diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -12,6 +12,7 @@
|
|
12
12
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
13
|
# See the License for the specific language governing permissions and
|
14
14
|
# limitations under the License.
|
15
|
+
|
15
16
|
from dataclasses import dataclass
|
16
17
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
17
18
|
|
@@ -22,6 +23,7 @@ import torch.utils.checkpoint
|
|
22
23
|
from ..configuration_utils import ConfigMixin, register_to_config
|
23
24
|
from ..loaders import UNet2DConditionLoadersMixin
|
24
25
|
from ..utils import BaseOutput, logging
|
26
|
+
from .activations import get_activation
|
25
27
|
from .attention_processor import (
|
26
28
|
ADDED_KV_ATTENTION_PROCESSORS,
|
27
29
|
CROSS_ATTENTION_PROCESSORS,
|
@@ -98,14 +100,19 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|
98
100
|
sample_size: Optional[int] = None,
|
99
101
|
in_channels: int = 4,
|
100
102
|
out_channels: int = 4,
|
101
|
-
down_block_types: Tuple[str] = (
|
103
|
+
down_block_types: Tuple[str, ...] = (
|
102
104
|
"CrossAttnDownBlock3D",
|
103
105
|
"CrossAttnDownBlock3D",
|
104
106
|
"CrossAttnDownBlock3D",
|
105
107
|
"DownBlock3D",
|
106
108
|
),
|
107
|
-
up_block_types: Tuple[str] = (
|
108
|
-
|
109
|
+
up_block_types: Tuple[str, ...] = (
|
110
|
+
"UpBlock3D",
|
111
|
+
"CrossAttnUpBlock3D",
|
112
|
+
"CrossAttnUpBlock3D",
|
113
|
+
"CrossAttnUpBlock3D",
|
114
|
+
),
|
115
|
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
109
116
|
layers_per_block: int = 2,
|
110
117
|
downsample_padding: int = 1,
|
111
118
|
mid_block_scale_factor: float = 1,
|
@@ -173,6 +180,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|
173
180
|
attention_head_dim=attention_head_dim,
|
174
181
|
in_channels=block_out_channels[0],
|
175
182
|
num_layers=1,
|
183
|
+
norm_num_groups=norm_num_groups,
|
176
184
|
)
|
177
185
|
|
178
186
|
# class embedding
|
@@ -265,7 +273,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|
265
273
|
self.conv_norm_out = nn.GroupNorm(
|
266
274
|
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
267
275
|
)
|
268
|
-
self.conv_act =
|
276
|
+
self.conv_act = get_activation("silu")
|
269
277
|
else:
|
270
278
|
self.conv_norm_out = None
|
271
279
|
self.conv_act = None
|
@@ -301,7 +309,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|
301
309
|
return processors
|
302
310
|
|
303
311
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
304
|
-
def set_attention_slice(self, slice_size):
|
312
|
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
305
313
|
r"""
|
306
314
|
Enable sliced attention computation.
|
307
315
|
|
@@ -403,7 +411,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|
403
411
|
for name, module in self.named_children():
|
404
412
|
fn_recursive_attn_processor(name, module, processor)
|
405
413
|
|
406
|
-
def enable_forward_chunking(self, chunk_size=None, dim=0):
|
414
|
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
407
415
|
"""
|
408
416
|
Sets the attention processor to use [feed forward
|
409
417
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
@@ -459,7 +467,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|
459
467
|
|
460
468
|
self.set_attn_processor(processor, _remove_lora=True)
|
461
469
|
|
462
|
-
def _set_gradient_checkpointing(self, module, value=False):
|
470
|
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
463
471
|
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
464
472
|
module.gradient_checkpointing = value
|
465
473
|
|
@@ -509,7 +517,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|
509
517
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
510
518
|
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
511
519
|
return_dict: bool = True,
|
512
|
-
) -> Union[UNet3DConditionOutput, Tuple]:
|
520
|
+
) -> Union[UNet3DConditionOutput, Tuple[torch.FloatTensor]]:
|
513
521
|
r"""
|
514
522
|
The [`UNet3DConditionModel`] forward method.
