diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (238) hide show
  1. diffusers/__init__.py +26 -2
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +13 -8
  4. diffusers/dependency_versions_check.py +0 -1
  5. diffusers/dependency_versions_table.py +5 -5
  6. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  7. diffusers/image_processor.py +463 -51
  8. diffusers/loaders/__init__.py +82 -0
  9. diffusers/loaders/ip_adapter.py +159 -0
  10. diffusers/loaders/lora.py +1553 -0
  11. diffusers/loaders/lora_conversion_utils.py +284 -0
  12. diffusers/loaders/single_file.py +637 -0
  13. diffusers/loaders/textual_inversion.py +455 -0
  14. diffusers/loaders/unet.py +828 -0
  15. diffusers/loaders/utils.py +59 -0
  16. diffusers/models/__init__.py +26 -9
  17. diffusers/models/activations.py +9 -6
  18. diffusers/models/attention.py +301 -29
  19. diffusers/models/attention_flax.py +9 -1
  20. diffusers/models/attention_processor.py +378 -6
  21. diffusers/models/autoencoders/__init__.py +5 -0
  22. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
  23. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
  24. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
  25. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
  26. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
  27. diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
  28. diffusers/models/controlnet.py +59 -39
  29. diffusers/models/controlnet_flax.py +19 -18
  30. diffusers/models/downsampling.py +338 -0
  31. diffusers/models/embeddings.py +112 -29
  32. diffusers/models/embeddings_flax.py +2 -0
  33. diffusers/models/lora.py +131 -1
  34. diffusers/models/modeling_flax_utils.py +14 -8
  35. diffusers/models/modeling_outputs.py +17 -0
  36. diffusers/models/modeling_utils.py +37 -29
  37. diffusers/models/normalization.py +110 -4
  38. diffusers/models/resnet.py +299 -652
  39. diffusers/models/transformer_2d.py +22 -5
  40. diffusers/models/transformer_temporal.py +183 -1
  41. diffusers/models/unet_2d_blocks_flax.py +5 -0
  42. diffusers/models/unet_2d_condition.py +46 -0
  43. diffusers/models/unet_2d_condition_flax.py +13 -13
  44. diffusers/models/unet_3d_blocks.py +957 -173
  45. diffusers/models/unet_3d_condition.py +16 -8
  46. diffusers/models/unet_kandinsky3.py +535 -0
  47. diffusers/models/unet_motion_model.py +48 -33
  48. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  49. diffusers/models/upsampling.py +454 -0
  50. diffusers/models/uvit_2d.py +471 -0
  51. diffusers/models/vae_flax.py +7 -0
  52. diffusers/models/vq_model.py +12 -3
  53. diffusers/optimization.py +16 -9
  54. diffusers/pipelines/__init__.py +137 -76
  55. diffusers/pipelines/amused/__init__.py +62 -0
  56. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  57. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  58. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  59. diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
  60. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  61. diffusers/pipelines/auto_pipeline.py +23 -13
  62. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  63. diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
  64. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
  65. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
  66. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
  67. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
  68. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
  69. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  70. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  71. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  72. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  73. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  74. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  75. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  76. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  77. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  78. diffusers/pipelines/deprecated/__init__.py +153 -0
  79. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  80. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
  81. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
  82. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  83. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  84. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  85. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  86. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  87. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  88. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  89. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  90. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  91. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  92. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  93. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
  94. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  95. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  96. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  97. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  98. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  100. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
  101. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
  102. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
  103. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
  104. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
  105. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
  106. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  107. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  108. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  109. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
  110. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  111. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
  112. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
  113. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
  114. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  115. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  116. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  117. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  118. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  119. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  120. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  122. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  123. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  124. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
  125. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
  126. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
  127. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
  128. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  129. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  130. diffusers/pipelines/onnx_utils.py +8 -5
  131. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  132. diffusers/pipelines/pipeline_flax_utils.py +11 -8
  133. diffusers/pipelines/pipeline_utils.py +63 -42
  134. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
  135. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  136. diffusers/pipelines/stable_diffusion/__init__.py +37 -65
  137. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
  138. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  139. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  140. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  141. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
  142. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  143. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  144. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
  145. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
  146. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
  147. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  151. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  152. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
  153. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  154. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
  155. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  156. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
  157. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  158. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  159. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
  160. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  161. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
  162. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  163. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
  164. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  165. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  166. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
  171. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  172. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
  175. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
  179. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
  180. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  181. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  182. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  183. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  184. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  185. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  186. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  187. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
  188. diffusers/schedulers/__init__.py +4 -4
  189. diffusers/schedulers/deprecated/__init__.py +50 -0
  190. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  191. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  192. diffusers/schedulers/scheduling_amused.py +162 -0
  193. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  194. diffusers/schedulers/scheduling_ddim.py +1 -3
  195. diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
  196. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  197. diffusers/schedulers/scheduling_ddpm.py +47 -3
  198. diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
  199. diffusers/schedulers/scheduling_deis_multistep.py +28 -6
  200. diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
  201. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
  202. diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
  203. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
  204. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
  205. diffusers/schedulers/scheduling_euler_discrete.py +102 -16
  206. diffusers/schedulers/scheduling_heun_discrete.py +17 -5
  207. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
  208. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
  209. diffusers/schedulers/scheduling_lcm.py +123 -29
  210. diffusers/schedulers/scheduling_lms_discrete.py +3 -3
  211. diffusers/schedulers/scheduling_pndm.py +1 -3
  212. diffusers/schedulers/scheduling_repaint.py +1 -3
  213. diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
  214. diffusers/schedulers/scheduling_utils.py +3 -1
  215. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  216. diffusers/training_utils.py +1 -1
  217. diffusers/utils/__init__.py +1 -2
  218. diffusers/utils/constants.py +10 -12
  219. diffusers/utils/dummy_pt_objects.py +75 -0
  220. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  221. diffusers/utils/dynamic_modules_utils.py +18 -22
  222. diffusers/utils/export_utils.py +8 -3
  223. diffusers/utils/hub_utils.py +24 -36
  224. diffusers/utils/logging.py +11 -11
  225. diffusers/utils/outputs.py +5 -5
  226. diffusers/utils/peft_utils.py +88 -44
  227. diffusers/utils/state_dict_utils.py +8 -0
  228. diffusers/utils/testing_utils.py +199 -1
  229. diffusers/utils/torch_utils.py +4 -4
  230. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
  231. diffusers-0.25.0.dist-info/RECORD +360 -0
  232. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  233. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  234. diffusers/loaders.py +0 -3336
  235. diffusers-0.23.1.dist-info/RECORD +0 -323
  236. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  237. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  238. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
diffusers/loaders.py DELETED
@@ -1,3336 +0,0 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import re
16
- from collections import defaultdict
17
- from contextlib import nullcontext
18
- from io import BytesIO
19
- from pathlib import Path
20
- from typing import Callable, Dict, List, Optional, Union
21
-
22
- import requests
23
- import safetensors
24
- import torch
25
- from huggingface_hub import hf_hub_download, model_info
26
- from packaging import version
27
- from torch import nn
28
-
29
- from . import __version__
30
- from .models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
31
- from .utils import (
32
- DIFFUSERS_CACHE,
33
- HF_HUB_OFFLINE,
34
- USE_PEFT_BACKEND,
35
- _get_model_file,
36
- convert_state_dict_to_diffusers,
37
- convert_state_dict_to_peft,
38
- convert_unet_state_dict_to_peft,
39
- deprecate,
40
- get_adapter_name,
41
- get_peft_kwargs,
42
- is_accelerate_available,
43
- is_omegaconf_available,
44
- is_transformers_available,
45
- logging,
46
- recurse_remove_peft_layers,
47
- scale_lora_layers,
48
- set_adapter_layers,
49
- set_weights_and_activate_adapters,
50
- )
51
- from .utils.import_utils import BACKENDS_MAPPING
52
-
53
-
54
- if is_transformers_available():
55
- from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel
56
-
57
- if is_accelerate_available():
58
- from accelerate import init_empty_weights
59
- from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
60
-
61
- logger = logging.get_logger(__name__)
62
-
63
- TEXT_ENCODER_NAME = "text_encoder"
64
- UNET_NAME = "unet"
65
-
66
- LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
67
- LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
68
-
69
- TEXT_INVERSION_NAME = "learned_embeds.bin"
70
- TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
71
-
72
- CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
73
- CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
74
-
75
- LORA_DEPRECATION_MESSAGE = "You are using an old version of LoRA backend. This will be deprecated in the next releases in favor of PEFT make sure to install the latest PEFT and transformers packages in the future."
76
-
77
-
78
- class PatchedLoraProjection(nn.Module):
79
- def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
80
- super().__init__()
81
- from .models.lora import LoRALinearLayer
82
-
83
- self.regular_linear_layer = regular_linear_layer
84
-
85
- device = self.regular_linear_layer.weight.device
86
-
87
- if dtype is None:
88
- dtype = self.regular_linear_layer.weight.dtype
89
-
90
- self.lora_linear_layer = LoRALinearLayer(
91
- self.regular_linear_layer.in_features,
92
- self.regular_linear_layer.out_features,
93
- network_alpha=network_alpha,
94
- device=device,
95
- dtype=dtype,
96
- rank=rank,
97
- )
98
-
99
- self.lora_scale = lora_scale
100
-
101
- # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
102
- # when saving the whole text encoder model and when LoRA is unloaded or fused
103
- def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
104
- if self.lora_linear_layer is None:
105
- return self.regular_linear_layer.state_dict(
106
- *args, destination=destination, prefix=prefix, keep_vars=keep_vars
107
- )
108
-
109
- return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
110
-
111
- def _fuse_lora(self, lora_scale=1.0, safe_fusing=False):
112
- if self.lora_linear_layer is None:
113
- return
114
-
115
- dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device
116
-
117
- w_orig = self.regular_linear_layer.weight.data.float()
118
- w_up = self.lora_linear_layer.up.weight.data.float()
119
- w_down = self.lora_linear_layer.down.weight.data.float()
120
-
121
- if self.lora_linear_layer.network_alpha is not None:
122
- w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank
123
-
124
- fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
125
-
126
- if safe_fusing and torch.isnan(fused_weight).any().item():
127
- raise ValueError(
128
- "This LoRA weight seems to be broken. "
129
- f"Encountered NaN values when trying to fuse LoRA weights for {self}."
130
- "LoRA weights will not be fused."
131
- )
132
-
133
- self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)
134
-
135
- # we can drop the lora layer now
136
- self.lora_linear_layer = None
137
-
138
- # offload the up and down matrices to CPU to not blow the memory
139
- self.w_up = w_up.cpu()
140
- self.w_down = w_down.cpu()
141
- self.lora_scale = lora_scale
142
-
143
- def _unfuse_lora(self):
144
- if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
145
- return
146
-
147
- fused_weight = self.regular_linear_layer.weight.data
148
- dtype, device = fused_weight.dtype, fused_weight.device
149
-
150
- w_up = self.w_up.to(device=device).float()
151
- w_down = self.w_down.to(device).float()
152
-
153
- unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
154
- self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)
155
-
156
- self.w_up = None
157
- self.w_down = None
158
-
159
- def forward(self, input):
160
- if self.lora_scale is None:
161
- self.lora_scale = 1.0
162
- if self.lora_linear_layer is None:
163
- return self.regular_linear_layer(input)
164
- return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
165
-
166
-
167
- def text_encoder_attn_modules(text_encoder):
168
- attn_modules = []
169
-
170
- if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
171
- for i, layer in enumerate(text_encoder.text_model.encoder.layers):
172
- name = f"text_model.encoder.layers.{i}.self_attn"
173
- mod = layer.self_attn
174
- attn_modules.append((name, mod))
175
- else:
176
- raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")
177
-
178
- return attn_modules
179
-
180
-
181
- def text_encoder_mlp_modules(text_encoder):
182
- mlp_modules = []
183
-
184
- if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
185
- for i, layer in enumerate(text_encoder.text_model.encoder.layers):
186
- mlp_mod = layer.mlp
187
- name = f"text_model.encoder.layers.{i}.mlp"
188
- mlp_modules.append((name, mlp_mod))
189
- else:
190
- raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")
191
-
192
- return mlp_modules
193
-
194
-
195
- def text_encoder_lora_state_dict(text_encoder):
196
- state_dict = {}
197
-
198
- for name, module in text_encoder_attn_modules(text_encoder):
199
- for k, v in module.q_proj.lora_linear_layer.state_dict().items():
200
- state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v
201
-
202
- for k, v in module.k_proj.lora_linear_layer.state_dict().items():
203
- state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v
204
-
205
- for k, v in module.v_proj.lora_linear_layer.state_dict().items():
206
- state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v
207
-
208
- for k, v in module.out_proj.lora_linear_layer.state_dict().items():
209
- state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v
210
-
211
- return state_dict
212
-
213
-
214
- class AttnProcsLayers(torch.nn.Module):
215
- def __init__(self, state_dict: Dict[str, torch.Tensor]):
216
- super().__init__()
217
- self.layers = torch.nn.ModuleList(state_dict.values())
218
- self.mapping = dict(enumerate(state_dict.keys()))
219
- self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
220
-
221
- # .processor for unet, .self_attn for text encoder
222
- self.split_keys = [".processor", ".self_attn"]
223
-
224
- # we add a hook to state_dict() and load_state_dict() so that the
225
- # naming fits with `unet.attn_processors`
226
- def map_to(module, state_dict, *args, **kwargs):
227
- new_state_dict = {}
228
- for key, value in state_dict.items():
229
- num = int(key.split(".")[1]) # 0 is always "layers"
230
- new_key = key.replace(f"layers.{num}", module.mapping[num])
231
- new_state_dict[new_key] = value
232
-
233
- return new_state_dict
234
-
235
- def remap_key(key, state_dict):
236
- for k in self.split_keys:
237
- if k in key:
238
- return key.split(k)[0] + k
239
-
240
- raise ValueError(
241
- f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
242
- )
243
-
244
- def map_from(module, state_dict, *args, **kwargs):
245
- all_keys = list(state_dict.keys())
246
- for key in all_keys:
247
- replace_key = remap_key(key, state_dict)
248
- new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
249
- state_dict[new_key] = state_dict[key]
250
- del state_dict[key]
251
-
252
- self._register_state_dict_hook(map_to)
253
- self._register_load_state_dict_pre_hook(map_from, with_module=True)
254
-
255
-
256
- class UNet2DConditionLoadersMixin:
257
- text_encoder_name = TEXT_ENCODER_NAME
258
- unet_name = UNET_NAME
259
-
260
- def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
261
- r"""
262
- Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
263
- defined in
264
- [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
265
- and be a `torch.nn.Module` class.
266
-
267
- Parameters:
268
- pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
269
- Can be either:
270
-
271
- - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
272
- the Hub.
273
- - A path to a directory (for example `./my_model_directory`) containing the model weights saved
274
- with [`ModelMixin.save_pretrained`].
275
- - A [torch state
276
- dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
277
-
278
- cache_dir (`Union[str, os.PathLike]`, *optional*):
279
- Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
280
- is not used.
281
- force_download (`bool`, *optional*, defaults to `False`):
282
- Whether or not to force the (re-)download of the model weights and configuration files, overriding the
283
- cached versions if they exist.
284
- resume_download (`bool`, *optional*, defaults to `False`):
285
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
286
- incompletely downloaded files are deleted.
287
- proxies (`Dict[str, str]`, *optional*):
288
- A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
289
- 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
290
- local_files_only (`bool`, *optional*, defaults to `False`):
291
- Whether to only load local model weights and configuration files or not. If set to `True`, the model
292
- won't be downloaded from the Hub.
