# `FeedForward`
|
69
|
+
intermediate_size: int = 2816,
|
70
|
+
# `Norm`
|
71
|
+
layer_norm_eps: float = 1e-6,
|
72
|
+
ln_elementwise_affine: bool = True,
|
73
|
+
sample_size: int = 64,
|
74
|
+
):
|
75
|
+
super().__init__()
|
76
|
+
|
77
|
+
self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias)
|
78
|
+
self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
|
79
|
+
|
80
|
+
self.embed = UVit2DConvEmbed(
|
81
|
+
in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
|
82
|
+
)
|
83
|
+
|
84
|
+
self.cond_embed = TimestepEmbedding(
|
85
|
+
micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias
|
86
|
+
)
|
87
|
+
|
88
|
+
self.down_block = UVitBlock(
|
89
|
+
block_out_channels,
|
90
|
+
num_res_blocks,
|
91
|
+
hidden_size,
|
92
|
+
hidden_dropout,
|
93
|
+
ln_elementwise_affine,
|
94
|
+
layer_norm_eps,
|
95
|
+
use_bias,
|
96
|
+
block_num_heads,
|
97
|
+
attention_dropout,
|
98
|
+
downsample,
|
99
|
+
False,
|
100
|
+
)
|
101
|
+
|
102
|
+
self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine)
|
103
|
+
self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias)
|
104
|
+
|
105
|
+
self.transformer_layers = nn.ModuleList(
|
106
|
+
[
|
107
|
+
BasicTransformerBlock(
|
108
|
+
dim=hidden_size,
|
109
|
+
num_attention_heads=num_attention_heads,
|
110
|
+
attention_head_dim=hidden_size // num_attention_heads,
|
111
|
+
dropout=hidden_dropout,
|
112
|
+
cross_attention_dim=hidden_size,
|
113
|
+
attention_bias=use_bias,
|
114
|
+
norm_type="ada_norm_continuous",
|
115
|
+
ada_norm_continous_conditioning_embedding_dim=hidden_size,
|
116
|
+
norm_elementwise_affine=ln_elementwise_affine,
|
117
|
+
norm_eps=layer_norm_eps,
|
118
|
+
ada_norm_bias=use_bias,
|
119
|
+
ff_inner_dim=intermediate_size,
|
120
|
+
ff_bias=use_bias,
|
121
|
+
attention_out_bias=use_bias,
|
122
|
+
)
|
123
|
+
for _ in range(num_hidden_layers)
|
124
|
+
]
|
125
|
+
)
|
126
|
+
|
127
|
+
self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
|
128
|
+
self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias)
|
129
|
+
|
130
|
+
self.up_block = UVitBlock(
|
131
|
+
block_out_channels,
|
132
|
+
num_res_blocks,
|
133
|
+
hidden_size,
|
134
|
+
hidden_dropout,
|
135
|
+
ln_elementwise_affine,
|
136
|
+
layer_norm_eps,
|
137
|
+
use_bias,
|
138
|
+
block_num_heads,
|
139
|
+
attention_dropout,
|
140
|
+
downsample=False,
|
141
|
+
upsample=upsample,
|
142
|
+
)
|
143
|
+
|
144
|
+
self.mlm_layer = ConvMlmLayer(
|
145
|
+
block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size
|
146
|
+
)
|
147
|
+
|
148
|
+
self.gradient_checkpointing = False
|
149
|
+
|
150
|
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
151
|
+
pass
|
152
|
+
|
153
|
+
def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None):
|
154
|
+
encoder_hidden_states = self.encoder_proj(encoder_hidden_states)
|
155
|
+
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
|
156
|
+
|
157
|
+
micro_cond_embeds = get_timestep_embedding(
|
158
|
+
micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
|
159
|
+
)
|
160
|
+
|
161
|
+
micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1))
|
162
|
+
|
163
|
+
pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1)
|
164
|
+
pooled_text_emb = pooled_text_emb.to(dtype=self.dtype)
|
165
|
+
pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype)
|
166
|
+
|
167
|
+
hidden_states = self.embed(input_ids)
|
168
|
+
|
169
|
+
hidden_states = self.down_block(
|
170
|
+
hidden_states,
|
171
|
+
pooled_text_emb=pooled_text_emb,
|
172
|
+
encoder_hidden_states=encoder_hidden_states,
|
173
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
174
|
+
)
|
175
|
+
|
176
|
+
batch_size, channels, height, width = hidden_states.shape
|
177
|
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