|
515
523
|
|
@@ -0,0 +1,535 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from dataclasses import dataclass
|
16
|
+
from typing import Dict, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.utils.checkpoint
|
20
|
+
from torch import nn
|
21
|
+
|
22
|
+
from ..configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ..utils import BaseOutput, logging
|
24
|
+
from .attention_processor import Attention, AttentionProcessor, AttnProcessor
|
25
|
+
from .embeddings import TimestepEmbedding, Timesteps
|
26
|
+
from .modeling_utils import ModelMixin
|
27
|
+
|
28
|
+
|
29
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30
|
+
|
31
|
+
|
32
|
+
@dataclass
|
33
|
+
class Kandinsky3UNetOutput(BaseOutput):
|
34
|
+
sample: torch.FloatTensor = None
|
35
|
+
|
36
|
+
|
37
|
+
class Kandinsky3EncoderProj(nn.Module):
|
38
|
+
def __init__(self, encoder_hid_dim, cross_attention_dim):
|
39
|
+
super().__init__()
|
40
|
+
self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
|
41
|
+
self.projection_norm = nn.LayerNorm(cross_attention_dim)
|
42
|
+
|
43
|
+
def forward(self, x):
|
44
|
+
x = self.projection_linear(x)
|
45
|
+
x = self.projection_norm(x)
|
46
|
+
return x
|
47
|
+
|
48
|
+
|
49
|
+
class Kandinsky3UNet(ModelMixin, ConfigMixin):
|
50
|
+
@register_to_config
|
51
|
+
def __init__(
|
52
|
+
self,
|
53
|
+
in_channels: int = 4,
|
54
|
+
time_embedding_dim: int = 1536,
|
55
|
+
groups: int = 32,
|
56
|
+
attention_head_dim: int = 64,
|
57
|
+
layers_per_block: Union[int, Tuple[int]] = 3,
|
58
|
+
block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
|
59
|
+
cross_attention_dim: Union[int, Tuple[int]] = 4096,
|
60
|
+
encoder_hid_dim: int = 4096,
|
61
|
+
):
|
62
|
+
super().__init__()
|
63
|
+
|
64
|
+
# TOOD(Yiyi): Give better name and put into config for the following 4 parameters
|
65
|
+
expansion_ratio = 4
|
66
|
+
compression_ratio = 2
|
67
|
+
add_cross_attention = (False, True, True, True)
|
68
|
+
add_self_attention = (False, True, True, True)
|
69
|
+
|
70
|
+
out_channels = in_channels
|
71
|
+
init_channels = block_out_channels[0] // 2
|
72
|
+
self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
|
73
|
+
|
74
|
+
self.time_embedding = TimestepEmbedding(
|
75
|
+
init_channels,
|
76
|
+
time_embedding_dim,
|
77
|
+
)
|
78
|
+
|
79
|
+
self.add_time_condition = Kandinsky3AttentionPooling(
|
80
|
+
time_embedding_dim, cross_attention_dim, attention_head_dim
|
81
|
+
)
|
82
|
+
|
83
|
+
self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)
|
84
|
+
|
85
|
+
self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)
|
86
|
+
|
87
|
+
hidden_dims = [init_channels] + list(block_out_channels)
|
88
|
+
in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
|
89
|
+
text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
|
90
|
+
num_blocks = len(block_out_channels) * [layers_per_block]
|
91
|
+
layer_params = [num_blocks, text_dims, add_self_attention]
|
92
|
+
rev_layer_params = map(reversed, layer_params)
|
93
|
+
|
94
|
+
cat_dims = []
|
95
|
+
self.num_levels = len(in_out_dims)
|
96
|
+
self.down_blocks = nn.ModuleList([])
|
97
|
+
for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
|
98
|
+
zip(in_out_dims, *layer_params)
|
99
|
+
):
|
100
|
+
down_sample = level != (self.num_levels - 1)
|
101
|
+
cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
|
102
|
+
self.down_blocks.append(
|
103
|
+
Kandinsky3DownSampleBlock(