293
- use_auth_token (`str` or *bool*, *optional*):
294
- The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
295
- `diffusers-cli login` (stored in `~/.huggingface`) is used.
296
- low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
297
- Speed up model loading only loading the pretrained weights and not initializing the weights. This also
298
- tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
299
- Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
300
- argument to `True` will raise an error.
301
- revision (`str`, *optional*, defaults to `"main"`):
302
- The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
303
- allowed by Git.
304
- subfolder (`str`, *optional*, defaults to `""`):
305
- The subfolder location of a model file within a larger model repository on the Hub or locally.
306
- mirror (`str`, *optional*):
307
- Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
308
- guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
309
- information.
310
-
311
- """
312
- from .models.attention_processor import (
313
- CustomDiffusionAttnProcessor,
314
- )
315
- from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
316
-
317
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
318
- force_download = kwargs.pop("force_download", False)
319
- resume_download = kwargs.pop("resume_download", False)
320
- proxies = kwargs.pop("proxies", None)
321
- local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
322
- use_auth_token = kwargs.pop("use_auth_token", None)
323
- revision = kwargs.pop("revision", None)
324
- subfolder = kwargs.pop("subfolder", None)
325
- weight_name = kwargs.pop("weight_name", None)
326
- use_safetensors = kwargs.pop("use_safetensors", None)
327
- low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
328
- # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
329
- # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
330
- network_alphas = kwargs.pop("network_alphas", None)
331
-
332
- _pipeline = kwargs.pop("_pipeline", None)
333
-
334
- is_network_alphas_none = network_alphas is None
335
-
336
- allow_pickle = False
337
-
338
- if use_safetensors is None:
339
- use_safetensors = True
340
- allow_pickle = True
341
-
342
- user_agent = {
343
- "file_type": "attn_procs_weights",
344
- "framework": "pytorch",
345
- }
346
-
347
- if low_cpu_mem_usage and not is_accelerate_available():
348
- low_cpu_mem_usage = False
349
- logger.warning(
350
- "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
351
- " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
352
- " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
353
- " install accelerate\n```\n."
354
- )
355
-
356
- model_file = None
357
- if not isinstance(pretrained_model_name_or_path_or_dict, dict):
358
- # Let's first try to load .safetensors weights
359
- if (use_safetensors and weight_name is None) or (
360
- weight_name is not None and weight_name.endswith(".safetensors")
361
- ):
362
- try:
363
- model_file = _get_model_file(
364
- pretrained_model_name_or_path_or_dict,
365
- weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
366
- cache_dir=cache_dir,
367
- force_download=force_download,
368
- resume_download=resume_download,
369
- proxies=proxies,
370
- local_files_only=local_files_only,
371
- use_auth_token=use_auth_token,
372
- revision=revision,
373
- subfolder=subfolder,
374
- user_agent=user_agent,
375
- )
376
- state_dict = safetensors.torch.load_file(model_file, device="cpu")
377
- except IOError as e:
378
- if not allow_pickle:
379
- raise e
380
- # try loading non-safetensors weights
381
- pass
382
- if model_file is None:
383
- model_file = _get_model_file(
384
- pretrained_model_name_or_path_or_dict,
385
- weights_name=weight_name or LORA_WEIGHT_NAME,
386
- cache_dir=cache_dir,
387
- force_download=force_download,
388
- resume_download=resume_download,
389
- proxies=proxies,
390
- local_files_only=local_files_only,
391
- use_auth_token=use_auth_token,
392
- revision=revision,
393
- subfolder=subfolder,
394
- user_agent=user_agent,
395
- )
396
- state_dict = torch.load(model_file, map_location="cpu")
397
- else:
398
- state_dict = pretrained_model_name_or_path_or_dict
399
-
400
- # fill attn processors
401
- lora_layers_list = []
402
-
403
- is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
404
- is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
405
-
406
- if is_lora:
407
- # correct keys
408
- state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
409
-
410
- if network_alphas is not None:
411
- network_alphas_keys = list(network_alphas.keys())
412
- used_network_alphas_keys = set()
413
-
414
- lora_grouped_dict = defaultdict(dict)
415
- mapped_network_alphas = {}
416
-
417
- all_keys = list(state_dict.keys())
418
- for key in all_keys:
419
- value = state_dict.pop(key)
420
- attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
421
- lora_grouped_dict[attn_processor_key][sub_key] = value
422
-
423
- # Create another `mapped_network_alphas` dictionary so that we can properly map them.
424
- if network_alphas is not None:
425
- for k in network_alphas_keys:
426
- if k.replace(".alpha", "") in key:
427
- mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
428
- used_network_alphas_keys.add(k)
429
-
430
- if not is_network_alphas_none:
431
- if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
432
- raise ValueError(
433
- f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
434
- )
435
-
436
- if len(state_dict) > 0:
437
- raise ValueError(
438
- f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
439
- )
440
-
441
- for key, value_dict in lora_grouped_dict.items():
442
- attn_processor = self
443
- for sub_key in key.split("."):
444
- attn_processor = getattr(attn_processor, sub_key)
445
-
446
- # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
447
- # or add_{k,v,q,out_proj}_proj_lora layers.
448
- rank = value_dict["lora.down.weight"].shape[0]
449
-
450
- if isinstance(attn_processor, LoRACompatibleConv):
451
- in_features = attn_processor.in_channels
452
- out_features = attn_processor.out_channels
453
- kernel_size = attn_processor.kernel_size
454
-
455
- ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
456
- with ctx():
457
- lora = LoRAConv2dLayer(
458
- in_features=in_features,
459
- out_features=out_features,
460
- rank=rank,
461
- kernel_size=kernel_size,
462
- stride=attn_processor.stride,
463
- padding=attn_processor.padding,
464
- network_alpha=mapped_network_alphas.get(key),
465
- )
466
- elif isinstance(attn_processor, LoRACompatibleLinear):
467
- ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
468
- with ctx():
469
- lora = LoRALinearLayer(
470
- attn_processor.in_features,
471
- attn_processor.out_features,
472
- rank,
473
- mapped_network_alphas.get(key),
474
- )
475
- else:
476
- raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
477
-
478
- value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
479
- lora_layers_list.append((attn_processor, lora))
480
-
481
- if low_cpu_mem_usage:
482
- device = next(iter(value_dict.values())).device
483
- dtype = next(iter(value_dict.values())).dtype
484
- load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
485
- else:
486
- lora.load_state_dict(value_dict)
487
-
488
- elif is_custom_diffusion:
489
- attn_processors = {}
490
- custom_diffusion_grouped_dict = defaultdict(dict)
491
- for key, value in state_dict.items():
492
- if len(value) == 0:
493
- custom_diffusion_grouped_dict[key] = {}
494
- else:
495
- if "to_out" in key:
496
- attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
497
- else:
498
- attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
499
- custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
500
-
501
- for key, value_dict in custom_diffusion_grouped_dict.items():
502
- if len(value_dict) == 0:
503
- attn_processors[key] = CustomDiffusionAttnProcessor(
504
- train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
505
- )
506
- else:
507
- cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
508
- hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
509
- train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
510
- attn_processors[key] = CustomDiffusionAttnProcessor(
511
- train_kv=True,
512
- train_q_out=train_q_out,
513
- hidden_size=hidden_size,
514
- cross_attention_dim=cross_attention_dim,
515
- )
516
- attn_processors[key].load_state_dict(value_dict)
517
- elif USE_PEFT_BACKEND:
518
- # In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
519
- # on the Unet
520
- pass
521
- else:
522
- raise ValueError(
523
- f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
524
- )
525
-
526
- # <Unsafe code
527
- # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
528
- # Now we remove any existing hooks to
529
- is_model_cpu_offload = False
530
- is_sequential_cpu_offload = False
531
-
532
- # For PEFT backend the Unet is already offloaded at this stage as it is handled inside `lora_lora_weights_into_unet`
533
- if not USE_PEFT_BACKEND:
534
- if _pipeline is not None:
535
- for _, component in _pipeline.components.items():
536
- if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
537
- is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
538
- is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
539
-
540
- logger.info(
541
- "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
542
- )
543
- remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
544
-
545
- # only custom diffusion needs to set attn processors
546
- if is_custom_diffusion:
547
- self.set_attn_processor(attn_processors)
548
-
549
- # set lora layers
550
- for target_module, lora_layer in lora_layers_list:
551
- target_module.set_lora_layer(lora_layer)
552
-
553
- self.to(dtype=self.dtype, device=self.device)
554
-
555
- # Offload back.
556
- if is_model_cpu_offload:
557
- _pipeline.enable_model_cpu_offload()
558
- elif is_sequential_cpu_offload:
559
- _pipeline.enable_sequential_cpu_offload()
560
- # Unsafe code />
561
-
562
- def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
563
- is_new_lora_format = all(
564
- key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
565
- )
566
- if is_new_lora_format:
567
- # Strip the `"unet"` prefix.
568
- is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
569
- if is_text_encoder_present:
570
- warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
571
- logger.warn(warn_message)
572
- unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
573
- state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
574
-
575
- # change processor format to 'pure' LoRACompatibleLinear format
576
- if any("processor" in k.split(".") for k in state_dict.keys()):
577
-
578
- def format_to_lora_compatible(key):
579
- if "processor" not in key.split("."):
580
- return key
581
- return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")
582
-
583
- state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}
584
-
585
- if network_alphas is not None:
586
- network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
587
- return state_dict, network_alphas
588
-
589
- def save_attn_procs(
590
- self,
591
- save_directory: Union[str, os.PathLike],
592
- is_main_process: bool = True,
593
- weight_name: str = None,
594
- save_function: Callable = None,
595
- safe_serialization: bool = True,
596
- **kwargs,
597
- ):
598
- r"""
599
- Save an attention processor to a directory so that it can be reloaded using the
600
- [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
601
-
602
- Arguments:
603
- save_directory (`str` or `os.PathLike`):
604
- Directory to save an attention processor to. Will be created if it doesn't exist.
605
- is_main_process (`bool`, *optional*, defaults to `True`):
606
- Whether the process calling this is the main process or not. Useful during distributed training and you
607
- need to call this function on all processes. In this case, set `is_main_process=True` only on the main
608
- process to avoid race conditions.
609
- save_function (`Callable`):
610
- The function to use to save the state dictionary. Useful during distributed training when you need to
611
- replace `torch.save` with another method. Can be configured with the environment variable
612
- `DIFFUSERS_SAVE_MODE`.
613
- safe_serialization (`bool`, *optional*, defaults to `True`):
614
- Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
615
- """
616
- from .models.attention_processor import (
617
- CustomDiffusionAttnProcessor,
618
- CustomDiffusionAttnProcessor2_0,
619
- CustomDiffusionXFormersAttnProcessor,
620
- )
621
-
622
- if os.path.isfile(save_directory):
623
- logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
624
- return
625
-
626
- if save_function is None:
627
- if safe_serialization:
628
-
629
- def save_function(weights, filename):
630
- return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
631
-
632
- else:
633
- save_function = torch.save
634
-
635
- os.makedirs(save_directory, exist_ok=True)
636
-
637
- is_custom_diffusion = any(
638
- isinstance(
639
- x,
640
- (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
641
- )
642
- for (_, x) in self.attn_processors.items()
643
- )
644
- if is_custom_diffusion:
645
- model_to_save = AttnProcsLayers(
646
- {
647
- y: x
648
- for (y, x) in self.attn_processors.items()
649
- if isinstance(
650
- x,
651
- (
652
- CustomDiffusionAttnProcessor,
653
- CustomDiffusionAttnProcessor2_0,
654
- CustomDiffusionXFormersAttnProcessor,
655
- ),
656
- )
657
- }
658
- )
659
- state_dict = model_to_save.state_dict()
660
- for name, attn in self.attn_processors.items():
661
- if len(attn.state_dict()) == 0:
662
- state_dict[name] = {}
663
- else:
664
- model_to_save = AttnProcsLayers(self.attn_processors)
665
- state_dict = model_to_save.state_dict()
666
-
667
- if weight_name is None:
668
- if safe_serialization:
669
- weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
670
- else:
671
- weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
672
-
673
- # Save the model
674
- save_function(state_dict, os.path.join(save_directory, weight_name))
675
- logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
676
-
677
- def fuse_lora(self, lora_scale=1.0, safe_fusing=False):
678
- self.lora_scale = lora_scale
679
- self._safe_fusing = safe_fusing
680
- self.apply(self._fuse_lora_apply)
681
-
682
- def _fuse_lora_apply(self, module):
683
- if not USE_PEFT_BACKEND:
684
- if hasattr(module, "_fuse_lora"):
685
- module._fuse_lora(self.lora_scale, self._safe_fusing)
686
- else:
687
- from peft.tuners.tuners_utils import BaseTunerLayer
688
-
689
- if isinstance(module, BaseTunerLayer):
690
- if self.lora_scale != 1.0:
691
- module.scale_layer(self.lora_scale)
692
- module.merge(safe_merge=self._safe_fusing)
693
-
694
- def unfuse_lora(self):
695
- self.apply(self._unfuse_lora_apply)
696
-
697
- def _unfuse_lora_apply(self, module):
698
- if not USE_PEFT_BACKEND:
699
- if hasattr(module, "_unfuse_lora"):
700
- module._unfuse_lora()
701
- else:
702
- from peft.tuners.tuners_utils import BaseTunerLayer
703
-
704
- if isinstance(module, BaseTunerLayer):
705
- module.unmerge()
706
-
707
- def set_adapters(
708
- self,
709
- adapter_names: Union[List[str], str],
710
- weights: Optional[Union[List[float], float]] = None,
711
- ):
712
- """
713
- Sets the adapter layers for the unet.
714
-
715
- Args:
716
- adapter_names (`List[str]` or `str`):
717
- The names of the adapters to use.
718
- weights (`Union[List[float], float]`, *optional*):
719
- The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
720
- adapters.
721
- """
722
- if not USE_PEFT_BACKEND:
723
- raise ValueError("PEFT backend is required for `set_adapters()`.")
724
-
725
- adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
726
-
727
- if weights is None:
728
- weights = [1.0] * len(adapter_names)
729
- elif isinstance(weights, float):
730
- weights = [weights] * len(adapter_names)
731
-
732
- if len(adapter_names) != len(weights):
733
- raise ValueError(
734
- f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
735
- )
736
-
737
- set_weights_and_activate_adapters(self, adapter_names, weights)
738
-
739
- def disable_lora(self):
740
- """
741
- Disables the active LoRA layers for the unet.
742
- """
743
- if not USE_PEFT_BACKEND:
744
- raise ValueError("PEFT backend is required for this method.")
745
- set_adapter_layers(self, enabled=False)
746
-
747
- def enable_lora(self):
748
- """
749
- Enables the active LoRA layers for the unet.
750
- """
751
- if not USE_PEFT_BACKEND:
752
- raise ValueError("PEFT backend is required for this method.")