|
178
|
+
|
179
|
+
hidden_states = self.project_to_hidden_norm(hidden_states)
|
180
|
+
hidden_states = self.project_to_hidden(hidden_states)
|
181
|
+
|
182
|
+
for layer in self.transformer_layers:
|
183
|
+
if self.training and self.gradient_checkpointing:
|
184
|
+
|
185
|
+
def layer_(*args):
|
186
|
+
return checkpoint(layer, *args)
|
187
|
+
|
188
|
+
else:
|
189
|
+
layer_ = layer
|
190
|
+
|
191
|
+
hidden_states = layer_(
|
192
|
+
hidden_states,
|
193
|
+
encoder_hidden_states=encoder_hidden_states,
|
194
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
195
|
+
added_cond_kwargs={"pooled_text_emb": pooled_text_emb},
|
196
|
+
)
|
197
|
+
|
198
|
+
hidden_states = self.project_from_hidden_norm(hidden_states)
|
199
|
+
hidden_states = self.project_from_hidden(hidden_states)
|
200
|
+
|
201
|
+
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
|
202
|
+
|
203
|
+
hidden_states = self.up_block(
|
204
|
+
hidden_states,
|
205
|
+
pooled_text_emb=pooled_text_emb,
|
206
|
+
encoder_hidden_states=encoder_hidden_states,
|
207
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
208
|
+
)
|
209
|
+
|
210
|
+
logits = self.mlm_layer(hidden_states)
|
211
|
+
|
212
|
+
return logits
|
213
|
+
|
214
|
+
@property
|
215
|
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
216
|
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
217
|
+
r"""
|
218
|
+
Returns:
|
219
|
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
220
|
+
indexed by its weight name.
|
221
|
+
"""
|
222
|
+
# set recursively
|
223
|
+
processors = {}
|
224
|
+
|
225
|
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
226
|
+
if hasattr(module, "get_processor"):
|
227
|
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
228
|
+
|
229
|
+
for sub_name, child in module.named_children():
|
230
|
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
231
|
+
|
232
|
+
return processors
|
233
|
+
|
234
|
+
for name, module in self.named_children():
|
235
|
+
fn_recursive_add_processors(name, module, processors)
|
236
|
+
|
237
|
+
return processors
|
238
|
+
|
239
|
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
240
|
+
def set_attn_processor(
|
241
|
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
242
|
+
):
|
243
|
+
r"""
|
244
|
+
Sets the attention processor to use to compute attention.
|
245
|
+
|
246
|
+
Parameters:
|
247
|
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
248
|
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
249
|
+
for **all** `Attention` layers.
|
250
|
+
|
251
|
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
252
|
+
processor. This is strongly recommended when setting trainable attention processors.
|
253
|
+
|
254
|
+
"""
|
255
|
+
count = len(self.attn_processors.keys())
|
256
|
+
|
257
|
+
if isinstance(processor, dict) and len(processor) != count:
|
258
|
+
raise ValueError(
|
259
|
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
260
|
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
261
|
+
)
|
262
|
+
|
263
|
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
264
|
+
if hasattr(module, "set_processor"):
|
265
|
+
if not isinstance(processor, dict):
|
266
|
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
267
|
+
else:
|
268
|
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
269
|
+
|
270
|
+
for sub_name, child in module.named_children():
|
271
|
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
272
|
+
|
273
|
+
for name, module in self.named_children():
|
274
|
+
fn_recursive_attn_processor(name, module, processor)
|
275
|
+
|
276
|
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
277
|
+
def set_default_attn_processor(self):
|
278
|
+
"""
|
279
|
+
Disables custom attention processors and sets the default attention implementation.