|
104
|
+
in_dim,
|
105
|
+
out_dim,
|
106
|
+
time_embedding_dim,
|
107
|
+
text_dim,
|
108
|
+
res_block_num,
|
109
|
+
groups,
|
110
|
+
attention_head_dim,
|
111
|
+
expansion_ratio,
|
112
|
+
compression_ratio,
|
113
|
+
down_sample,
|
114
|
+
self_attention,
|
115
|
+
)
|
116
|
+
)
|
117
|
+
|
118
|
+
self.up_blocks = nn.ModuleList([])
|
119
|
+
for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
|
120
|
+
zip(reversed(in_out_dims), *rev_layer_params)
|
121
|
+
):
|
122
|
+
up_sample = level != 0
|
123
|
+
self.up_blocks.append(
|
124
|
+
Kandinsky3UpSampleBlock(
|
125
|
+
in_dim,
|
126
|
+
cat_dims.pop(),
|
127
|
+
out_dim,
|
128
|
+
time_embedding_dim,
|
129
|
+
text_dim,
|
130
|
+
res_block_num,
|
131
|
+
groups,
|
132
|
+
attention_head_dim,
|
133
|
+
expansion_ratio,
|
134
|
+
compression_ratio,
|
135
|
+
up_sample,
|
136
|
+
self_attention,
|
137
|
+
)
|
138
|
+
)
|
139
|
+
|
140
|
+
self.conv_norm_out = nn.GroupNorm(groups, init_channels)
|
141
|
+
self.conv_act_out = nn.SiLU()
|
142
|
+
self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)
|
143
|
+
|
144
|
+
@property
|
145
|
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
146
|
+
r"""
|
147
|
+
Returns:
|
148
|
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
149
|
+
indexed by its weight name.
|
150
|
+
"""
|
151
|
+
# set recursively
|
152
|
+
processors = {}
|
153
|
+
|
154
|
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
155
|
+
if hasattr(module, "set_processor"):
|
156
|
+
processors[f"{name}.processor"] = module.processor
|
157
|
+
|
158
|
+
for sub_name, child in module.named_children():
|
159
|
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
160
|
+
|
161
|
+
return processors
|
162
|
+
|
163
|
+
for name, module in self.named_children():
|
164
|
+
fn_recursive_add_processors(name, module, processors)
|
165
|
+
|
166
|
+
return processors
|
167
|
+
|
168
|
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
169
|
+
r"""
|
170
|
+
Sets the attention processor to use to compute attention.
|
171
|
+
|
172
|
+
Parameters:
|
173
|
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
174
|
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
175
|
+
for **all** `Attention` layers.
|
176
|
+
|
177
|
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
178
|
+
processor. This is strongly recommended when setting trainable attention processors.
|
179
|
+
|
180
|
+
"""
|
181
|
+
count = len(self.attn_processors.keys())
|
182
|
+
|
183
|
+
if isinstance(processor, dict) and len(processor) != count:
|
184
|
+
raise ValueError(
|
185
|
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
186
|
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
187
|
+
)
|
188
|
+
|
189
|
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
190
|
+
if hasattr(module, "set_processor"):
|
191
|
+
if not isinstance(processor, dict):
|
192
|
+
module.set_processor(processor)
|
193
|
+
else:
|
194
|
+
module.set_processor(processor.pop(f"{name}.processor"))
|
195
|
+
|
196
|
+
for sub_name, child in module.named_children():
|
197
|
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
198
|
+
|
199
|
+
for name, module in self.named_children():
|
200
|
+
fn_recursive_attn_processor(name, module, processor)
|
201
|
+
|
202
|
+
def set_default_attn_processor(self):
|
203
|
+
"""
|
204
|
+
Disables custom attention processors and sets the default attention implementation.