753
- set_adapter_layers(self, enabled=True)
754
-
755
-
756
- def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
757
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
758
- force_download = kwargs.pop("force_download", False)
759
- resume_download = kwargs.pop("resume_download", False)
760
- proxies = kwargs.pop("proxies", None)
761
- local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
762
- use_auth_token = kwargs.pop("use_auth_token", None)
763
- revision = kwargs.pop("revision", None)
764
- subfolder = kwargs.pop("subfolder", None)
765
- weight_name = kwargs.pop("weight_name", None)
766
- use_safetensors = kwargs.pop("use_safetensors", None)
767
-
768
- allow_pickle = False
769
- if use_safetensors is None:
770
- use_safetensors = True
771
- allow_pickle = True
772
-
773
- user_agent = {
774
- "file_type": "text_inversion",
775
- "framework": "pytorch",
776
- }
777
- state_dicts = []
778
- for pretrained_model_name_or_path in pretrained_model_name_or_paths:
779
- if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
780
- # 3.1. Load textual inversion file
781
- model_file = None
782
-
783
- # Let's first try to load .safetensors weights
784
- if (use_safetensors and weight_name is None) or (
785
- weight_name is not None and weight_name.endswith(".safetensors")
786
- ):
787
- try:
788
- model_file = _get_model_file(
789
- pretrained_model_name_or_path,
790
- weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
791
- cache_dir=cache_dir,
792
- force_download=force_download,
793
- resume_download=resume_download,
794
- proxies=proxies,
795
- local_files_only=local_files_only,
796
- use_auth_token=use_auth_token,
797
- revision=revision,
798
- subfolder=subfolder,
799
- user_agent=user_agent,
800
- )
801
- state_dict = safetensors.torch.load_file(model_file, device="cpu")
802
- except Exception as e:
803
- if not allow_pickle:
804
- raise e
805
-
806
- model_file = None
807
-
808
- if model_file is None:
809
- model_file = _get_model_file(
810
- pretrained_model_name_or_path,
811
- weights_name=weight_name or TEXT_INVERSION_NAME,
812
- cache_dir=cache_dir,
813
- force_download=force_download,
814
- resume_download=resume_download,
815
- proxies=proxies,
816
- local_files_only=local_files_only,
817
- use_auth_token=use_auth_token,
818
- revision=revision,
819
- subfolder=subfolder,
820
- user_agent=user_agent,
821
- )
822
- state_dict = torch.load(model_file, map_location="cpu")
823
- else:
824
- state_dict = pretrained_model_name_or_path
825
-
826
- state_dicts.append(state_dict)
827
-
828
- return state_dicts
829
-
830
-
831
- class TextualInversionLoaderMixin:
832
- r"""
833
- Load textual inversion tokens and embeddings to the tokenizer and text encoder.
834
- """
835
-
836
- def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
837
- r"""
838
- Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
839
- be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
840
- inversion token or if the textual inversion token is a single vector, the input prompt is returned.
841
-
842
- Parameters:
843
- prompt (`str` or list of `str`):
844
- The prompt or prompts to guide the image generation.
845
- tokenizer (`PreTrainedTokenizer`):
846
- The tokenizer responsible for encoding the prompt into input tokens.
847
-
848
- Returns:
849
- `str` or list of `str`: The converted prompt
850
- """
851
- if not isinstance(prompt, List):
852
- prompts = [prompt]
853
- else:
854
- prompts = prompt
855
-
856
- prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
857
-
858
- if not isinstance(prompt, List):
859
- return prompts[0]
860
-
861
- return prompts
862
-
863
- def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
864
- r"""
865
- Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
866
- to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
867
- is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
868
- inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.
869
-
870
- Parameters:
871
- prompt (`str`):
872
- The prompt to guide the image generation.
873
- tokenizer (`PreTrainedTokenizer`):
874
- The tokenizer responsible for encoding the prompt into input tokens.
875
-
876
- Returns:
877
- `str`: The converted prompt
878
- """
879
- tokens = tokenizer.tokenize(prompt)
880
- unique_tokens = set(tokens)
881
- for token in unique_tokens:
882
- if token in tokenizer.added_tokens_encoder:
883
- replacement = token
884
- i = 1
885
- while f"{token}_{i}" in tokenizer.added_tokens_encoder:
886
- replacement += f" {token}_{i}"
887
- i += 1
888
-
889
- prompt = prompt.replace(token, replacement)
890
-
891
- return prompt
892
-
893
- def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
894
- if tokenizer is None:
895
- raise ValueError(
896
- f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
897
- f" `{self.load_textual_inversion.__name__}`"
898
- )
899
-
900
- if text_encoder is None:
901
- raise ValueError(
902
- f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
903
- f" `{self.load_textual_inversion.__name__}`"
904
- )
905
-
906
- if len(pretrained_model_name_or_paths) != len(tokens):
907
- raise ValueError(
908
- f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
909
- f"Make sure both lists have the same length."
910
- )
911
-
912
- valid_tokens = [t for t in tokens if t is not None]
913
- if len(set(valid_tokens)) < len(valid_tokens):
914
- raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")
915
-
916
- @staticmethod
917
- def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
918
- all_tokens = []
919
- all_embeddings = []
920
- for state_dict, token in zip(state_dicts, tokens):
921
- if isinstance(state_dict, torch.Tensor):
922
- if token is None:
923
- raise ValueError(
924
- "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
925
- )
926
- loaded_token = token
927
- embedding = state_dict
928
- elif len(state_dict) == 1:
929
- # diffusers
930
- loaded_token, embedding = next(iter(state_dict.items()))
931
- elif "string_to_param" in state_dict:
932
- # A1111
933
- loaded_token = state_dict["name"]
934
- embedding = state_dict["string_to_param"]["*"]
935
- else:
936
- raise ValueError(
937
- f"Loaded state dictonary is incorrect: {state_dict}. \n\n"
938
- "Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
939
- " input key."
940
- )
941
-
942
- if token is not None and loaded_token != token:
943
- logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
944
- else:
945
- token = loaded_token
946
-
947
- if token in tokenizer.get_vocab():
948
- raise ValueError(
949
- f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
950
- )
951
-
952
- all_tokens.append(token)
953
- all_embeddings.append(embedding)
954
-
955
- return all_tokens, all_embeddings
956
-
957
- @staticmethod
958
- def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
959
- all_tokens = []
960
- all_embeddings = []
961
-
962
- for embedding, token in zip(embeddings, tokens):
963
- if f"{token}_1" in tokenizer.get_vocab():
964
- multi_vector_tokens = [token]
965
- i = 1
966
- while f"{token}_{i}" in tokenizer.added_tokens_encoder:
967
- multi_vector_tokens.append(f"{token}_{i}")
968
- i += 1
969
-
970
- raise ValueError(
971
- f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
972
- )
973
-
974
- is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
975
- if is_multi_vector:
976
- all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
977
- all_embeddings += [e for e in embedding] # noqa: C416
978
- else:
979
- all_tokens += [token]
980
- all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]
981
-
982
- return all_tokens, all_embeddings
983
-
984
- def load_textual_inversion(
985
- self,
986
- pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
987
- token: Optional[Union[str, List[str]]] = None,
988
- tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821
989
- text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
990
- **kwargs,
991
- ):
992
- r"""
993
- Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
994
- Automatic1111 formats are supported).
995
-
996
- Parameters:
997
- pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
998
- Can be either one of the following or a list of them:
999
-
1000
- - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
1001
- pretrained model hosted on the Hub.
1002
- - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
1003
- inversion weights.
1004
- - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
1005
- - A [torch state
1006
- dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
1007
-
1008
- token (`str` or `List[str]`, *optional*):
1009
- Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
1010
- list, then `token` must also be a list of equal length.
1011
- text_encoder ([`~transformers.CLIPTextModel`], *optional*):
1012
- Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
1013
- If not specified, function will take self.tokenizer.
1014
- tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
1015
- A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
1016
- weight_name (`str`, *optional*):
1017
- Name of a custom weight file. This should be used when:
1018
-
1019
- - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
1020
- name such as `text_inv.bin`.
1021
- - The saved textual inversion file is in the Automatic1111 format.
1022
- cache_dir (`Union[str, os.PathLike]`, *optional*):
1023
- Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
1024
- is not used.
1025
- force_download (`bool`, *optional*, defaults to `False`):
1026
- Whether or not to force the (re-)download of the model weights and configuration files, overriding the
1027
- cached versions if they exist.
1028
- resume_download (`bool`, *optional*, defaults to `False`):
1029
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
1030
- incompletely downloaded files are deleted.
1031
- proxies (`Dict[str, str]`, *optional*):
1032
- A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1033
- 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1034
- local_files_only (`bool`, *optional*, defaults to `False`):
1035
- Whether to only load local model weights and configuration files or not. If set to `True`, the model
1036
- won't be downloaded from the Hub.
1037
- use_auth_token (`str` or *bool*, *optional*):
1038
- The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
1039
- `diffusers-cli login` (stored in `~/.huggingface`) is used.
1040
- revision (`str`, *optional*, defaults to `"main"`):
1041
- The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
1042
- allowed by Git.
1043
- subfolder (`str`, *optional*, defaults to `""`):
1044
- The subfolder location of a model file within a larger model repository on the Hub or locally.
1045
- mirror (`str`, *optional*):
1046
- Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
1047
- guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
1048
- information.
1049
-
1050
- Example:
1051
-
1052
- To load a textual inversion embedding vector in 🤗 Diffusers format:
1053
-
1054
- ```py
1055
- from diffusers import StableDiffusionPipeline
1056
- import torch
1057
-
1058
- model_id = "runwayml/stable-diffusion-v1-5"
1059
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
1060
-
1061
- pipe.load_textual_inversion("sd-concepts-library/cat-toy")
1062
-
1063
- prompt = "A <cat-toy> backpack"
1064
-
1065
- image = pipe(prompt, num_inference_steps=50).images[0]
1066
- image.save("cat-backpack.png")
1067
- ```
1068
-
1069
- To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
1070
- (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
1071
- locally:
1072
-
1073
- ```py
1074
- from diffusers import StableDiffusionPipeline
1075
- import torch
1076
-
1077
- model_id = "runwayml/stable-diffusion-v1-5"
1078
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
1079
-
1080
- pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
1081
-
1082
- prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
1083
-
1084
- image = pipe(prompt, num_inference_steps=50).images[0]
1085
- image.save("character.png")
1086
- ```
1087
-
1088
- """
1089
- # 1. Set correct tokenizer and text encoder
1090
- tokenizer = tokenizer or getattr(self, "tokenizer", None)
1091
- text_encoder = text_encoder or getattr(self, "text_encoder", None)
1092
-
1093
- # 2. Normalize inputs
1094
- pretrained_model_name_or_paths = (
1095
- [pretrained_model_name_or_path]
1096
- if not isinstance(pretrained_model_name_or_path, list)
1097
- else pretrained_model_name_or_path
1098
- )
1099
- tokens = len(pretrained_model_name_or_paths) * [token] if (isinstance(token, str) or token is None) else token
1100
-
1101
- # 3. Check inputs
1102
- self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)
1103
-
1104
- # 4. Load state dicts of textual embeddings
1105
- state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
1106
-
1107
- # 4. Retrieve tokens and embeddings
1108
- tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)
1109
-
1110
- # 5. Extend tokens and embeddings for multi vector
1111
- tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)
1112
-
1113
- # 6. Make sure all embeddings have the correct size
1114
- expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
1115
- if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
1116
- raise ValueError(
1117
- "Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
1118
- "to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
1119
- )
1120
-
1121
- # 7. Now we can be sure that loading the embedding matrix works
1122
- # < Unsafe code:
1123
-
1124
- # 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
1125
- is_model_cpu_offload = False
1126
- is_sequential_cpu_offload = False
1127
- for _, component in self.components.items():
1128
- if isinstance(component, nn.Module):
1129
- if hasattr(component, "_hf_hook"):
1130
- is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
1131
- is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
1132
- logger.info(
1133
- "Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
1134
- )
1135
- remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
1136
-
1137
- # 7.2 save expected device and dtype
1138
- device = text_encoder.device
1139
- dtype = text_encoder.dtype
1140
-
1141
- # 7.3 Increase token embedding matrix
1142
- text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
1143
- input_embeddings = text_encoder.get_input_embeddings().weight
1144
-
1145
- # 7.4 Load token and embedding
1146
- for token, embedding in zip(tokens, embeddings):
1147
- # add tokens and get ids
1148
- tokenizer.add_tokens(token)
1149
- token_id = tokenizer.convert_tokens_to_ids(token)
1150
- input_embeddings.data[token_id] = embedding
1151
- logger.info(f"Loaded textual inversion embedding for {token}.")
1152
-
1153
- input_embeddings.to(dtype=dtype, device=device)
1154
-
1155
- # 7.5 Offload the model again
1156
- if is_model_cpu_offload:
1157
- self.enable_model_cpu_offload()
1158
- elif is_sequential_cpu_offload:
1159
- self.enable_sequential_cpu_offload()
1160
-
1161
- # / Unsafe Code >
1162
-
1163
-
1164
- class LoraLoaderMixin:
1165
- r"""
1166
- Load LoRA layers into [`UNet2DConditionModel`] and
1167
- [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
1168
- """
1169
- text_encoder_name = TEXT_ENCODER_NAME
1170
- unet_name = UNET_NAME
1171
- num_fused_loras = 0
1172
-
1173
- def load_lora_weights(
1174
- self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
1175
- ):
1176
- """
1177
- Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
1178
- `self.text_encoder`.
1179
-
1180
- All kwargs are forwarded to `self.lora_state_dict`.
1181
-
1182
- See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
1183
-
1184
- See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
1185
- `self.unet`.
1186
-
1187
- See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
1188
- into `self.text_encoder`.
1189
-
1190
- Parameters:
1191
- pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
1192
- See [`~loaders.LoraLoaderMixin.lora_state_dict`].
1193
- kwargs (`dict`, *optional*):
1194
- See [`~loaders.LoraLoaderMixin.lora_state_dict`].
1195
- adapter_name (`str`, *optional*):
1196
- Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
1197
- `default_{i}` where i is the total number of adapters being loaded.
1198
- """
1199
- # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1200
- state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1201
-
1202
- is_correct_format = all("lora" in key for key in state_dict.keys())
1203
- if not is_correct_format:
1204
- raise ValueError("Invalid LoRA checkpoint.")
1205
-
1206
- low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
1207
-
1208
- self.load_lora_into_unet(
1209
- state_dict,
1210
- network_alphas=network_alphas,
1211
- unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
1212
- low_cpu_mem_usage=low_cpu_mem_usage,
1213
- adapter_name=adapter_name,
1214
- _pipeline=self,
1215
- )
1216
- self.load_lora_into_text_encoder(
1217
- state_dict,
1218
- network_alphas=network_alphas,
1219
- text_encoder=getattr(self, self.text_encoder_name)
1220
- if not hasattr(self, "text_encoder")
1221
- else self.text_encoder,
1222
- lora_scale=self.lora_scale,
1223
- low_cpu_mem_usage=low_cpu_mem_usage,
1224
- adapter_name=adapter_name,
1225
- _pipeline=self,
1226
- )
1227
-
1228
- @classmethod
1229
- def lora_state_dict(
1230
- cls,
1231
- pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1232
- **kwargs,
1233
- ):
1234
- r"""
1235
- Return state dict for lora weights and the network alphas.
1236
-
1237
- <Tip warning={true}>
1238
-
1239
- We support loading A1111 formatted LoRA checkpoints in a limited capacity.
1240
-
1241
- This function is experimental and might change in the future.
1242
-
1243
- </Tip>
1244
-
1245
- Parameters:
1246
- pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
1247
- Can be either:
1248
-
1249
- - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
1250
- the Hub.
1251
- - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
1252
- with [`ModelMixin.save_pretrained`].
1253
- - A [torch state
1254
- dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
1255
-
1256
- cache_dir (`Union[str, os.PathLike]`, *optional*):
1257
- Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
1258
- is not used.
1259
- force_download (`bool`, *optional*, defaults to `False`):
1260
- Whether or not to force the (re-)download of the model weights and configuration files, overriding the
1261
- cached versions if they exist.
1262
- resume_download (`bool`, *optional*, defaults to `False`):
1263
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
1264
- incompletely downloaded files are deleted.