|
280
|
+
"""
|
281
|
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
282
|
+
processor = AttnAddedKVProcessor()
|
283
|
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
284
|
+
processor = AttnProcessor()
|
285
|
+
else:
|
286
|
+
raise ValueError(
|
287
|
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
288
|
+
)
|
289
|
+
|
290
|
+
self.set_attn_processor(processor, _remove_lora=True)
|
291
|
+
|
292
|
+
|
293
|
+
class UVit2DConvEmbed(nn.Module):
|
294
|
+
def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
|
295
|
+
super().__init__()
|
296
|
+
self.embeddings = nn.Embedding(vocab_size, in_channels)
|
297
|
+
self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
|
298
|
+
self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
|
299
|
+
|
300
|
+
def forward(self, input_ids):
|
301
|
+
embeddings = self.embeddings(input_ids)
|
302
|
+
embeddings = self.layer_norm(embeddings)
|
303
|
+
embeddings = embeddings.permute(0, 3, 1, 2)
|
304
|
+
embeddings = self.conv(embeddings)
|
305
|
+
return embeddings
|
306
|
+
|
307
|
+
|
308
|
+
class UVitBlock(nn.Module):
|
309
|
+
def __init__(
|
310
|
+
self,
|
311
|
+
channels,
|
312
|
+
num_res_blocks: int,
|
313
|
+
hidden_size,
|
314
|
+
hidden_dropout,
|
315
|
+
ln_elementwise_affine,
|
316
|
+
layer_norm_eps,
|
317
|
+
use_bias,
|
318
|
+
block_num_heads,
|
319
|
+
attention_dropout,
|
320
|
+
downsample: bool,
|
321
|
+
upsample: bool,
|
322
|
+
):
|
323
|
+
super().__init__()
|
324
|
+
|
325
|
+
if downsample:
|
326
|
+
self.downsample = Downsample2D(
|
327
|
+
channels,
|
328
|
+
use_conv=True,
|
329
|
+
padding=0,
|
330
|
+
name="Conv2d_0",
|
331
|
+
kernel_size=2,
|
332
|
+
norm_type="rms_norm",
|
333
|
+
eps=layer_norm_eps,
|
334
|
+
elementwise_affine=ln_elementwise_affine,
|
335
|
+
bias=use_bias,
|
336
|
+
)
|
337
|
+
else:
|
338
|
+
self.downsample = None
|
339
|
+
|
340
|
+
self.res_blocks = nn.ModuleList(
|
341
|
+
[
|
342
|
+
ConvNextBlock(
|
343
|
+
channels,
|
344
|
+
layer_norm_eps,
|
345
|
+
ln_elementwise_affine,
|
346
|
+
use_bias,
|
347
|
+
hidden_dropout,
|
348
|
+
hidden_size,
|
349
|
+
)
|
350
|
+
for i in range(num_res_blocks)
|
351
|
+
]
|
352
|
+
)
|
353
|
+
|
354
|
+
self.attention_blocks = nn.ModuleList(
|
355
|
+
[
|
356
|
+
SkipFFTransformerBlock(
|
357
|
+
channels,
|
358
|
+
block_num_heads,
|
359
|
+
channels // block_num_heads,
|
360
|
+
hidden_size,
|
361
|
+
use_bias,
|
362
|
+
attention_dropout,
|
363
|
+
channels,
|
364
|
+
attention_bias=use_bias,
|
365
|
+
attention_out_bias=use_bias,
|
366
|
+
)
|
367
|
+
for _ in range(num_res_blocks)
|
368
|
+
]
|
369
|
+
)
|
370
|
+
|
371
|
+
if upsample:
|
372
|
+
self.upsample = Upsample2D(
|
373
|
+
channels,
|
374
|
+
use_conv_transpose=True,
|
375
|
+
kernel_size=2,
|
376
|
+
padding=0,
|
377
|
+
name="conv",
|
378
|
+
norm_type="rms_norm",
|
379
|
+
eps=layer_norm_eps,
|
380
|
+
elementwise_affine=ln_elementwise_affine,
|
381
|
+
bias=use_bias,
|
382
|
+
interpolate=False,
|
383
|
+
)
|
384
|
+
else:
|
385
|
+
self.upsample = None
|
386
|
+
|
387
|
+
def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs):
|
388
|
+
if self.downsample is not None:
|
389
|
+
x = self.downsample(x)
|
390
|
+
|
391
|
+
for res_block, attention_block in zip(self.res_blocks, self.attention_blocks):
|
392
|
+
x = res_block(x, pooled_text_emb)
|
393
|
+
|
394
|
+
batch_size, channels, height, width = x.shape
|
395
|
+
x = x.view(batch_size, channels, height * width).permute(0, 2, 1)
|
396
|
+
x = attention_block(
|
397