|
205
|
+
"""
|
206
|
+
self.set_attn_processor(AttnProcessor())
|
207
|
+
|
208
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
209
|
+
if hasattr(module, "gradient_checkpointing"):
|
210
|
+
module.gradient_checkpointing = value
|
211
|
+
|
212
|
+
def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
|
213
|
+
if encoder_attention_mask is not None:
|
214
|
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
215
|
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
216
|
+
|
217
|
+
if not torch.is_tensor(timestep):
|
218
|
+
dtype = torch.float32 if isinstance(timestep, float) else torch.int32
|
219
|
+
timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
|
220
|
+
elif len(timestep.shape) == 0:
|
221
|
+
timestep = timestep[None].to(sample.device)
|
222
|
+
|
223
|
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
224
|
+
timestep = timestep.expand(sample.shape[0])
|
225
|
+
time_embed_input = self.time_proj(timestep).to(sample.dtype)
|
226
|
+
time_embed = self.time_embedding(time_embed_input)
|
227
|
+
|
228
|
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
229
|
+
|
230
|
+
if encoder_hidden_states is not None:
|
231
|
+
time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
|
232
|
+
|
233
|
+
hidden_states = []
|
234
|
+
sample = self.conv_in(sample)
|
235
|
+
for level, down_sample in enumerate(self.down_blocks):
|
236
|
+
sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
|
237
|
+
if level != self.num_levels - 1:
|
238
|
+
hidden_states.append(sample)
|
239
|
+
|
240
|
+
for level, up_sample in enumerate(self.up_blocks):
|
241
|
+
if level != 0:
|
242
|
+
sample = torch.cat([sample, hidden_states.pop()], dim=1)
|
243
|
+
sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
|
244
|
+
|
245
|
+
sample = self.conv_norm_out(sample)
|
246
|
+
sample = self.conv_act_out(sample)
|
247
|
+
sample = self.conv_out(sample)
|
248
|
+
|
249
|
+
if not return_dict:
|
250
|
+
return (sample,)
|
251
|
+
return Kandinsky3UNetOutput(sample=sample)
|
252
|
+
|
253
|
+
|
254
|
+
class Kandinsky3UpSampleBlock(nn.Module):
|
255
|
+
def __init__(
|
256
|
+
self,
|
257
|
+
in_channels,
|
258
|
+
cat_dim,
|
259
|
+
out_channels,
|
260
|
+
time_embed_dim,
|
261
|
+
context_dim=None,
|
262
|
+
num_blocks=3,
|
263
|
+
groups=32,
|
264
|
+
head_dim=64,
|
265
|
+
expansion_ratio=4,
|
266
|
+
compression_ratio=2,
|
267
|
+
up_sample=True,
|
268
|
+
self_attention=True,
|
269
|
+
):
|
270
|
+
super().__init__()
|
271
|
+
up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
|
272
|
+
hidden_channels = (
|
273
|
+
[(in_channels + cat_dim, in_channels)]
|
274
|
+
+ [(in_channels, in_channels)] * (num_blocks - 2)
|
275
|
+
+ [(in_channels, out_channels)]
|
276
|
+
)
|
277
|
+
attentions = []
|
278
|
+
resnets_in = []
|
279
|
+
resnets_out = []
|
280
|
+
|
281
|
+
self.self_attention = self_attention
|
282
|
+
self.context_dim = context_dim
|
283
|
+
|
284
|
+
if self_attention:
|
285
|
+
attentions.append(
|
286
|
+
Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
|
287
|
+
)
|
288
|
+
else:
|
289
|
+
attentions.append(nn.Identity())
|
290
|
+
|
291
|
+
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
|
292
|
+
resnets_in.append(
|
293
|
+
Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
|
294
|
+
)
|
295
|
+
|
296
|
+
if context_dim is not None:
|
297
|
+
attentions.append(
|
298
|
+
Kandinsky3AttentionBlock(
|
299
|
+
in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
|
300
|
+
)
|
301
|
+
)
|
302
|
+
else:
|
303
|
+
attentions.append(nn.Identity())
|
304
|
+
|
305
|
+
resnets_out.append(
|
306
|
+
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
|
307
|
+
)
|
308
|
+
|
309
|
+
self.attentions = nn.ModuleList(attentions)
|
310
|
+
self.resnets_in = nn.ModuleList(resnets_in)
|
311
|
+
self.resnets_out = nn.ModuleList(resnets_out)
|
312
|
+
|
313
|
+
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
|
314
|
+
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