1265
- proxies (`Dict[str, str]`, *optional*):
1266
- A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1267
- 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1268
- local_files_only (`bool`, *optional*, defaults to `False`):
1269
- Whether to only load local model weights and configuration files or not. If set to `True`, the model
1270
- won't be downloaded from the Hub.
1271
- use_auth_token (`str` or *bool*, *optional*):
1272
- The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
1273
- `diffusers-cli login` (stored in `~/.huggingface`) is used.
1274
- revision (`str`, *optional*, defaults to `"main"`):
1275
- The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
1276
- allowed by Git.
1277
- subfolder (`str`, *optional*, defaults to `""`):
1278
- The subfolder location of a model file within a larger model repository on the Hub or locally.
1279
- low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
1280
- Speed up model loading only loading the pretrained weights and not initializing the weights. This also
1281
- tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
1282
- Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
1283
- argument to `True` will raise an error.
1284
- mirror (`str`, *optional*):
1285
- Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
1286
- guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
1287
- information.
1288
-
1289
- """
1290
- # Load the main state dict first which has the LoRA layers for either of
1291
- # UNet and text encoder or both.
1292
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
1293
- force_download = kwargs.pop("force_download", False)
1294
- resume_download = kwargs.pop("resume_download", False)
1295
- proxies = kwargs.pop("proxies", None)
1296
- local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
1297
- use_auth_token = kwargs.pop("use_auth_token", None)
1298
- revision = kwargs.pop("revision", None)
1299
- subfolder = kwargs.pop("subfolder", None)
1300
- weight_name = kwargs.pop("weight_name", None)
1301
- unet_config = kwargs.pop("unet_config", None)
1302
- use_safetensors = kwargs.pop("use_safetensors", None)
1303
-
1304
- allow_pickle = False
1305
- if use_safetensors is None:
1306
- use_safetensors = True
1307
- allow_pickle = True
1308
-
1309
- user_agent = {
1310
- "file_type": "attn_procs_weights",
1311
- "framework": "pytorch",
1312
- }
1313
-
1314
- model_file = None
1315
- if not isinstance(pretrained_model_name_or_path_or_dict, dict):
1316
- # Let's first try to load .safetensors weights
1317
- if (use_safetensors and weight_name is None) or (
1318
- weight_name is not None and weight_name.endswith(".safetensors")
1319
- ):
1320
- try:
1321
- # Here we're relaxing the loading check to enable more Inference API
1322
- # friendliness where sometimes, it's not at all possible to automatically
1323
- # determine `weight_name`.
1324
- if weight_name is None:
1325
- weight_name = cls._best_guess_weight_name(
1326
- pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
1327
- )
1328
- model_file = _get_model_file(
1329
- pretrained_model_name_or_path_or_dict,
1330
- weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
1331
- cache_dir=cache_dir,
1332
- force_download=force_download,
1333
- resume_download=resume_download,
1334
- proxies=proxies,
1335
- local_files_only=local_files_only,
1336
- use_auth_token=use_auth_token,
1337
- revision=revision,
1338
- subfolder=subfolder,
1339
- user_agent=user_agent,
1340
- )
1341
- state_dict = safetensors.torch.load_file(model_file, device="cpu")
1342
- except (IOError, safetensors.SafetensorError) as e:
1343
- if not allow_pickle:
1344
- raise e
1345
- # try loading non-safetensors weights
1346
- model_file = None
1347
- pass
1348
-
1349
- if model_file is None:
1350
- if weight_name is None:
1351
- weight_name = cls._best_guess_weight_name(
1352
- pretrained_model_name_or_path_or_dict, file_extension=".bin"
1353
- )
1354
- model_file = _get_model_file(
1355
- pretrained_model_name_or_path_or_dict,
1356
- weights_name=weight_name or LORA_WEIGHT_NAME,
1357
- cache_dir=cache_dir,
1358
- force_download=force_download,
1359
- resume_download=resume_download,
1360
- proxies=proxies,
1361
- local_files_only=local_files_only,
1362
- use_auth_token=use_auth_token,
1363
- revision=revision,
1364
- subfolder=subfolder,
1365
- user_agent=user_agent,
1366
- )
1367
- state_dict = torch.load(model_file, map_location="cpu")
1368
- else:
1369
- state_dict = pretrained_model_name_or_path_or_dict
1370
-
1371
- network_alphas = None
1372
- # TODO: replace it with a method from `state_dict_utils`
1373
- if all(
1374
- (
1375
- k.startswith("lora_te_")
1376
- or k.startswith("lora_unet_")
1377
- or k.startswith("lora_te1_")
1378
- or k.startswith("lora_te2_")
1379
- )
1380
- for k in state_dict.keys()
1381
- ):
1382
- # Map SDXL blocks correctly.
1383
- if unet_config is not None:
1384
- # use unet config to remap block numbers
1385
- state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
1386
- state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
1387
-
1388
- return state_dict, network_alphas
1389
-
1390
- @classmethod
1391
- def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
1392
- targeted_files = []
1393
-
1394
- if os.path.isfile(pretrained_model_name_or_path_or_dict):
1395
- return
1396
- elif os.path.isdir(pretrained_model_name_or_path_or_dict):
1397
- targeted_files = [
1398
- f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
1399
- ]
1400
- else:
1401
- files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
1402
- targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
1403
- if len(targeted_files) == 0:
1404
- return
1405
-
1406
- # "scheduler" does not correspond to a LoRA checkpoint.
1407
- # "optimizer" does not correspond to a LoRA checkpoint
1408
- # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
1409
- unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
1410
- targeted_files = list(
1411
- filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
1412
- )
1413
-
1414
- if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
1415
- targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
1416
- elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
1417
- targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))
1418
-
1419
- if len(targeted_files) > 1:
1420
- raise ValueError(
1421
- f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
1422
- )
1423
- weight_name = targeted_files[0]
1424
- return weight_name
1425
-
1426
- @classmethod
1427
- def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
1428
- # 1. get all state_dict_keys
1429
- all_keys = list(state_dict.keys())
1430
- sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]
1431
-
1432
- # 2. check if needs remapping, if not return original dict
1433
- is_in_sgm_format = False
1434
- for key in all_keys:
1435
- if any(p in key for p in sgm_patterns):
1436
- is_in_sgm_format = True
1437
- break
1438
-
1439
- if not is_in_sgm_format:
1440
- return state_dict
1441
-
1442
- # 3. Else remap from SGM patterns
1443
- new_state_dict = {}
1444
- inner_block_map = ["resnets", "attentions", "upsamplers"]
1445
-
1446
- # Retrieves # of down, mid and up blocks
1447
- input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
1448
-
1449
- for layer in all_keys:
1450
- if "text" in layer:
1451
- new_state_dict[layer] = state_dict.pop(layer)
1452
- else:
1453
- layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
1454
- if sgm_patterns[0] in layer:
1455
- input_block_ids.add(layer_id)
1456
- elif sgm_patterns[1] in layer:
1457
- middle_block_ids.add(layer_id)
1458
- elif sgm_patterns[2] in layer:
1459
- output_block_ids.add(layer_id)
1460
- else:
1461
- raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
1462
-
1463
- input_blocks = {
1464
- layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
1465
- for layer_id in input_block_ids
1466
- }
1467
- middle_blocks = {
1468
- layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
1469
- for layer_id in middle_block_ids
1470
- }
1471
- output_blocks = {
1472
- layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
1473
- for layer_id in output_block_ids
1474
- }
1475
-
1476
- # Rename keys accordingly
1477
- for i in input_block_ids:
1478
- block_id = (i - 1) // (unet_config.layers_per_block + 1)
1479
- layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)
1480
-
1481
- for key in input_blocks[i]:
1482
- inner_block_id = int(key.split(delimiter)[block_slice_pos])
1483
- inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
1484
- inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
1485
- new_key = delimiter.join(
1486
- key.split(delimiter)[: block_slice_pos - 1]
1487
- + [str(block_id), inner_block_key, inner_layers_in_block]
1488
- + key.split(delimiter)[block_slice_pos + 1 :]
1489
- )
1490
- new_state_dict[new_key] = state_dict.pop(key)
1491
-
1492
- for i in middle_block_ids:
1493
- key_part = None
1494
- if i == 0:
1495
- key_part = [inner_block_map[0], "0"]
1496
- elif i == 1:
1497
- key_part = [inner_block_map[1], "0"]
1498
- elif i == 2:
1499
- key_part = [inner_block_map[0], "1"]
1500
- else:
1501
- raise ValueError(f"Invalid middle block id {i}.")
1502
-
1503
- for key in middle_blocks[i]:
1504
- new_key = delimiter.join(
1505
- key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
1506
- )
1507
- new_state_dict[new_key] = state_dict.pop(key)
1508
-
1509
- for i in output_block_ids:
1510
- block_id = i // (unet_config.layers_per_block + 1)
1511
- layer_in_block_id = i % (unet_config.layers_per_block + 1)
1512
-
1513
- for key in output_blocks[i]:
1514
- inner_block_id = int(key.split(delimiter)[block_slice_pos])
1515
- inner_block_key = inner_block_map[inner_block_id]
1516
- inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
1517
- new_key = delimiter.join(
1518
- key.split(delimiter)[: block_slice_pos - 1]
1519
- + [str(block_id), inner_block_key, inner_layers_in_block]
1520
- + key.split(delimiter)[block_slice_pos + 1 :]
1521
- )
1522
- new_state_dict[new_key] = state_dict.pop(key)
1523
-
1524
- if len(state_dict) > 0:
1525
- raise ValueError("At this point all state dict entries have to be converted.")
1526
-
1527
- return new_state_dict
1528
-
1529
- @classmethod
1530
- def _optionally_disable_offloading(cls, _pipeline):
1531
- """
1532
- Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
1533
-
1534
- Args:
1535
- _pipeline (`DiffusionPipeline`):
1536
- The pipeline to disable offloading for.
1537
-
1538
- Returns:
1539
- tuple:
1540
- A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
1541
- """
1542
- is_model_cpu_offload = False
1543
- is_sequential_cpu_offload = False
1544
-
1545
- if _pipeline is not None:
1546
- for _, component in _pipeline.components.items():
1547
- if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
1548
- if not is_model_cpu_offload:
1549
- is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
1550
- if not is_sequential_cpu_offload:
1551
- is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook)
1552
-
1553
- logger.info(
1554
- "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
1555
- )
1556
- remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
1557
-
1558
- return (is_model_cpu_offload, is_sequential_cpu_offload)
1559
-
1560
- @classmethod
1561
- def load_lora_into_unet(
1562
- cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
1563
- ):
1564
- """
1565
- This will load the LoRA layers specified in `state_dict` into `unet`.
1566
-
1567
- Parameters:
1568
- state_dict (`dict`):
1569
- A standard state dict containing the lora layer parameters. The keys can either be indexed directly
1570
- into the unet or prefixed with an additional `unet` which can be used to distinguish between text
1571
- encoder lora layers.
1572
- network_alphas (`Dict[str, float]`):
1573
- See `LoRALinearLayer` for more details.
1574
- unet (`UNet2DConditionModel`):
1575
- The UNet model to load the LoRA layers into.
1576
- low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
1577
- Speed up model loading only loading the pretrained weights and not initializing the weights. This also
1578
- tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
1579
- Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
1580
- argument to `True` will raise an error.
1581
- adapter_name (`str`, *optional*):
1582
- Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
1583
- `default_{i}` where i is the total number of adapters being loaded.
1584
- """
1585
- low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
1586
- # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
1587
- # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
1588
- # their prefixes.
1589
- keys = list(state_dict.keys())
1590
-
1591
- if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1592
- # Load the layers corresponding to UNet.
1593
- logger.info(f"Loading {cls.unet_name}.")
1594
-
1595
- unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
1596
- state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
1597
-
1598
- if network_alphas is not None:
1599
- alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
1600
- network_alphas = {
1601
- k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
1602
- }
1603
-
1604
- else:
1605
- # Otherwise, we're dealing with the old format. This means the `state_dict` should only
1606
- # contain the module names of the `unet` as its keys WITHOUT any prefix.
1607
- warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
1608
- logger.warn(warn_message)
1609
-
1610
- if USE_PEFT_BACKEND and len(state_dict.keys()) > 0:
1611
- from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
1612
-
1613
- if adapter_name in getattr(unet, "peft_config", {}):
1614
- raise ValueError(
1615
- f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
1616
- )
1617
-
1618
- state_dict = convert_unet_state_dict_to_peft(state_dict)
1619
-
1620
- if network_alphas is not None:
1621
- # The alphas state dict have the same structure as Unet, thus we convert it to peft format using
1622
- # `convert_unet_state_dict_to_peft` method.
1623
- network_alphas = convert_unet_state_dict_to_peft(network_alphas)
1624
-
1625
- rank = {}
1626
- for key, val in state_dict.items():
1627
- if "lora_B" in key:
1628
- rank[key] = val.shape[1]
1629
-
1630
- lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
1631
- lora_config = LoraConfig(**lora_config_kwargs)
1632
-
1633
- # adapter_name
1634
- if adapter_name is None:
1635
- adapter_name = get_adapter_name(unet)
1636
-
1637
- # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
1638
- # otherwise loading LoRA weights will lead to an error
1639
- is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
1640
-
1641
- inject_adapter_in_model(lora_config, unet, adapter_name=adapter_name)
1642
- incompatible_keys = set_peft_model_state_dict(unet, state_dict, adapter_name)
1643
-
1644
- if incompatible_keys is not None:
1645
- # check only for unexpected keys
1646
- unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
1647
- if unexpected_keys:
1648
- logger.warning(
1649
- f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
1650
- f" {unexpected_keys}. "
1651
- )
1652
-
1653
- # Offload back.
1654
- if is_model_cpu_offload:
1655
- _pipeline.enable_model_cpu_offload()
1656
- elif is_sequential_cpu_offload:
1657
- _pipeline.enable_sequential_cpu_offload()
1658
- # Unsafe code />
1659
-
1660
- unet.load_attn_procs(
1661
- state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline
1662
- )
1663
-
1664
- @classmethod
1665
- def load_lora_into_text_encoder(
1666
- cls,
1667
- state_dict,
1668
- network_alphas,
1669
- text_encoder,
1670
- prefix=None,
1671
- lora_scale=1.0,
1672
- low_cpu_mem_usage=None,
1673
- adapter_name=None,
1674
- _pipeline=None,
1675
- ):
1676
- """
1677
- This will load the LoRA layers specified in `state_dict` into `text_encoder`
1678
-
1679
- Parameters:
1680
- state_dict (`dict`):
1681
- A standard state dict containing the lora layer parameters. The key should be prefixed with an
1682
- additional `text_encoder` to distinguish between unet lora layers.
1683
- network_alphas (`Dict[str, float]`):
1684
- See `LoRALinearLayer` for more details.
1685
- text_encoder (`CLIPTextModel`):
1686
- The text encoder model to load the LoRA layers into.
1687
- prefix (`str`):
1688
- Expected prefix of the `text_encoder` in the `state_dict`.
1689
- lora_scale (`float`):
1690
- How much to scale the output of the lora linear layer before it is added with the output of the regular
1691
- lora layer.
1692
- low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
1693
- Speed up model loading only loading the pretrained weights and not initializing the weights. This also
1694
- tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
1695
- Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
1696
- argument to `True` will raise an error.
1697
- adapter_name (`str`, *optional*):
1698
- Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
1699
- `default_{i}` where i is the total number of adapters being loaded.
1700
- """
1701
- low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
1702
-
1703
- # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
1704
- # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
1705
- # their prefixes.
1706
- keys = list(state_dict.keys())
1707
- prefix = cls.text_encoder_name if prefix is None else prefix
1708
-
1709
- # Safe prefix to check with.