|
+
x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs
|
398
|
+
)
|
399
|
+
x = x.permute(0, 2, 1).view(batch_size, channels, height, width)
|
400
|
+
|
401
|
+
if self.upsample is not None:
|
402
|
+
x = self.upsample(x)
|
403
|
+
|
404
|
+
return x
|
405
|
+
|
406
|
+
|
407
|
+
class ConvNextBlock(nn.Module):
|
408
|
+
def __init__(
|
409
|
+
self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
|
410
|
+
):
|
411
|
+
super().__init__()
|
412
|
+
self.depthwise = nn.Conv2d(
|
413
|
+
channels,
|
414
|
+
channels,
|
415
|
+
kernel_size=3,
|
416
|
+
padding=1,
|
417
|
+
groups=channels,
|
418
|
+
bias=use_bias,
|
419
|
+
)
|
420
|
+
self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
|
421
|
+
self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
|
422
|
+
self.channelwise_act = nn.GELU()
|
423
|
+
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
|
424
|
+
self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
|
425
|
+
self.channelwise_dropout = nn.Dropout(hidden_dropout)
|
426
|
+
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
|
427
|
+
|
428
|
+
def forward(self, x, cond_embeds):
|
429
|
+
x_res = x
|
430
|
+
|
431
|
+
x = self.depthwise(x)
|
432
|
+
|
433
|
+
x = x.permute(0, 2, 3, 1)
|
434
|
+
x = self.norm(x)
|
435
|
+
|
436
|
+
x = self.channelwise_linear_1(x)
|
437
|
+
x = self.channelwise_act(x)
|
438
|
+
x = self.channelwise_norm(x)
|
439
|
+
x = self.channelwise_linear_2(x)
|
440
|
+
x = self.channelwise_dropout(x)
|
441
|
+
|
442
|
+
x = x.permute(0, 3, 1, 2)
|
443
|
+
|
444
|
+
x = x + x_res
|
445
|
+
|
446
|
+
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
|
447
|
+
x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
|
448
|
+
|
449
|
+
return x
|
450
|
+
|
451
|
+
|
452
|
+
class ConvMlmLayer(nn.Module):
|
453
|
+
def __init__(
|
454
|
+
self,
|
455
|
+
block_out_channels: int,
|
456
|
+
in_channels: int,
|
457
|
+
use_bias: bool,
|
458
|
+
ln_elementwise_affine: bool,
|
459
|
+
layer_norm_eps: float,
|
460
|
+
codebook_size: int,
|
461
|
+
):
|
462
|
+
super().__init__()
|
463
|
+
self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
|
464
|
+
self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
|
465
|
+
self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
|
466
|
+
|
467
|
+
def forward(self, hidden_states):
|
468
|
+
hidden_states = self.conv1(hidden_states)
|
469
|
+
hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
470
|
+
logits = self.conv2(hidden_states)
|
471
|
+
return logits
|
diffusers/models/vae_flax.py
CHANGED
@@ -214,6 +214,7 @@ class FlaxAttentionBlock(nn.Module):
|
|
214
214
|
Parameters `dtype`
|
215
215
|
|
216
216
|
"""
|
217
|
+
|
217
218
|
channels: int
|
218
219
|
num_head_channels: int = None
|
219
220
|
num_groups: int = 32
|
@@ -291,6 +292,7 @@ class FlaxDownEncoderBlock2D(nn.Module):
|
|
291
292
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
292
293
|
Parameters `dtype`
|
293
294
|
"""
|
295
|
+
|
294
296
|
in_channels: int
|
295
297
|
out_channels: int
|
296
298
|
dropout: float = 0.0
|
@@ -347,6 +349,7 @@ class FlaxUpDecoderBlock2D(nn.Module):
|
|
347
349
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
348
350
|
Parameters `dtype`
|
349
351
|
"""
|
352
|
+
|
350
353
|
in_channels: int
|
351
354
|
out_channels: int
|
352
355
|
dropout: float = 0.0
|
@@ -401,6 +404,7 @@ class FlaxUNetMidBlock2D(nn.Module):
|
|
401
404
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
402
405
|
Parameters `dtype`
|
403
406
|
"""
|
407
|
+
|
404
408
|