|
315
|
+
x = resnet_in(x, time_embed)
|
316
|
+
if self.context_dim is not None:
|
317
|
+
x = attention(x, time_embed, context, context_mask, image_mask)
|
318
|
+
x = resnet_out(x, time_embed)
|
319
|
+
|
320
|
+
if self.self_attention:
|
321
|
+
x = self.attentions[0](x, time_embed, image_mask=image_mask)
|
322
|
+
return x
|
323
|
+
|
324
|
+
|
325
|
+
class Kandinsky3DownSampleBlock(nn.Module):
|
326
|
+
def __init__(
|
327
|
+
self,
|
328
|
+
in_channels,
|
329
|
+
out_channels,
|
330
|
+
time_embed_dim,
|
331
|
+
context_dim=None,
|
332
|
+
num_blocks=3,
|
333
|
+
groups=32,
|
334
|
+
head_dim=64,
|
335
|
+
expansion_ratio=4,
|
336
|
+
compression_ratio=2,
|
337
|
+
down_sample=True,
|
338
|
+
self_attention=True,
|
339
|
+
):
|
340
|
+
super().__init__()
|
341
|
+
attentions = []
|
342
|
+
resnets_in = []
|
343
|
+
resnets_out = []
|
344
|
+
|
345
|
+
self.self_attention = self_attention
|
346
|
+
self.context_dim = context_dim
|
347
|
+
|
348
|
+
if self_attention:
|
349
|
+
attentions.append(
|
350
|
+
Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
|
351
|
+
)
|
352
|
+
else:
|
353
|
+
attentions.append(nn.Identity())
|
354
|
+
|
355
|
+
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
|
356
|
+
hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
|
357
|
+
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
|
358
|
+
resnets_in.append(
|
359
|
+
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
|
360
|
+
)
|
361
|
+
|
362
|
+
if context_dim is not None:
|
363
|
+
attentions.append(
|
364
|
+
Kandinsky3AttentionBlock(
|
365
|
+
out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
|
366
|
+
)
|
367
|
+
)
|
368
|
+
else:
|
369
|
+
attentions.append(nn.Identity())
|
370
|
+
|
371
|
+
resnets_out.append(
|
372
|
+
Kandinsky3ResNetBlock(
|
373
|
+
out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
|
374
|
+
)
|
375
|
+
)
|
376
|
+
|
377
|
+
self.attentions = nn.ModuleList(attentions)
|
378
|
+
self.resnets_in = nn.ModuleList(resnets_in)
|
379
|
+
self.resnets_out = nn.ModuleList(resnets_out)
|
380
|
+
|
381
|
+
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
|
382
|
+
if self.self_attention:
|
383
|
+
x = self.attentions[0](x, time_embed, image_mask=image_mask)
|
384
|
+
|
385
|
+
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
|
386
|
+
x = resnet_in(x, time_embed)
|
387
|
+
if self.context_dim is not None:
|
388
|
+
x = attention(x, time_embed, context, context_mask, image_mask)
|
389
|
+
x = resnet_out(x, time_embed)
|
390
|
+
return x
|
391
|
+
|
392
|
+
|
393
|
+
class Kandinsky3ConditionalGroupNorm(nn.Module):
|
394
|
+
def __init__(self, groups, normalized_shape, context_dim):
|
395
|
+
super().__init__()
|
396
|
+
self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
|
397
|
+
self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
|
398
|
+
self.context_mlp[1].weight.data.zero_()
|
399
|
+
self.context_mlp[1].bias.data.zero_()
|
400
|
+
|
401
|
+
def forward(self, x, context):
|
402
|
+
context = self.context_mlp(context)
|
403
|
+
|
404
|
+
for _ in range(len(x.shape[2:])):
|
405
|
+
context = context.unsqueeze(-1)
|
406
|
+
|
407
|
+
scale, shift = context.chunk(2, dim=1)
|
408
|
+
x = self.norm(x) * (scale + 1.0) + shift
|
409
|
+
return x
|
410
|
+
|
411
|
+
|
412
|
+
class Kandinsky3Block(nn.Module):
|
413
|
+
def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
|
414
|
+
super().__init__()
|
415
|
+
self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
|
416
|
+
self.activation = nn.SiLU()
|
417
|
+
if up_resolution is not None and up_resolution:
|
418
|
+
self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
|
419
|
+
else:
|
420
|
+
self.up_sample = nn.Identity()
|
421
|
+
|
422
|
+
padding = int(kernel_size > 1)
|
423
|
+
self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
|
424
|
+
|
425
|
+
if up_resolution is not None and not up_resolution:
|
426
|
+