1710
- if any(cls.text_encoder_name in key for key in keys):
1711
- # Load the layers corresponding to text encoder and make necessary adjustments.
1712
- text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
1713
- text_encoder_lora_state_dict = {
1714
- k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
1715
- }
1716
-
1717
- if len(text_encoder_lora_state_dict) > 0:
1718
- logger.info(f"Loading {prefix}.")
1719
- rank = {}
1720
- text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
1721
-
1722
- if USE_PEFT_BACKEND:
1723
- # convert state dict
1724
- text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)
1725
-
1726
- for name, _ in text_encoder_attn_modules(text_encoder):
1727
- rank_key = f"{name}.out_proj.lora_B.weight"
1728
- rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
1729
-
1730
- patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
1731
- if patch_mlp:
1732
- for name, _ in text_encoder_mlp_modules(text_encoder):
1733
- rank_key_fc1 = f"{name}.fc1.lora_B.weight"
1734
- rank_key_fc2 = f"{name}.fc2.lora_B.weight"
1735
-
1736
- rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
1737
- rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
1738
- else:
1739
- for name, _ in text_encoder_attn_modules(text_encoder):
1740
- rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
1741
- rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})
1742
-
1743
- patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
1744
- if patch_mlp:
1745
- for name, _ in text_encoder_mlp_modules(text_encoder):
1746
- rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
1747
- rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
1748
- rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
1749
- rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
1750
-
1751
- if network_alphas is not None:
1752
- alpha_keys = [
1753
- k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
1754
- ]
1755
- network_alphas = {
1756
- k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
1757
- }
1758
-
1759
- if USE_PEFT_BACKEND:
1760
- from peft import LoraConfig
1761
-
1762
- lora_config_kwargs = get_peft_kwargs(
1763
- rank, network_alphas, text_encoder_lora_state_dict, is_unet=False
1764
- )
1765
-
1766
- lora_config = LoraConfig(**lora_config_kwargs)
1767
-
1768
- # adapter_name
1769
- if adapter_name is None:
1770
- adapter_name = get_adapter_name(text_encoder)
1771
-
1772
- is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
1773
-
1774
- # inject LoRA layers and load the state dict
1775
- # in transformers we automatically check whether the adapter name is already in use or not
1776
- text_encoder.load_adapter(
1777
- adapter_name=adapter_name,
1778
- adapter_state_dict=text_encoder_lora_state_dict,
1779
- peft_config=lora_config,
1780
- )
1781
-
1782
- # scale LoRA layers with `lora_scale`
1783
- scale_lora_layers(text_encoder, weight=lora_scale)
1784
- else:
1785
- cls._modify_text_encoder(
1786
- text_encoder,
1787
- lora_scale,
1788
- network_alphas,
1789
- rank=rank,
1790
- patch_mlp=patch_mlp,
1791
- low_cpu_mem_usage=low_cpu_mem_usage,
1792
- )
1793
-
1794
- is_pipeline_offloaded = _pipeline is not None and any(
1795
- isinstance(c, torch.nn.Module) and hasattr(c, "_hf_hook")
1796
- for c in _pipeline.components.values()
1797
- )
1798
- if is_pipeline_offloaded and low_cpu_mem_usage:
1799
- low_cpu_mem_usage = True
1800
- logger.info(
1801
- f"Pipeline {_pipeline.__class__} is offloaded. Therefore low cpu mem usage loading is forced."
1802
- )
1803
-
1804
- if low_cpu_mem_usage:
1805
- device = next(iter(text_encoder_lora_state_dict.values())).device
1806
- dtype = next(iter(text_encoder_lora_state_dict.values())).dtype
1807
- unexpected_keys = load_model_dict_into_meta(
1808
- text_encoder, text_encoder_lora_state_dict, device=device, dtype=dtype
1809
- )
1810
- else:
1811
- load_state_dict_results = text_encoder.load_state_dict(
1812
- text_encoder_lora_state_dict, strict=False
1813
- )
1814
- unexpected_keys = load_state_dict_results.unexpected_keys
1815
-
1816
- if len(unexpected_keys) != 0:
1817
- raise ValueError(
1818
- f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
1819
- )
1820
-
1821
- # <Unsafe code
1822
- # We can be sure that the following works as all we do is change the dtype and device of the text encoder
1823
- # Now we remove any existing hooks to
1824
- is_model_cpu_offload = False
1825
- is_sequential_cpu_offload = False
1826
- if _pipeline is not None:
1827
- for _, component in _pipeline.components.items():
1828
- if isinstance(component, torch.nn.Module):
1829
- if hasattr(component, "_hf_hook"):
1830
- is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
1831
- is_sequential_cpu_offload = isinstance(
1832
- getattr(component, "_hf_hook"), AlignDevicesHook
1833
- )
1834
- logger.info(
1835
- "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
1836
- )
1837
- remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
1838
-
1839
- text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
1840
-
1841
- # Offload back.
1842
- if is_model_cpu_offload:
1843
- _pipeline.enable_model_cpu_offload()
1844
- elif is_sequential_cpu_offload:
1845
- _pipeline.enable_sequential_cpu_offload()
1846
- # Unsafe code />
1847
-
1848
- @property
1849
- def lora_scale(self) -> float:
1850
- # property function that returns the lora scale which can be set at run time by the pipeline.
1851
- # if _lora_scale has not been set, return 1
1852
- return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
1853
-
1854
- def _remove_text_encoder_monkey_patch(self):
1855
- if USE_PEFT_BACKEND:
1856
- remove_method = recurse_remove_peft_layers
1857
- else:
1858
- remove_method = self._remove_text_encoder_monkey_patch_classmethod
1859
-
1860
- if hasattr(self, "text_encoder"):
1861
- remove_method(self.text_encoder)
1862
-
1863
- # In case text encoder have no Lora attached
1864
- if USE_PEFT_BACKEND and getattr(self.text_encoder, "peft_config", None) is not None:
1865
- del self.text_encoder.peft_config
1866
- self.text_encoder._hf_peft_config_loaded = None
1867
- if hasattr(self, "text_encoder_2"):
1868
- remove_method(self.text_encoder_2)
1869
- if USE_PEFT_BACKEND:
1870
- del self.text_encoder_2.peft_config
1871
- self.text_encoder_2._hf_peft_config_loaded = None
1872
-
1873
- @classmethod
1874
- def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
1875
- if version.parse(__version__) > version.parse("0.23"):
1876
- deprecate("_remove_text_encoder_monkey_patch_classmethod", "0.25", LORA_DEPRECATION_MESSAGE)
1877
-
1878
- for _, attn_module in text_encoder_attn_modules(text_encoder):
1879
- if isinstance(attn_module.q_proj, PatchedLoraProjection):
1880
- attn_module.q_proj.lora_linear_layer = None
1881
- attn_module.k_proj.lora_linear_layer = None
1882
- attn_module.v_proj.lora_linear_layer = None
1883
- attn_module.out_proj.lora_linear_layer = None
1884
-
1885
- for _, mlp_module in text_encoder_mlp_modules(text_encoder):
1886
- if isinstance(mlp_module.fc1, PatchedLoraProjection):
1887
- mlp_module.fc1.lora_linear_layer = None
1888
- mlp_module.fc2.lora_linear_layer = None
1889
-
1890
- @classmethod
1891
- def _modify_text_encoder(
1892
- cls,
1893
- text_encoder,
1894
- lora_scale=1,
1895
- network_alphas=None,
1896
- rank: Union[Dict[str, int], int] = 4,
1897
- dtype=None,
1898
- patch_mlp=False,
1899
- low_cpu_mem_usage=False,
1900
- ):
1901
- r"""
1902
- Monkey-patches the forward passes of attention modules of the text encoder.
1903
- """
1904
- if version.parse(__version__) > version.parse("0.23"):
1905
- deprecate("_modify_text_encoder", "0.25", LORA_DEPRECATION_MESSAGE)
1906
-
1907
- def create_patched_linear_lora(model, network_alpha, rank, dtype, lora_parameters):
1908
- linear_layer = model.regular_linear_layer if isinstance(model, PatchedLoraProjection) else model
1909
- ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
1910
- with ctx():
1911
- model = PatchedLoraProjection(linear_layer, lora_scale, network_alpha, rank, dtype=dtype)
1912
-
1913
- lora_parameters.extend(model.lora_linear_layer.parameters())
1914
- return model
1915
-
1916
- # First, remove any monkey-patch that might have been applied before
1917
- cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1918
-
1919
- lora_parameters = []
1920
- network_alphas = {} if network_alphas is None else network_alphas
1921
- is_network_alphas_populated = len(network_alphas) > 0
1922
-
1923
- for name, attn_module in text_encoder_attn_modules(text_encoder):
1924
- query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
1925
- key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
1926
- value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
1927
- out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
1928
-
1929
- if isinstance(rank, dict):
1930
- current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
1931
- else:
1932
- current_rank = rank
1933
-
1934
- attn_module.q_proj = create_patched_linear_lora(
1935
- attn_module.q_proj, query_alpha, current_rank, dtype, lora_parameters
1936
- )
1937
- attn_module.k_proj = create_patched_linear_lora(
1938
- attn_module.k_proj, key_alpha, current_rank, dtype, lora_parameters
1939
- )
1940
- attn_module.v_proj = create_patched_linear_lora(
1941
- attn_module.v_proj, value_alpha, current_rank, dtype, lora_parameters
1942
- )
1943
- attn_module.out_proj = create_patched_linear_lora(
1944
- attn_module.out_proj, out_alpha, current_rank, dtype, lora_parameters
1945
- )
1946
-
1947
- if patch_mlp:
1948
- for name, mlp_module in text_encoder_mlp_modules(text_encoder):
1949
- fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
1950
- fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)
1951
-
1952
- current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
1953
- current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
1954
-
1955
- mlp_module.fc1 = create_patched_linear_lora(
1956
- mlp_module.fc1, fc1_alpha, current_rank_fc1, dtype, lora_parameters
1957
- )
1958
- mlp_module.fc2 = create_patched_linear_lora(
1959
- mlp_module.fc2, fc2_alpha, current_rank_fc2, dtype, lora_parameters
1960
- )
1961
-
1962
- if is_network_alphas_populated and len(network_alphas) > 0:
1963
- raise ValueError(
1964
- f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
1965
- )
1966
-
1967
- return lora_parameters
1968
-
1969
- @classmethod
1970
- def save_lora_weights(
1971
- cls,
1972
- save_directory: Union[str, os.PathLike],
1973
- unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1974
- text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
1975
- is_main_process: bool = True,
1976
- weight_name: str = None,
1977
- save_function: Callable = None,
1978
- safe_serialization: bool = True,
1979
- ):
1980
- r"""
1981
- Save the LoRA parameters corresponding to the UNet and text encoder.
1982
-
1983
- Arguments:
1984
- save_directory (`str` or `os.PathLike`):
1985
- Directory to save LoRA parameters to. Will be created if it doesn't exist.
1986
- unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1987
- State dict of the LoRA layers corresponding to the `unet`.
1988
- text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1989
- State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1990
- encoder LoRA state dict because it comes from 🤗 Transformers.
1991
- is_main_process (`bool`, *optional*, defaults to `True`):
1992
- Whether the process calling this is the main process or not. Useful during distributed training and you
1993
- need to call this function on all processes. In this case, set `is_main_process=True` only on the main
1994
- process to avoid race conditions.
1995
- save_function (`Callable`):
1996
- The function to use to save the state dictionary. Useful during distributed training when you need to
1997
- replace `torch.save` with another method. Can be configured with the environment variable
1998
- `DIFFUSERS_SAVE_MODE`.
1999
- safe_serialization (`bool`, *optional*, defaults to `True`):
2000
- Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
2001
- """
2002
- # Create a flat dictionary.
2003
- state_dict = {}
2004
-
2005
- # Populate the dictionary.
2006
- if unet_lora_layers is not None:
2007
- weights = (
2008
- unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
2009
- )
2010
-
2011
- unet_lora_state_dict = {f"{cls.unet_name}.{module_name}": param for module_name, param in weights.items()}
2012
- state_dict.update(unet_lora_state_dict)
2013
-
2014
- if text_encoder_lora_layers is not None:
2015
- weights = (
2016
- text_encoder_lora_layers.state_dict()
2017
- if isinstance(text_encoder_lora_layers, torch.nn.Module)
2018
- else text_encoder_lora_layers
2019
- )
2020
-
2021
- text_encoder_lora_state_dict = {
2022
- f"{cls.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
2023
- }
2024
- state_dict.update(text_encoder_lora_state_dict)
2025
-
2026
- # Save the model
2027
- cls.write_lora_layers(
2028
- state_dict=state_dict,
2029
- save_directory=save_directory,
2030
- is_main_process=is_main_process,
2031
- weight_name=weight_name,
2032
- save_function=save_function,
2033
- safe_serialization=safe_serialization,
2034
- )
2035
-
2036
- @staticmethod
2037
- def write_lora_layers(
2038
- state_dict: Dict[str, torch.Tensor],
2039
- save_directory: str,
2040
- is_main_process: bool,
2041
- weight_name: str,
2042
- save_function: Callable,
2043
- safe_serialization: bool,
2044
- ):
2045
- if os.path.isfile(save_directory):
2046
- logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
2047
- return
2048
-
2049
- if save_function is None:
2050
- if safe_serialization:
2051
-
2052
- def save_function(weights, filename):
2053
- return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
2054
-
2055
- else:
2056
- save_function = torch.save
2057
-
2058
- os.makedirs(save_directory, exist_ok=True)
2059
-
2060
- if weight_name is None:
2061
- if safe_serialization:
2062
- weight_name = LORA_WEIGHT_NAME_SAFE
2063
- else:
2064
- weight_name = LORA_WEIGHT_NAME
2065
-
2066
- save_function(state_dict, os.path.join(save_directory, weight_name))
2067
- logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
2068
-
2069
- @classmethod
2070
- def _convert_kohya_lora_to_diffusers(cls, state_dict):
2071
- unet_state_dict = {}
2072
- te_state_dict = {}
2073
- te2_state_dict = {}
2074
- network_alphas = {}
2075
-
2076
- # every down weight has a corresponding up weight and potentially an alpha weight
2077
- lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
2078
- for key in lora_keys:
2079
- lora_name = key.split(".")[0]
2080
- lora_name_up = lora_name + ".lora_up.weight"
2081
- lora_name_alpha = lora_name + ".alpha"
2082
-
2083
- if lora_name.startswith("lora_unet_"):
2084
- diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
2085
-
2086
- if "input.blocks" in diffusers_name:
2087
- diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
2088
- else:
2089
- diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
2090
-
2091
- if "middle.block" in diffusers_name:
2092
- diffusers_name = diffusers_name.replace("middle.block", "mid_block")
2093
- else:
2094
- diffusers_name = diffusers_name.replace("mid.block", "mid_block")
2095
- if "output.blocks" in diffusers_name:
2096
- diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
2097
- else:
2098
- diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
2099
-
2100
- diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
2101
- diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
2102
- diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
2103
- diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
2104
- diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
2105
- diffusers_name = diffusers_name.replace("proj.in", "proj_in")
2106
- diffusers_name = diffusers_name.replace("proj.out", "proj_out")
2107
- diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
2108
-
2109
- # SDXL specificity.
2110
- if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
2111
- pattern = r"\.\d+(?=\D*$)"
2112
- diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
2113
- if ".in." in diffusers_name:
2114
- diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
2115
- if ".out." in diffusers_name:
2116
- diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
2117
- if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
2118
- diffusers_name = diffusers_name.replace("op", "conv")
2119
- if "skip" in diffusers_name:
2120
- diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
2121
-
2122
- # LyCORIS specificity.
