diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (238) hide show
  1. diffusers/__init__.py +26 -2
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +13 -8
  4. diffusers/dependency_versions_check.py +0 -1
  5. diffusers/dependency_versions_table.py +5 -5
  6. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  7. diffusers/image_processor.py +463 -51
  8. diffusers/loaders/__init__.py +82 -0
  9. diffusers/loaders/ip_adapter.py +159 -0
  10. diffusers/loaders/lora.py +1553 -0
  11. diffusers/loaders/lora_conversion_utils.py +284 -0
  12. diffusers/loaders/single_file.py +637 -0
  13. diffusers/loaders/textual_inversion.py +455 -0
  14. diffusers/loaders/unet.py +828 -0
  15. diffusers/loaders/utils.py +59 -0
  16. diffusers/models/__init__.py +26 -9
  17. diffusers/models/activations.py +9 -6
  18. diffusers/models/attention.py +301 -29
  19. diffusers/models/attention_flax.py +9 -1
  20. diffusers/models/attention_processor.py +378 -6
  21. diffusers/models/autoencoders/__init__.py +5 -0
  22. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
  23. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
  24. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
  25. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
  26. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
  27. diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
  28. diffusers/models/controlnet.py +59 -39
  29. diffusers/models/controlnet_flax.py +19 -18
  30. diffusers/models/downsampling.py +338 -0
  31. diffusers/models/embeddings.py +112 -29
  32. diffusers/models/embeddings_flax.py +2 -0
  33. diffusers/models/lora.py +131 -1
  34. diffusers/models/modeling_flax_utils.py +14 -8
  35. diffusers/models/modeling_outputs.py +17 -0
  36. diffusers/models/modeling_utils.py +37 -29
  37. diffusers/models/normalization.py +110 -4
  38. diffusers/models/resnet.py +299 -652
  39. diffusers/models/transformer_2d.py +22 -5
  40. diffusers/models/transformer_temporal.py +183 -1
  41. diffusers/models/unet_2d_blocks_flax.py +5 -0
  42. diffusers/models/unet_2d_condition.py +46 -0
  43. diffusers/models/unet_2d_condition_flax.py +13 -13
  44. diffusers/models/unet_3d_blocks.py +957 -173
  45. diffusers/models/unet_3d_condition.py +16 -8
  46. diffusers/models/unet_kandinsky3.py +535 -0
  47. diffusers/models/unet_motion_model.py +48 -33
  48. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  49. diffusers/models/upsampling.py +454 -0
  50. diffusers/models/uvit_2d.py +471 -0
  51. diffusers/models/vae_flax.py +7 -0
  52. diffusers/models/vq_model.py +12 -3
  53. diffusers/optimization.py +16 -9
  54. diffusers/pipelines/__init__.py +137 -76
  55. diffusers/pipelines/amused/__init__.py +62 -0
  56. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  57. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  58. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  59. diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
  60. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  61. diffusers/pipelines/auto_pipeline.py +23 -13
  62. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  63. diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
  64. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
  65. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
  66. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
  67. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
  68. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
  69. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  70. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  71. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  72. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  73. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  74. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  75. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  76. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  77. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  78. diffusers/pipelines/deprecated/__init__.py +153 -0
  79. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  80. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
  81. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
  82. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  83. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  84. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  85. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  86. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  87. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  88. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  89. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  90. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  91. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  92. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  93. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
  94. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  95. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  96. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  97. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  98. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  100. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
  101. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
  102. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
  103. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
  104. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
  105. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
  106. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  107. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  108. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  109. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
  110. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  111. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
  112. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
  113. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
  114. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  115. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  116. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  117. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  118. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  119. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  120. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  122. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  123. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  124. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
  125. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
  126. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
  127. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
  128. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  129. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  130. diffusers/pipelines/onnx_utils.py +8 -5
  131. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  132. diffusers/pipelines/pipeline_flax_utils.py +11 -8
  133. diffusers/pipelines/pipeline_utils.py +63 -42
  134. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
  135. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  136. diffusers/pipelines/stable_diffusion/__init__.py +37 -65
  137. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
  138. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  139. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  140. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  141. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
  142. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  143. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  144. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
  145. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
  146. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
  147. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  151. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  152. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
  153. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  154. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
  155. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  156. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
  157. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  158. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  159. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
  160. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  161. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
  162. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  163. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
  164. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  165. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  166. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
  171. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  172. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
  175. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
  179. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
  180. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  181. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  182. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  183. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  184. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  185. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  186. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  187. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
  188. diffusers/schedulers/__init__.py +4 -4
  189. diffusers/schedulers/deprecated/__init__.py +50 -0
  190. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  191. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  192. diffusers/schedulers/scheduling_amused.py +162 -0
  193. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  194. diffusers/schedulers/scheduling_ddim.py +1 -3
  195. diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
  196. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  197. diffusers/schedulers/scheduling_ddpm.py +47 -3
  198. diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
  199. diffusers/schedulers/scheduling_deis_multistep.py +28 -6
  200. diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
  201. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
  202. diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
  203. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
  204. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
  205. diffusers/schedulers/scheduling_euler_discrete.py +102 -16
  206. diffusers/schedulers/scheduling_heun_discrete.py +17 -5
  207. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
  208. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
  209. diffusers/schedulers/scheduling_lcm.py +123 -29
  210. diffusers/schedulers/scheduling_lms_discrete.py +3 -3
  211. diffusers/schedulers/scheduling_pndm.py +1 -3
  212. diffusers/schedulers/scheduling_repaint.py +1 -3
  213. diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
  214. diffusers/schedulers/scheduling_utils.py +3 -1
  215. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  216. diffusers/training_utils.py +1 -1
  217. diffusers/utils/__init__.py +1 -2
  218. diffusers/utils/constants.py +10 -12
  219. diffusers/utils/dummy_pt_objects.py +75 -0
  220. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  221. diffusers/utils/dynamic_modules_utils.py +18 -22
  222. diffusers/utils/export_utils.py +8 -3
  223. diffusers/utils/hub_utils.py +24 -36
  224. diffusers/utils/logging.py +11 -11
  225. diffusers/utils/outputs.py +5 -5
  226. diffusers/utils/peft_utils.py +88 -44
  227. diffusers/utils/state_dict_utils.py +8 -0
  228. diffusers/utils/testing_utils.py +199 -1
  229. diffusers/utils/torch_utils.py +4 -4
  230. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
  231. diffusers-0.25.0.dist-info/RECORD +360 -0
  232. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  233. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  234. diffusers/loaders.py +0 -3336
  235. diffusers-0.23.1.dist-info/RECORD +0 -323
  236. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  237. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  238. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -7,20 +7,20 @@ import torch.nn.functional as F
7
7
 