in_channels: int
|
405
409
|
dropout: float = 0.0
|
406
410
|
num_layers: int = 1
|
@@ -488,6 +492,7 @@ class FlaxEncoder(nn.Module):
|
|
488
492
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
489
493
|
Parameters `dtype`
|
490
494
|
"""
|
495
|
+
|
491
496
|
in_channels: int = 3
|
492
497
|
out_channels: int = 3
|
493
498
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
|
@@ -600,6 +605,7 @@ class FlaxDecoder(nn.Module):
|
|
600
605
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
601
606
|
parameters `dtype`
|
602
607
|
"""
|
608
|
+
|
603
609
|
in_channels: int = 3
|
604
610
|
out_channels: int = 3
|
605
611
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
|
@@ -767,6 +773,7 @@ class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
|
|
767
773
|
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
|
768
774
|
The `dtype` of the parameters.
|
769
775
|
"""
|
776
|
+
|
770
777
|
in_channels: int = 3
|
771
778
|
out_channels: int = 3
|
772
779
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
|
diffusers/models/vq_model.py
CHANGED
@@ -20,8 +20,8 @@ import torch.nn as nn
|
|
20
20
|
from ..configuration_utils import ConfigMixin, register_to_config
|
21
21
|
from ..utils import BaseOutput
|
22
22
|
from ..utils.accelerate_utils import apply_forward_hook
|
23
|
+
from .autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
|
23
24
|
from .modeling_utils import ModelMixin
|
24
|
-
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
|
25
25
|
|
26
26
|
|
27
27
|
@dataclass
|
@@ -88,6 +88,9 @@ class VQModel(ModelMixin, ConfigMixin):
|
|
88
88
|
vq_embed_dim: Optional[int] = None,
|
89
89
|
scaling_factor: float = 0.18215,
|
90
90
|
norm_type: str = "group", # group, spatial
|
91
|
+
mid_block_add_attention=True,
|
92
|
+
lookup_from_codebook=False,
|
93
|
+
force_upcast=False,
|
91
94
|
):
|
92
95
|
super().__init__()
|
93
96
|
|
@@ -101,6 +104,7 @@ class VQModel(ModelMixin, ConfigMixin):
|
|
101
104
|
act_fn=act_fn,
|
102
105
|
norm_num_groups=norm_num_groups,
|
103
106
|
double_z=False,
|
107
|
+
mid_block_add_attention=mid_block_add_attention,
|
104
108
|
)
|
105
109
|
|
106
110
|
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
|
@@ -119,6 +123,7 @@ class VQModel(ModelMixin, ConfigMixin):
|
|
119
123
|
act_fn=act_fn,
|
120
124
|
norm_num_groups=norm_num_groups,
|
121
125
|
norm_type=norm_type,
|
126
|
+
mid_block_add_attention=mid_block_add_attention,
|
122
127
|
)
|
123
128
|
|
124
129
|
@apply_forward_hook
|
@@ -133,11 +138,13 @@ class VQModel(ModelMixin, ConfigMixin):
|
|
133
138
|
|
134
139
|
@apply_forward_hook
|
135
140
|
def decode(
|
136
|
-
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True
|
141
|
+
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
|
137
142
|
) -> Union[DecoderOutput, torch.FloatTensor]:
|
138
143
|
# also go through quantization layer
|
139
144
|
if not force_not_quantize:
|
140
145
|
quant, _, _ = self.quantize(h)
|
146
|
+
elif self.config.lookup_from_codebook:
|
147
|
+
quant = self.quantize.get_codebook_entry(h, shape)
|
141
148
|
else:
|
142
149
|
quant = h
|
143
150
|
quant2 = self.post_quant_conv(quant)
|
@@ -148,7 +155,9 @@ class VQModel(ModelMixin, ConfigMixin):
|
|
148
155
|
|
149
156
|
return DecoderOutput(sample=dec)
|
150
157
|
|
151
|
-
def forward(
|
158
|
+
def forward(
|
159
|
+
self, sample: torch.FloatTensor, return_dict: bool = True
|
160
|
+
) -> Union[DecoderOutput, Tuple[torch.FloatTensor, ...]]:
|
152
161
|
r"""
|
153
162
|
The [`VQModel`] forward method.