2123
- if "time.emb.proj" in diffusers_name:
2124
- diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
2125
- if "conv.shortcut" in diffusers_name:
2126
- diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
2127
-
2128
- # General coverage.
2129
- if "transformer_blocks" in diffusers_name:
2130
- if "attn1" in diffusers_name or "attn2" in diffusers_name:
2131
- diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
2132
- diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
2133
- unet_state_dict[diffusers_name] = state_dict.pop(key)
2134
- unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2135
- elif "ff" in diffusers_name:
2136
- unet_state_dict[diffusers_name] = state_dict.pop(key)
2137
- unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2138
- elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
2139
- unet_state_dict[diffusers_name] = state_dict.pop(key)
2140
- unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2141
- else:
2142
- unet_state_dict[diffusers_name] = state_dict.pop(key)
2143
- unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2144
-
2145
- elif lora_name.startswith("lora_te_"):
2146
- diffusers_name = key.replace("lora_te_", "").replace("_", ".")
2147
- diffusers_name = diffusers_name.replace("text.model", "text_model")
2148
- diffusers_name = diffusers_name.replace("self.attn", "self_attn")
2149
- diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
2150
- diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
2151
- diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
2152
- diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
2153
- if "self_attn" in diffusers_name:
2154
- te_state_dict[diffusers_name] = state_dict.pop(key)
2155
- te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2156
- elif "mlp" in diffusers_name:
2157
- # Be aware that this is the new diffusers convention and the rest of the code might
2158
- # not utilize it yet.
2159
- diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
2160
- te_state_dict[diffusers_name] = state_dict.pop(key)
2161
- te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2162
-
2163
- # (sayakpaul): Duplicate code. Needs to be cleaned.
2164
- elif lora_name.startswith("lora_te1_"):
2165
- diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
2166
- diffusers_name = diffusers_name.replace("text.model", "text_model")
2167
- diffusers_name = diffusers_name.replace("self.attn", "self_attn")
2168
- diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
2169
- diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
2170
- diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
2171
- diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
2172
- if "self_attn" in diffusers_name:
2173
- te_state_dict[diffusers_name] = state_dict.pop(key)
2174
- te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2175
- elif "mlp" in diffusers_name:
2176
- # Be aware that this is the new diffusers convention and the rest of the code might
2177
- # not utilize it yet.
2178
- diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
2179
- te_state_dict[diffusers_name] = state_dict.pop(key)
2180
- te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2181
-
2182
- # (sayakpaul): Duplicate code. Needs to be cleaned.
2183
- elif lora_name.startswith("lora_te2_"):
2184
- diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
2185
- diffusers_name = diffusers_name.replace("text.model", "text_model")
2186
- diffusers_name = diffusers_name.replace("self.attn", "self_attn")
2187
- diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
2188
- diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
2189
- diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
2190
- diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
2191
- if "self_attn" in diffusers_name:
2192
- te2_state_dict[diffusers_name] = state_dict.pop(key)
2193
- te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2194
- elif "mlp" in diffusers_name:
2195
- # Be aware that this is the new diffusers convention and the rest of the code might
2196
- # not utilize it yet.
2197
- diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
2198
- te2_state_dict[diffusers_name] = state_dict.pop(key)
2199
- te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
2200
-
2201
- # Rename the alphas so that they can be mapped appropriately.
2202
- if lora_name_alpha in state_dict:
2203
- alpha = state_dict.pop(lora_name_alpha).item()
2204
- if lora_name_alpha.startswith("lora_unet_"):
2205
- prefix = "unet."
2206
- elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
2207
- prefix = "text_encoder."
2208
- else:
2209
- prefix = "text_encoder_2."
2210
- new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
2211
- network_alphas.update({new_name: alpha})
2212
-
2213
- if len(state_dict) > 0:
2214
- raise ValueError(
2215
- f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
2216
- )
2217
-
2218
- logger.info("Kohya-style checkpoint detected.")
2219
- unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
2220
- te_state_dict = {
2221
- f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
2222
- }
2223
- te2_state_dict = (
2224
- {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
2225
- if len(te2_state_dict) > 0
2226
- else None
2227
- )
2228
- if te2_state_dict is not None:
2229
- te_state_dict.update(te2_state_dict)
2230
-
2231
- new_state_dict = {**unet_state_dict, **te_state_dict}
2232
- return new_state_dict, network_alphas
2233
-
2234
- def unload_lora_weights(self):
2235
- """
2236
- Unloads the LoRA parameters.
2237
-
2238
- Examples:
2239
-
2240
- ```python
2241
- >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
2242
- >>> pipeline.unload_lora_weights()
2243
- >>> ...
2244
- ```
2245
- """
2246
- if not USE_PEFT_BACKEND:
2247
- if version.parse(__version__) > version.parse("0.23"):
2248
- logger.warn(
2249
- "You are using `unload_lora_weights` to disable and unload lora weights. If you want to iteratively enable and disable adapter weights,"
2250
- "you can use `pipe.enable_lora()` or `pipe.disable_lora()`. After installing the latest version of PEFT."
2251
- )
2252
-
2253
- for _, module in self.unet.named_modules():
2254
- if hasattr(module, "set_lora_layer"):
2255
- module.set_lora_layer(None)
2256
- else:
2257
- recurse_remove_peft_layers(self.unet)
2258
- if hasattr(self.unet, "peft_config"):
2259
- del self.unet.peft_config
2260
-
2261
- # Safe to call the following regardless of LoRA.
2262
- self._remove_text_encoder_monkey_patch()
2263
-
2264
- def fuse_lora(
2265
- self,
2266
- fuse_unet: bool = True,
2267
- fuse_text_encoder: bool = True,
2268
- lora_scale: float = 1.0,
2269
- safe_fusing: bool = False,
2270
- ):
2271
- r"""
2272
- Fuses the LoRA parameters into the original parameters of the corresponding blocks.
2273
-
2274
- <Tip warning={true}>
2275
-
2276
- This is an experimental API.
2277
-
2278
- </Tip>
2279
-
2280
- Args:
2281
- fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
2282
- fuse_text_encoder (`bool`, defaults to `True`):
2283
- Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
2284
- LoRA parameters then it won't have any effect.
2285
- lora_scale (`float`, defaults to 1.0):
2286
- Controls how much to influence the outputs with the LoRA parameters.
2287
- safe_fusing (`bool`, defaults to `False`):
2288
- Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
2289
- """
2290
- if fuse_unet or fuse_text_encoder:
2291
- self.num_fused_loras += 1
2292
- if self.num_fused_loras > 1:
2293
- logger.warn(
2294
- "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
2295
- )
2296
-
2297
- if fuse_unet:
2298
- self.unet.fuse_lora(lora_scale, safe_fusing=safe_fusing)
2299
-
2300
- if USE_PEFT_BACKEND:
2301
- from peft.tuners.tuners_utils import BaseTunerLayer
2302
-
2303
- def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False):
2304
- # TODO(Patrick, Younes): enable "safe" fusing
2305
- for module in text_encoder.modules():
2306
- if isinstance(module, BaseTunerLayer):
2307
- if lora_scale != 1.0:
2308
- module.scale_layer(lora_scale)
2309
-
2310
- module.merge()
2311
-
2312
- else:
2313
- if version.parse(__version__) > version.parse("0.23"):
2314
- deprecate("fuse_text_encoder_lora", "0.25", LORA_DEPRECATION_MESSAGE)
2315
-
2316
- def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False):
2317
- for _, attn_module in text_encoder_attn_modules(text_encoder):
2318
- if isinstance(attn_module.q_proj, PatchedLoraProjection):
2319
- attn_module.q_proj._fuse_lora(lora_scale, safe_fusing)
2320
- attn_module.k_proj._fuse_lora(lora_scale, safe_fusing)
2321
- attn_module.v_proj._fuse_lora(lora_scale, safe_fusing)
2322
- attn_module.out_proj._fuse_lora(lora_scale, safe_fusing)
2323
-
2324
- for _, mlp_module in text_encoder_mlp_modules(text_encoder):
2325
- if isinstance(mlp_module.fc1, PatchedLoraProjection):
2326
- mlp_module.fc1._fuse_lora(lora_scale, safe_fusing)
2327
- mlp_module.fc2._fuse_lora(lora_scale, safe_fusing)
2328
-
2329
- if fuse_text_encoder:
2330
- if hasattr(self, "text_encoder"):
2331
- fuse_text_encoder_lora(self.text_encoder, lora_scale, safe_fusing)
2332
- if hasattr(self, "text_encoder_2"):
2333
- fuse_text_encoder_lora(self.text_encoder_2, lora_scale, safe_fusing)
2334
-
2335
- def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
2336
- r"""
2337
- Reverses the effect of
2338
- [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).
2339
-
2340
- <Tip warning={true}>
2341
-
2342
- This is an experimental API.
2343
-
2344
- </Tip>
2345
-
2346
- Args:
2347
- unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
2348
- unfuse_text_encoder (`bool`, defaults to `True`):
2349
- Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
2350
- LoRA parameters then it won't have any effect.
2351
- """
2352
- if unfuse_unet:
2353
- if not USE_PEFT_BACKEND:
2354
- self.unet.unfuse_lora()
2355
- else:
2356
- from peft.tuners.tuners_utils import BaseTunerLayer
2357
-
2358
- for module in self.unet.modules():
2359
- if isinstance(module, BaseTunerLayer):
2360
- module.unmerge()
2361
-
2362
- if USE_PEFT_BACKEND:
2363
- from peft.tuners.tuners_utils import BaseTunerLayer
2364
-
2365
- def unfuse_text_encoder_lora(text_encoder):
2366
- for module in text_encoder.modules():
2367
- if isinstance(module, BaseTunerLayer):
2368
- module.unmerge()
2369
-
2370
- else:
2371
- if version.parse(__version__) > version.parse("0.23"):
2372
- deprecate("unfuse_text_encoder_lora", "0.25", LORA_DEPRECATION_MESSAGE)
2373
-
2374
- def unfuse_text_encoder_lora(text_encoder):
2375
- for _, attn_module in text_encoder_attn_modules(text_encoder):
2376
- if isinstance(attn_module.q_proj, PatchedLoraProjection):
2377
- attn_module.q_proj._unfuse_lora()
2378
- attn_module.k_proj._unfuse_lora()
2379
- attn_module.v_proj._unfuse_lora()
2380
- attn_module.out_proj._unfuse_lora()
2381
-
2382
- for _, mlp_module in text_encoder_mlp_modules(text_encoder):
2383
- if isinstance(mlp_module.fc1, PatchedLoraProjection):
2384
- mlp_module.fc1._unfuse_lora()
2385
- mlp_module.fc2._unfuse_lora()
2386
-
2387
- if unfuse_text_encoder:
2388
- if hasattr(self, "text_encoder"):
2389
- unfuse_text_encoder_lora(self.text_encoder)
2390
- if hasattr(self, "text_encoder_2"):
2391
- unfuse_text_encoder_lora(self.text_encoder_2)
2392
-
2393
- self.num_fused_loras -= 1
2394
-
2395
- def set_adapters_for_text_encoder(
2396
- self,
2397
- adapter_names: Union[List[str], str],
2398
- text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
2399
- text_encoder_weights: List[float] = None,
2400
- ):
2401
- """
2402
- Sets the adapter layers for the text encoder.
2403
-
2404
- Args:
2405
- adapter_names (`List[str]` or `str`):
2406
- The names of the adapters to use.
2407
- text_encoder (`torch.nn.Module`, *optional*):
2408
- The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
2409
- attribute.
2410
- text_encoder_weights (`List[float]`, *optional*):
2411
- The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters.
2412
- """
2413
- if not USE_PEFT_BACKEND:
2414
- raise ValueError("PEFT backend is required for this method.")
2415
-
2416
- def process_weights(adapter_names, weights):
2417
- if weights is None:
2418
- weights = [1.0] * len(adapter_names)
2419
- elif isinstance(weights, float):
2420
- weights = [weights]
2421
-
2422
- if len(adapter_names) != len(weights):
2423
- raise ValueError(
2424
- f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}"
2425
- )
2426
- return weights
2427
-
2428
- adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
2429
- text_encoder_weights = process_weights(adapter_names, text_encoder_weights)
2430
- text_encoder = text_encoder or getattr(self, "text_encoder", None)
2431
- if text_encoder is None:
2432
- raise ValueError(
2433
- "The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead."
2434
- )
2435
- set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights)
2436
-
2437
- def disable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
2438
- """
2439
- Disables the LoRA layers for the text encoder.
2440
-
2441
- Args:
2442
- text_encoder (`torch.nn.Module`, *optional*):
2443
- The text encoder module to disable the LoRA layers for. If `None`, it will try to get the
2444
- `text_encoder` attribute.
2445
- """
2446
- if not USE_PEFT_BACKEND:
2447
- raise ValueError("PEFT backend is required for this method.")
2448
-
2449
- text_encoder = text_encoder or getattr(self, "text_encoder", None)
2450
- if text_encoder is None:
2451
- raise ValueError("Text Encoder not found.")
2452
- set_adapter_layers(text_encoder, enabled=False)
2453
-
2454
- def enable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
2455
- """
2456
- Enables the LoRA layers for the text encoder.
2457
-
2458
- Args:
2459
- text_encoder (`torch.nn.Module`, *optional*):
2460
- The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder`
2461
- attribute.
2462
- """
2463
- if not USE_PEFT_BACKEND:
2464
- raise ValueError("PEFT backend is required for this method.")
2465
- text_encoder = text_encoder or getattr(self, "text_encoder", None)
2466
- if text_encoder is None:
2467
- raise ValueError("Text Encoder not found.")
2468
- set_adapter_layers(self.text_encoder, enabled=True)
2469
-
2470
- def set_adapters(
2471
- self,
2472
- adapter_names: Union[List[str], str],
2473
- adapter_weights: Optional[List[float]] = None,
2474
- ):
2475
- # Handle the UNET
2476
- self.unet.set_adapters(adapter_names, adapter_weights)
2477
-
2478
- # Handle the Text Encoder
2479
- if hasattr(self, "text_encoder"):
2480
- self.set_adapters_for_text_encoder(adapter_names, self.text_encoder, adapter_weights)
2481
- if hasattr(self, "text_encoder_2"):
2482
- self.set_adapters_for_text_encoder(adapter_names, self.text_encoder_2, adapter_weights)
2483
-
2484
- def disable_lora(self):
2485
- if not USE_PEFT_BACKEND:
2486
- raise ValueError("PEFT backend is required for this method.")
2487
-
2488
- # Disable unet adapters
2489
- self.unet.disable_lora()
2490
-
2491
- # Disable text encoder adapters
2492
- if hasattr(self, "text_encoder"):
2493
- self.disable_lora_for_text_encoder(self.text_encoder)
2494
- if hasattr(self, "text_encoder_2"):
2495
- self.disable_lora_for_text_encoder(self.text_encoder_2)
2496
-
2497
- def enable_lora(self):
2498
- if not USE_PEFT_BACKEND:
2499
- raise ValueError("PEFT backend is required for this method.")
2500
-
2501
- # Enable unet adapters
2502
- self.unet.enable_lora()
2503
-
2504
- # Enable text encoder adapters
2505
- if hasattr(self, "text_encoder"):
2506
- self.enable_lora_for_text_encoder(self.text_encoder)
2507
- if hasattr(self, "text_encoder_2"):
2508
- self.enable_lora_for_text_encoder(self.text_encoder_2)
2509
-
2510
- def get_active_adapters(self) -> List[str]:
2511
- """
2512
- Gets the list of the current active adapters.