self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
|
427
|
+
else:
|
428
|
+
self.down_sample = nn.Identity()
|
429
|
+
|
430
|
+
def forward(self, x, time_embed):
|
431
|
+
x = self.group_norm(x, time_embed)
|
432
|
+
x = self.activation(x)
|
433
|
+
x = self.up_sample(x)
|
434
|
+
x = self.projection(x)
|
435
|
+
x = self.down_sample(x)
|
436
|
+
return x
|
437
|
+
|
438
|
+
|
439
|
+
class Kandinsky3ResNetBlock(nn.Module):
|
440
|
+
def __init__(
|
441
|
+
self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
|
442
|
+
):
|
443
|
+
super().__init__()
|
444
|
+
kernel_sizes = [1, 3, 3, 1]
|
445
|
+
hidden_channel = max(in_channels, out_channels) // compression_ratio
|
446
|
+
hidden_channels = (
|
447
|
+
[(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
|
448
|
+
)
|
449
|
+
self.resnet_blocks = nn.ModuleList(
|
450
|
+
[
|
451
|
+
Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
|
452
|
+
for (in_channel, out_channel), kernel_size, up_resolution in zip(
|
453
|
+
hidden_channels, kernel_sizes, up_resolutions
|
454
|
+
)
|
455
|
+
]
|
456
|
+
)
|
457
|
+
self.shortcut_up_sample = (
|
458
|
+
nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
|
459
|
+
if True in up_resolutions
|
460
|
+
else nn.Identity()
|
461
|
+
)
|
462
|
+
self.shortcut_projection = (
|
463
|
+
nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
|
464
|
+
)
|
465
|
+
self.shortcut_down_sample = (
|
466
|
+
nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
|
467
|
+
if False in up_resolutions
|
468
|
+
else nn.Identity()
|
469
|
+
)
|
470
|
+
|
471
|
+
def forward(self, x, time_embed):
|
472
|
+
out = x
|
473
|
+
for resnet_block in self.resnet_blocks:
|
474
|
+
out = resnet_block(out, time_embed)
|
475
|
+
|
476
|
+
x = self.shortcut_up_sample(x)
|
477
|
+
x = self.shortcut_projection(x)
|
478
|
+
x = self.shortcut_down_sample(x)
|
479
|
+
x = x + out
|
480
|
+
return x
|
481
|
+
|
482
|
+
|
483
|
+
class Kandinsky3AttentionPooling(nn.Module):
|
484
|
+
def __init__(self, num_channels, context_dim, head_dim=64):
|
485
|
+
super().__init__()
|
486
|
+
self.attention = Attention(
|
487
|
+
context_dim,
|
488
|
+
context_dim,
|
489
|
+
dim_head=head_dim,
|
490
|
+
out_dim=num_channels,
|
491
|
+
out_bias=False,
|
492
|
+
)
|
493
|
+
|
494
|
+
def forward(self, x, context, context_mask=None):
|
495
|
+
context_mask = context_mask.to(dtype=context.dtype)
|
496
|
+
context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
|
497
|
+
return x + context.squeeze(1)
|
498
|
+
|
499
|
+
|
500
|
+
class Kandinsky3AttentionBlock(nn.Module):
|
501
|
+
def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
|
502
|
+
super().__init__()
|
503
|
+
self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
|
504
|
+
self.attention = Attention(
|
505
|
+
num_channels,
|
506
|
+
context_dim or num_channels,
|
507
|
+
dim_head=head_dim,
|
508
|
+
out_dim=num_channels,
|
509
|
+
out_bias=False,
|
510
|
+
)
|
511
|
+
|
512
|
+
hidden_channels = expansion_ratio * num_channels
|
513
|
+
self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
|
514
|
+
self.feed_forward = nn.Sequential(
|
515
|
+
nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
|
516
|
+
nn.SiLU(),
|
517
|
+
nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
|
518
|
+
)
|
519
|
+
|
520
|
+
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
|
521
|
+
height, width = x.shape[-2:]
|
522
|
+
out = self.in_norm(x, time_embed)
|
523
|
+
out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
|
524
|
+
context = context if context is not None else out
|
525
|
+
if context_mask is not None:
|
526
|
+
context_mask = context_mask.to(dtype=context.dtype)
|
527
|
+
|
528
|
+
out = self.attention(out, context, context_mask)
|
529
|
+
out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
|
530
|
+
x = x + out
|
531
|
+
|
532
|
+
out = self.out_norm(x, time_embed)
|
533
|
+
out = self.feed_forward(out)
|
534
|
+
x = x + out
|
535
|
+
return x
|