|
154
163
|
|
diffusers/optimization.py
CHANGED
@@ -37,7 +37,7 @@ class SchedulerType(Enum):
|
|
37
37
|
PIECEWISE_CONSTANT = "piecewise_constant"
|
38
38
|
|
39
39
|
|
40
|
-
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
|
40
|
+
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1) -> LambdaLR:
|
41
41
|
"""
|
42
42
|
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
43
43
|
|
@@ -53,7 +53,7 @@ def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
|
|
53
53
|
return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
|
54
54
|
|
55
55
|
|
56
|
-
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
|
56
|
+
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1) -> LambdaLR:
|
57
57
|
"""
|
58
58
|
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
|
59
59
|
increases linearly between 0 and the initial lr set in the optimizer.
|
@@ -78,7 +78,7 @@ def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: in
|
|
78
78
|
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
|
79
79
|
|
80
80
|
|
81
|
-
def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_epoch: int = -1):
|
81
|
+
def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_epoch: int = -1) -> LambdaLR:
|
82
82
|
"""
|
83
83
|
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
84
84
|
|
@@ -120,7 +120,9 @@ def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_
|
|
120
120
|
return LambdaLR(optimizer, rules_func, last_epoch=last_epoch)
|
121
121
|
|
122
122
|
|
123
|
-
def get_linear_schedule_with_warmup(
|
123
|
+
def get_linear_schedule_with_warmup(
|
124
|
+
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, last_epoch: int = -1
|
125
|
+
) -> LambdaLR:
|
124
126
|
"""
|
125
127
|
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
|
126
128
|
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
|
@@ -151,7 +153,7 @@ def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_st
|
|
151
153
|
|
152
154
|
def get_cosine_schedule_with_warmup(
|
153
155
|
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
|
154
|
-
):
|
156
|
+
) -> LambdaLR:
|
155
157
|
"""
|
156
158
|
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
157
159
|
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
@@ -185,7 +187,7 @@ def get_cosine_schedule_with_warmup(
|
|
185
187
|
|
186
188
|
def get_cosine_with_hard_restarts_schedule_with_warmup(
|
187
189
|
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
|
188
|
-
):
|
190
|
+
) -> LambdaLR:
|
189
191
|
"""
|
190
192
|
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
191
193
|
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
|
@@ -219,8 +221,13 @@ def get_cosine_with_hard_restarts_schedule_with_warmup(
|
|
219
221
|
|
220
222
|
|
221
223
|
def get_polynomial_decay_schedule_with_warmup(
|
222
|
-
optimizer
|
223
|
-
|
224
|
+
optimizer: Optimizer,
|
225
|
+
num_warmup_steps: int,
|
226
|
+
num_training_steps: int,
|
227
|
+
lr_end: float = 1e-7,
|
228
|
+
power: float = 1.0,
|
229
|
+
last_epoch: int = -1,
|
230
|
+
) -> LambdaLR:
|
224
231
|
"""
|
225
232
|
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
|
226
233
|
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
|
@@ -288,7 +295,7 @@ def get_scheduler(
|
|
288
295
|
num_cycles: int = 1,
|
289
296
|
power: float = 1.0,
|
290
297
|
last_epoch: int = -1,
|
291
|
-
):
|
298
|
+
) -> LambdaLR:
|
292
299
|
"""
|
293
300
|
Unified API to get any scheduler from its name.
|
294
301
|
|