2513
-
2514
- Example:
2515
-
2516
- ```python
2517
- from diffusers import DiffusionPipeline
2518
-
2519
- pipeline = DiffusionPipeline.from_pretrained(
2520
- "stabilityai/stable-diffusion-xl-base-1.0",
2521
- ).to("cuda")
2522
- pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
2523
- pipeline.get_active_adapters()
2524
- ```
2525
- """
2526
- if not USE_PEFT_BACKEND:
2527
- raise ValueError(
2528
- "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
2529
- )
2530
-
2531
- from peft.tuners.tuners_utils import BaseTunerLayer
2532
-
2533
- active_adapters = []
2534
-
2535
- for module in self.unet.modules():
2536
- if isinstance(module, BaseTunerLayer):
2537
- active_adapters = module.active_adapters
2538
- break
2539
-
2540
- return active_adapters
2541
-
2542
- def get_list_adapters(self) -> Dict[str, List[str]]:
2543
- """
2544
- Gets the current list of all available adapters in the pipeline.
2545
- """
2546
- if not USE_PEFT_BACKEND:
2547
- raise ValueError(
2548
- "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
2549
- )
2550
-
2551
- set_adapters = {}
2552
-
2553
- if hasattr(self, "text_encoder") and hasattr(self.text_encoder, "peft_config"):
2554
- set_adapters["text_encoder"] = list(self.text_encoder.peft_config.keys())
2555
-
2556
- if hasattr(self, "text_encoder_2") and hasattr(self.text_encoder_2, "peft_config"):
2557
- set_adapters["text_encoder_2"] = list(self.text_encoder_2.peft_config.keys())
2558
-
2559
- if hasattr(self, "unet") and hasattr(self.unet, "peft_config"):
2560
- set_adapters["unet"] = list(self.unet.peft_config.keys())
2561
-
2562
- return set_adapters
2563
-
2564
- def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None:
2565
- """
2566
- Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case
2567
- you want to load multiple adapters and free some GPU memory.
2568
-
2569
- Args:
2570
- adapter_names (`List[str]`):
2571
- List of adapters to send device to.
2572
- device (`Union[torch.device, str, int]`):
2573
- Device to send the adapters to. Can be either a torch device, a str or an integer.
2574
- """
2575
- if not USE_PEFT_BACKEND:
2576
- raise ValueError("PEFT backend is required for this method.")
2577
-
2578
- from peft.tuners.tuners_utils import BaseTunerLayer
2579
-
2580
- # Handle the UNET
2581
- for unet_module in self.unet.modules():
2582
- if isinstance(unet_module, BaseTunerLayer):
2583
- for adapter_name in adapter_names:
2584
- unet_module.lora_A[adapter_name].to(device)
2585
- unet_module.lora_B[adapter_name].to(device)
2586
-
2587
- # Handle the text encoder
2588
- modules_to_process = []
2589
- if hasattr(self, "text_encoder"):
2590
- modules_to_process.append(self.text_encoder)
2591
-
2592
- if hasattr(self, "text_encoder_2"):
2593
- modules_to_process.append(self.text_encoder_2)
2594
-
2595
- for text_encoder in modules_to_process:
2596
- # loop over submodules
2597
- for text_encoder_module in text_encoder.modules():
2598
- if isinstance(text_encoder_module, BaseTunerLayer):
2599
- for adapter_name in adapter_names:
2600
- text_encoder_module.lora_A[adapter_name].to(device)
2601
- text_encoder_module.lora_B[adapter_name].to(device)
2602
-
2603
-
2604
- class FromSingleFileMixin:
2605
- """
2606
- Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
2607
- """
2608
-
2609
- @classmethod
2610
- def from_ckpt(cls, *args, **kwargs):
2611
- deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
2612
- deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
2613
- return cls.from_single_file(*args, **kwargs)
2614
-
2615
- @classmethod
2616
- def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
2617
- r"""
2618
- Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
2619
- format. The pipeline is set in evaluation mode (`model.eval()`) by default.
2620
-
2621
- Parameters:
2622
- pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
2623
- Can be either:
2624
- - A link to the `.ckpt` file (for example
2625
- `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
2626
- - A path to a *file* containing all pipeline weights.
2627
- torch_dtype (`str` or `torch.dtype`, *optional*):
2628
- Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
2629
- dtype is automatically derived from the model's weights.
2630
- force_download (`bool`, *optional*, defaults to `False`):
2631
- Whether or not to force the (re-)download of the model weights and configuration files, overriding the
2632
- cached versions if they exist.
2633
- cache_dir (`Union[str, os.PathLike]`, *optional*):
2634
- Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
2635
- is not used.
2636
- resume_download (`bool`, *optional*, defaults to `False`):
2637
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
2638
- incompletely downloaded files are deleted.
2639
- proxies (`Dict[str, str]`, *optional*):
2640
- A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
2641
- 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2642
- local_files_only (`bool`, *optional*, defaults to `False`):
2643
- Whether to only load local model weights and configuration files or not. If set to `True`, the model
2644
- won't be downloaded from the Hub.
2645
- use_auth_token (`str` or *bool*, *optional*):
2646
- The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
2647
- `diffusers-cli login` (stored in `~/.huggingface`) is used.
2648
- revision (`str`, *optional*, defaults to `"main"`):
2649
- The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
2650
- allowed by Git.
2651
- use_safetensors (`bool`, *optional*, defaults to `None`):
2652
- If set to `None`, the safetensors weights are downloaded if they're available **and** if the
2653
- safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
2654
- weights. If set to `False`, safetensors weights are not loaded.
2655
- extract_ema (`bool`, *optional*, defaults to `False`):
2656
- Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
2657
- higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
2658
- upcast_attention (`bool`, *optional*, defaults to `None`):
2659
- Whether the attention computation should always be upcasted.
2660
- image_size (`int`, *optional*, defaults to 512):
2661
- The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
2662
- Diffusion v2 base model. Use 768 for Stable Diffusion v2.
2663
- prediction_type (`str`, *optional*):
2664
- The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
2665
- the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
2666
- num_in_channels (`int`, *optional*, defaults to `None`):
2667
- The number of input channels. If `None`, it is automatically inferred.
2668
- scheduler_type (`str`, *optional*, defaults to `"pndm"`):
2669
- Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
2670
- "ddim"]`.
2671
- load_safety_checker (`bool`, *optional*, defaults to `True`):
2672
- Whether to load the safety checker or not.
2673
- text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
2674
- An instance of `CLIPTextModel` to use, specifically the
2675
- [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
2676
- parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
2677
- vae (`AutoencoderKL`, *optional*, defaults to `None`):
2678
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
2679
- this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
2680
- tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
2681
- An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
2682
- of `CLIPTokenizer` by itself if needed.
2683
- original_config_file (`str`):
2684
- Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
2685
- automatically inferred by looking for a key that only exists in SD2.0 models.
2686
- kwargs (remaining dictionary of keyword arguments, *optional*):
2687
- Can be used to overwrite load and saveable variables (for example the pipeline components of the
2688
- specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
2689
- method. See example below for more information.
2690
-
2691
- Examples:
2692
-
2693
- ```py
2694
- >>> from diffusers import StableDiffusionPipeline
2695
-
2696
- >>> # Download pipeline from huggingface.co and cache.
2697
- >>> pipeline = StableDiffusionPipeline.from_single_file(
2698
- ... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
2699
- ... )
2700
-
2701
- >>> # Download pipeline from local file
2702
- >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
2703
- >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
2704
-
2705
- >>> # Enable float16 and move to GPU
2706
- >>> pipeline = StableDiffusionPipeline.from_single_file(
2707
- ... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
2708
- ... torch_dtype=torch.float16,
2709
- ... )
2710
- >>> pipeline.to("cuda")
2711
- ```
2712
- """
2713
- # import here to avoid circular dependency
2714
- from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
2715
-
2716
- original_config_file = kwargs.pop("original_config_file", None)
2717
- config_files = kwargs.pop("config_files", None)
2718
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
2719
- resume_download = kwargs.pop("resume_download", False)
2720
- force_download = kwargs.pop("force_download", False)
2721
- proxies = kwargs.pop("proxies", None)
2722
- local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
2723
- use_auth_token = kwargs.pop("use_auth_token", None)
2724
- revision = kwargs.pop("revision", None)
2725
- extract_ema = kwargs.pop("extract_ema", False)
2726
- image_size = kwargs.pop("image_size", None)
2727
- scheduler_type = kwargs.pop("scheduler_type", "pndm")
2728
- num_in_channels = kwargs.pop("num_in_channels", None)
2729
- upcast_attention = kwargs.pop("upcast_attention", None)
2730
- load_safety_checker = kwargs.pop("load_safety_checker", True)
2731
- prediction_type = kwargs.pop("prediction_type", None)
2732
- text_encoder = kwargs.pop("text_encoder", None)
2733
- vae = kwargs.pop("vae", None)
2734
- controlnet = kwargs.pop("controlnet", None)
2735
- adapter = kwargs.pop("adapter", None)
2736
- tokenizer = kwargs.pop("tokenizer", None)
2737
-
2738
- torch_dtype = kwargs.pop("torch_dtype", None)
2739
-
2740
- use_safetensors = kwargs.pop("use_safetensors", None)
2741
-
2742
- pipeline_name = cls.__name__
2743
- file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
2744
- from_safetensors = file_extension == "safetensors"
2745
-
2746
- if from_safetensors and use_safetensors is False:
2747
- raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
2748
-
2749
- # TODO: For now we only support stable diffusion
2750
- stable_unclip = None
2751
- model_type = None
2752
-
2753
- if pipeline_name in [
2754
- "StableDiffusionControlNetPipeline",
2755
- "StableDiffusionControlNetImg2ImgPipeline",
2756
- "StableDiffusionControlNetInpaintPipeline",
2757
- ]:
2758
- from .models.controlnet import ControlNetModel
2759
- from .pipelines.controlnet.multicontrolnet import MultiControlNetModel
2760
-
2761
- # list/tuple or a single instance of ControlNetModel or MultiControlNetModel
2762
- if not (
2763
- isinstance(controlnet, (ControlNetModel, MultiControlNetModel))
2764
- or isinstance(controlnet, (list, tuple))
2765
- and isinstance(controlnet[0], ControlNetModel)
2766
- ):
2767
- raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
2768
- elif "StableDiffusion" in pipeline_name:
2769
- # Model type will be inferred from the checkpoint.
2770
- pass
2771
- elif pipeline_name == "StableUnCLIPPipeline":
2772
- model_type = "FrozenOpenCLIPEmbedder"
2773
- stable_unclip = "txt2img"
2774
- elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
2775
- model_type = "FrozenOpenCLIPEmbedder"
2776
- stable_unclip = "img2img"
2777
- elif pipeline_name == "PaintByExamplePipeline":
2778
- model_type = "PaintByExample"
2779
- elif pipeline_name == "LDMTextToImagePipeline":
2780
- model_type = "LDMTextToImage"
2781
- else:
2782
- raise ValueError(f"Unhandled pipeline class: {pipeline_name}")
2783
-
2784
- # remove huggingface url
2785
- has_valid_url_prefix = False
2786
- valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
2787
- for prefix in valid_url_prefixes:
2788
- if pretrained_model_link_or_path.startswith(prefix):
2789
- pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
2790
- has_valid_url_prefix = True
2791
-
2792
- # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
2793
- ckpt_path = Path(pretrained_model_link_or_path)
2794
- if not ckpt_path.is_file():
2795
- if not has_valid_url_prefix:
2796
- raise ValueError(
2797
- f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
2798
- )
2799
-
2800
- # get repo_id and (potentially nested) file path of ckpt in repo
2801
- repo_id = "/".join(ckpt_path.parts[:2])
2802
- file_path = "/".join(ckpt_path.parts[2:])
2803
-
2804
- if file_path.startswith("blob/"):
2805
- file_path = file_path[len("blob/") :]
2806
-
2807
- if file_path.startswith("main/"):
2808
- file_path = file_path[len("main/") :]
2809
-
2810
- pretrained_model_link_or_path = hf_hub_download(
2811
- repo_id,
2812
- filename=file_path,
2813
- cache_dir=cache_dir,
2814
- resume_download=resume_download,
2815
- proxies=proxies,
2816
- local_files_only=local_files_only,
2817
- use_auth_token=use_auth_token,
2818
- revision=revision,
2819
- force_download=force_download,
2820
- )
2821
-
2822
- pipe = download_from_original_stable_diffusion_ckpt(
2823
- pretrained_model_link_or_path,
2824
- pipeline_class=cls,
2825
- model_type=model_type,
2826
- stable_unclip=stable_unclip,
2827
- controlnet=controlnet,
2828
- adapter=adapter,
2829
- from_safetensors=from_safetensors,
2830
- extract_ema=extract_ema,
2831
- image_size=image_size,
2832
- scheduler_type=scheduler_type,
2833
- num_in_channels=num_in_channels,
2834
- upcast_attention=upcast_attention,
2835
- load_safety_checker=load_safety_checker,
2836
- prediction_type=prediction_type,
2837
- text_encoder=text_encoder,
2838
- vae=vae,
2839
- tokenizer=tokenizer,
2840
- original_config_file=original_config_file,
2841
- config_files=config_files,
2842
- local_files_only=local_files_only,
2843
- )
2844
-
2845
- if torch_dtype is not None:
2846
- pipe.to(torch_dtype=torch_dtype)
2847
-
2848
- return pipe
2849
-
2850
-
2851
- class FromOriginalVAEMixin:
2852
- @classmethod
2853
- def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
2854
- r"""
2855
- Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
2856
- `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
2857
- default.
2858
-
2859
- Parameters:
2860
- pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
2861
- Can be either:
2862
- - A link to the `.ckpt` file (for example
2863
- `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
2864
- - A path to a *file* containing all pipeline weights.
2865
- torch_dtype (`str` or `torch.dtype`, *optional*):
2866
- Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
2867
- dtype is automatically derived from the model's weights.
2868
- force_download (`bool`, *optional*, defaults to `False`):
2869
- Whether or not to force the (re-)download of the model weights and configuration files, overriding the
2870
- cached versions if they exist.
2871
- cache_dir (`Union[str, os.PathLike]`, *optional*):
2872
- Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
2873
- is not used.
2874
- resume_download (`bool`, *optional*, defaults to `False`):
2875
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
2876
- incompletely downloaded files are deleted.
2877
- proxies (`Dict[str, str]`, *optional*):
2878
- A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
2879
- 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2880
- local_files_only (`bool`, *optional*, defaults to `False`):
2881
- Whether to only load local model weights and configuration files or not. If set to True, the model
2882
- won't be downloaded from the Hub.
2883
- use_auth_token (`str` or *bool*, *optional*):
2884
- The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
2885
- `diffusers-cli login` (stored in `~/.huggingface`) is used.
2886
- revision (`str`, *optional*, defaults to `"main"`):
2887
- The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
2888
- allowed by Git.
2889
- image_size (`int`, *optional*, defaults to 512):
2890
- The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
2891
- Diffusion v2 base model. Use 768 for Stable Diffusion v2.
2892
- use_safetensors (`bool`, *optional*, defaults to `None`):
2893
- If set to `None`, the safetensors weights are downloaded if they're available **and** if the
2894
- safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
2895
- weights. If set to `False`, safetensors weights are not loaded.
2896
- upcast_attention (`bool`, *optional*, defaults to `None`):
2897
- Whether the attention computation should always be upcasted.
2898
- scaling_factor (`float`, *optional*, defaults to 0.18215):
2899
- The component-wise standard deviation of the trained latent space computed using the first batch of the
2900
- training set. This is used to scale the latent space to have unit variance when training the diffusion
2901
- model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
2902
- diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
2903
- = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
2904
- Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
2905
- kwargs (remaining dictionary of keyword arguments, *optional*):
2906
- Can be used to overwrite load and saveable variables (for example the pipeline components of the
2907
- specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
2908
- method. See example below for more information.
2909
-
2910
- <Tip warning={true}>
2911
-
2912
- Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
2913
- a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.
2914
-
2915
- </Tip>
2916
-
2917
- Examples:
2918
-
2919
- ```py
2920
- from diffusers import AutoencoderKL
2921
-
2922
- url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
2923
- model = AutoencoderKL.from_single_file(url)
2924
- ```
2925
- """
2926
- if not is_omegaconf_available():
2927
- raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
2928
-
2929
- from omegaconf import OmegaConf
2930
-
2931
- from .models import AutoencoderKL
2932
-
2933
- # import here to avoid circular dependency
2934
- from .pipelines.stable_diffusion.convert_from_ckpt import (
2935
- convert_ldm_vae_checkpoint,
2936
- create_vae_diffusers_config,
2937
- )
2938
-
2939
- config_file = kwargs.pop("config_file", None)
2940
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
2941
- resume_download = kwargs.pop("resume_download", False)
2942
- force_download = kwargs.pop("force_download", False)
2943
- proxies = kwargs.pop("proxies", None)
2944
- local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
2945
- use_auth_token = kwargs.pop("use_auth_token", None)
2946
- revision = kwargs.pop("revision", None)
2947
- image_size = kwargs.pop("image_size", None)
2948
- scaling_factor = kwargs.pop("scaling_factor", None)
2949
- kwargs.pop("upcast_attention", None)
2950
-
2951
- torch_dtype = kwargs.pop("torch_dtype", None)
2952
-
2953
- use_safetensors = kwargs.pop("use_safetensors", None)
2954
-
2955
- file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
2956
- from_safetensors = file_extension == "safetensors"
2957
-
2958
- if from_safetensors and use_safetensors is False:
2959
- raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
2960
-
2961
- # remove huggingface url
2962
- for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
2963
- if pretrained_model_link_or_path.startswith(prefix):
2964
- pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
2965
-
2966
- # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
2967
- ckpt_path = Path(pretrained_model_link_or_path)
2968
- if not ckpt_path.is_file():
2969
- # get repo_id and (potentially nested) file path of ckpt in repo
2970
- repo_id = "/".join(ckpt_path.parts[:2])
2971
- file_path = "/".join(ckpt_path.parts[2:])
2972
-
2973
- if file_path.startswith("blob/"):
2974
- file_path = file_path[len("blob/") :]
2975
-
2976
- if file_path.startswith("main/"):
2977
- file_path = file_path[len("main/") :]
2978
-
2979
- pretrained_model_link_or_path = hf_hub_download(
2980
- repo_id,
2981
- filename=file_path,
2982
- cache_dir=cache_dir,
2983
- resume_download=resume_download,
2984
- proxies=proxies,
2985
- local_files_only=local_files_only,
2986
- use_auth_token=use_auth_token,
2987
- revision=revision,
2988
- force_download=force_download,
2989
- )
2990
-
2991
- if from_safetensors:
2992
- from safetensors import safe_open
2993
-
2994
- checkpoint = {}
2995
- with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
2996
- for key in f.keys():
2997
- checkpoint[key] = f.get_tensor(key)
2998
- else:
2999
- checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")
3000
-
3001
- if "state_dict" in checkpoint:
3002
- checkpoint = checkpoint["state_dict"]
3003
-
3004
- if config_file is None:
3005
- config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
3006
- config_file = BytesIO(requests.get(config_url).content)
3007
-
3008
- original_config = OmegaConf.load(config_file)
3009
-
3010
- # default to sd-v1-5
3011
- image_size = image_size or 512
3012
-
3013
- vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
3014
- converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
3015
-
3016
- if scaling_factor is None:
3017
- if (
3018
- "model" in original_config
3019
- and "params" in original_config.model
3020
- and "scale_factor" in original_config.model.params
3021
- ):
3022
- vae_scaling_factor = original_config.model.params.scale_factor
3023
- else:
3024
- vae_scaling_factor = 0.18215 # default SD scaling factor
3025
-
3026
- vae_config["scaling_factor"] = vae_scaling_factor
3027
-
3028
- ctx = init_empty_weights if is_accelerate_available() else nullcontext
3029
- with ctx():
3030
- vae = AutoencoderKL(**vae_config)
3031
-
3032
- if is_accelerate_available():
3033
- load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
3034
- else:
3035
- vae.load_state_dict(converted_vae_checkpoint)
3036
-
3037
- if torch_dtype is not None:
3038
- vae.to(dtype=torch_dtype)
3039
-
3040
- return vae
3041
-
3042
-
3043
- class FromOriginalControlnetMixin:
3044
- @classmethod
3045
- def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
3046
- r"""
3047
- Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
3048
- `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
3049
-
3050
- Parameters:
3051
- pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
3052
- Can be either:
3053
- - A link to the `.ckpt` file (for example
3054
- `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
3055
- - A path to a *file* containing all pipeline weights.
3056
- torch_dtype (`str` or `torch.dtype`, *optional*):
3057
- Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
3058
- dtype is automatically derived from the model's weights.
3059
- force_download (`bool`, *optional*, defaults to `False`):
3060
- Whether or not to force the (re-)download of the model weights and configuration files, overriding the
3061
- cached versions if they exist.
3062
- cache_dir (`Union[str, os.PathLike]`, *optional*):
3063
- Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
3064
- is not used.
3065
- resume_download (`bool`, *optional*, defaults to `False`):
3066
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
3067
- incompletely downloaded files are deleted.
3068
- proxies (`Dict[str, str]`, *optional*):
3069
- A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
3070
- 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
3071
- local_files_only (`bool`, *optional*, defaults to `False`):
3072
- Whether to only load local model weights and configuration files or not. If set to True, the model
3073
- won't be downloaded from the Hub.
3074
- use_auth_token (`str` or *bool*, *optional*):
3075
- The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
3076
- `diffusers-cli login` (stored in `~/.huggingface`) is used.
3077
- revision (`str`, *optional*, defaults to `"main"`):
3078
- The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
3079
- allowed by Git.
3080
- use_safetensors (`bool`, *optional*, defaults to `None`):
3081
- If set to `None`, the safetensors weights are downloaded if they're available **and** if the
3082
- safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
3083
- weights. If set to `False`, safetensors weights are not loaded.
3084
- image_size (`int`, *optional*, defaults to 512):
3085
- The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
3086
- Diffusion v2 base model. Use 768 for Stable Diffusion v2.
3087
- upcast_attention (`bool`, *optional*, defaults to `None`):
3088
- Whether the attention computation should always be upcasted.
3089
- kwargs (remaining dictionary of keyword arguments, *optional*):
3090
- Can be used to overwrite load and saveable variables (for example the pipeline components of the
3091
- specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
3092
- method. See example below for more information.
3093
-
3094
- Examples:
3095
-
3096
- ```py
3097
- from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
3098
-
3099
- url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
3100
- model = ControlNetModel.from_single_file(url)
3101
-
3102
- url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
3103
- pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
3104
- ```
3105
- """
3106
- # import here to avoid circular dependency
3107
- from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
3108
-
3109
- config_file = kwargs.pop("config_file", None)
3110
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
3111
- resume_download = kwargs.pop("resume_download", False)
3112
- force_download = kwargs.pop("force_download", False)
3113
- proxies = kwargs.pop("proxies", None)
3114
- local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
3115
- use_auth_token = kwargs.pop("use_auth_token", None)
3116
- num_in_channels = kwargs.pop("num_in_channels", None)
3117
- use_linear_projection = kwargs.pop("use_linear_projection", None)
3118
- revision = kwargs.pop("revision", None)
3119
- extract_ema = kwargs.pop("extract_ema", False)
3120
- image_size = kwargs.pop("image_size", None)
3121
- upcast_attention = kwargs.pop("upcast_attention", None)
3122
-
3123
- torch_dtype = kwargs.pop("torch_dtype", None)
3124
-
3125
- use_safetensors = kwargs.pop("use_safetensors", None)
3126
-
3127
- file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
3128
- from_safetensors = file_extension == "safetensors"
3129
-
3130
- if from_safetensors and use_safetensors is False:
3131
- raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
3132
-
3133
- # remove huggingface url
3134
- for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
3135
- if pretrained_model_link_or_path.startswith(prefix):
3136
- pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
3137
-
3138
- # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
3139
- ckpt_path = Path(pretrained_model_link_or_path)
3140
- if not ckpt_path.is_file():
3141
- # get repo_id and (potentially nested) file path of ckpt in repo
3142
- repo_id = "/".join(ckpt_path.parts[:2])
3143
- file_path = "/".join(ckpt_path.parts[2:])
3144
-
3145
- if file_path.startswith("blob/"):
3146
- file_path = file_path[len("blob/") :]
3147
-
3148
- if file_path.startswith("main/"):
3149
- file_path = file_path[len("main/") :]
3150
-
3151
- pretrained_model_link_or_path = hf_hub_download(
3152
- repo_id,
3153
- filename=file_path,
3154
- cache_dir=cache_dir,
3155
- resume_download=resume_download,
3156
- proxies=proxies,
3157
- local_files_only=local_files_only,
3158
- use_auth_token=use_auth_token,
3159
- revision=revision,
3160
- force_download=force_download,
3161
- )
3162
-
3163
- if config_file is None:
3164
- config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
3165
- config_file = BytesIO(requests.get(config_url).content)
3166
-
3167
- image_size = image_size or 512
3168
-
3169
- controlnet = download_controlnet_from_original_ckpt(
3170
- pretrained_model_link_or_path,
3171
- original_config_file=config_file,
3172
- image_size=image_size,
3173
- extract_ema=extract_ema,
3174
- num_in_channels=num_in_channels,
3175
- upcast_attention=upcast_attention,
3176
- from_safetensors=from_safetensors,
3177
- use_linear_projection=use_linear_projection,
3178
- )
3179
-
3180
- if torch_dtype is not None:
3181
- controlnet.to(dtype=torch_dtype)
3182
-
3183
- return controlnet
3184
-
3185
-
3186
- class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
3187
- """This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""
3188
-
3189
- # Overrride to properly handle the loading and unloading of the additional text encoder.
3190
- def load_lora_weights(
3191
- self,
3192
- pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
3193
- adapter_name: Optional[str] = None,
3194
- **kwargs,
3195
- ):
3196
- """
3197
- Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
3198
- `self.text_encoder`.
3199
-
3200
- All kwargs are forwarded to `self.lora_state_dict`.
3201
-
3202
- See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
3203
-
3204
- See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
3205
- `self.unet`.
3206
-
3207
- See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
3208
- into `self.text_encoder`.
3209
-
3210
- Parameters:
3211
- pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
3212
- See [`~loaders.LoraLoaderMixin.lora_state_dict`].
3213
- adapter_name (`str`, *optional*):
3214
- Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
3215
- `default_{i}` where i is the total number of adapters being loaded.
3216
- kwargs (`dict`, *optional*):
3217
- See [`~loaders.LoraLoaderMixin.lora_state_dict`].
3218
- """
3219
- # We could have accessed the unet config from `lora_state_dict()` too. We pass
3220
- # it here explicitly to be able to tell that it's coming from an SDXL
3221
- # pipeline.
3222
-
3223
- # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3224
- state_dict, network_alphas = self.lora_state_dict(
3225
- pretrained_model_name_or_path_or_dict,
3226
- unet_config=self.unet.config,
3227
- **kwargs,
3228
- )
3229
- is_correct_format = all("lora" in key for key in state_dict.keys())
3230
- if not is_correct_format:
3231
- raise ValueError("Invalid LoRA checkpoint.")
3232
-
3233
- self.load_lora_into_unet(
3234
- state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self
3235
- )
3236
- text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
3237
- if len(text_encoder_state_dict) > 0:
3238
- self.load_lora_into_text_encoder(
3239
- text_encoder_state_dict,
3240
- network_alphas=network_alphas,
3241
- text_encoder=self.text_encoder,
3242
- prefix="text_encoder",
3243
- lora_scale=self.lora_scale,
3244
- adapter_name=adapter_name,
3245
- _pipeline=self,
3246
- )
3247
-
3248
- text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
3249
- if len(text_encoder_2_state_dict) > 0:
3250
- self.load_lora_into_text_encoder(
3251
- text_encoder_2_state_dict,
3252
- network_alphas=network_alphas,
3253
- text_encoder=self.text_encoder_2,
3254
- prefix="text_encoder_2",
3255
- lora_scale=self.lora_scale,
3256
- adapter_name=adapter_name,
3257
- _pipeline=self,
3258
- )
3259
-
3260
- @classmethod
3261
- def save_lora_weights(
3262
- cls,
3263
- save_directory: Union[str, os.PathLike],
3264
- unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
3265
- text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
3266
- text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
3267
- is_main_process: bool = True,
3268
- weight_name: str = None,
3269
- save_function: Callable = None,
3270
- safe_serialization: bool = True,
3271
- ):
3272
- r"""
3273
- Save the LoRA parameters corresponding to the UNet and text encoder.
3274
-
3275
- Arguments:
3276
- save_directory (`str` or `os.PathLike`):
3277
- Directory to save LoRA parameters to. Will be created if it doesn't exist.
3278
- unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
3279
- State dict of the LoRA layers corresponding to the `unet`.
3280
- text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
3281
- State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
3282
- encoder LoRA state dict because it comes from 🤗 Transformers.
3283
- is_main_process (`bool`, *optional*, defaults to `True`):
3284
- Whether the process calling this is the main process or not. Useful during distributed training and you
3285
- need to call this function on all processes. In this case, set `is_main_process=True` only on the main
3286
- process to avoid race conditions.
3287
- save_function (`Callable`):
3288
- The function to use to save the state dictionary. Useful during distributed training when you need to
3289
- replace `torch.save` with another method. Can be configured with the environment variable
3290
- `DIFFUSERS_SAVE_MODE`.
3291
- safe_serialization (`bool`, *optional*, defaults to `True`):
3292
- Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3293
- """
3294
- state_dict = {}
3295
-
3296
- def pack_weights(layers, prefix):
3297
- layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
3298
- layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
3299
- return layers_state_dict
3300
-
3301
- if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
3302
- raise ValueError(
3303
- "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
3304
- )
3305
-
3306
- if unet_lora_layers:
3307
- state_dict.update(pack_weights(unet_lora_layers, "unet"))
3308
-
3309
- if text_encoder_lora_layers and text_encoder_2_lora_layers:
3310
- state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
3311
- state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
3312
-
3313
- cls.write_lora_layers(
3314
- state_dict=state_dict,
3315
- save_directory=save_directory,
3316
- is_main_process=is_main_process,
3317
- weight_name=weight_name,
3318
- save_function=save_function,
3319
- safe_serialization=safe_serialization,
3320
- )
3321
-
3322
- def _remove_text_encoder_monkey_patch(self):
3323
- if USE_PEFT_BACKEND:
3324
- recurse_remove_peft_layers(self.text_encoder)
3325
- # TODO: @younesbelkada handle this in transformers side
3326
- if getattr(self.text_encoder, "peft_config", None) is not None:
3327
- del self.text_encoder.peft_config
3328
- self.text_encoder._hf_peft_config_loaded = None
3329
-
3330
- recurse_remove_peft_layers(self.text_encoder_2)
3331
- if getattr(self.text_encoder_2, "peft_config", None) is not None:
3332
- del self.text_encoder_2.peft_config
3333
- self.text_encoder_2._hf_peft_config_loaded = None
3334
- else:
3335
- self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
3336
- self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)