8
8
  from diffusers.utils import deprecate
9
9
 
10
- from ...configuration_utils import ConfigMixin, register_to_config
11
- from ...models import ModelMixin
12
- from ...models.activations import get_activation
13
- from ...models.attention import Attention
14
- from ...models.attention_processor import (
10
+ from ....configuration_utils import ConfigMixin, register_to_config
11
+ from ....models import ModelMixin
12
+ from ....models.activations import get_activation
13
+ from ....models.attention_processor import (
15
14
  ADDED_KV_ATTENTION_PROCESSORS,
16
15
  CROSS_ATTENTION_PROCESSORS,
16
+ Attention,
17
17
  AttentionProcessor,
18
18
  AttnAddedKVProcessor,
19
19
  AttnAddedKVProcessor2_0,
20
20
  AttnProcessor,
21
21
  )
22
- from ...models.dual_transformer_2d import DualTransformer2DModel
23
- from ...models.embeddings import (
22
+ from ....models.dual_transformer_2d import DualTransformer2DModel
23
+ from ....models.embeddings import (
24
24
  GaussianFourierProjection,
25
25
  ImageHintTimeEmbedding,
26
26
  ImageProjection,
@@ -31,10 +31,10 @@ from ...models.embeddings import (
31
31
  TimestepEmbedding,
32
32
  Timesteps,
33
33
  )
34
- from ...models.transformer_2d import Transformer2DModel
35
- from ...models.unet_2d_condition import UNet2DConditionOutput
36
- from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
37
- from ...utils.torch_utils import apply_freeu
34
+ from ....models.transformer_2d import Transformer2DModel
35
+ from ....models.unet_2d_condition import UNet2DConditionOutput
36
+ from ....utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
37
+ from ....utils.torch_utils import apply_freeu
38
38
 
39
39
 
40
40
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -50,6 +50,9 @@ def get_down_block(
50
50
  resnet_eps,
51
51
  resnet_act_fn,
52
52
  num_attention_heads,
53
+ transformer_layers_per_block,
54
+ attention_type,
55
+ attention_head_dim,
53
56
  resnet_groups=None,
54
57
  cross_attention_dim=None,
55
58
  downsample_padding=None,
@@ -113,6 +116,10 @@ def get_up_block(
113
116
  resnet_eps,
114
117
  resnet_act_fn,
115
118
  num_attention_heads,
119
+ transformer_layers_per_block,
120
+ resolution_idx,
121
+ attention_type,
122
+ attention_head_dim,
116
123
  resnet_groups=None,
117
124
  cross_attention_dim=None,
118
125
  dual_cross_attention=False,
@@ -425,10 +432,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
425
432
 
426
433
  if num_attention_heads is not None:
427
434
  raise ValueError(
428
- "At the moment it is not possible to define the number of attention heads via `num_attention_heads`"
429
- " because of a naming issue as described in"
430
- " https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing"
431
- " `num_attention_heads` will only be supported in diffusers v0.19."
435
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
432
436
  )
433
437
 
434
438
  # If `num_attention_heads` is not defined (which is the case for most models)
@@ -442,44 +446,37 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
442
446
  # Check inputs
443
447
  if len(down_block_types) != len(up_block_types):
444
448
  raise ValueError(
445
- "Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`:"
446
- f" {down_block_types}. `up_block_types`: {up_block_types}."
449
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
447
450
  )
448
451
 
449
452
  if len(block_out_channels) != len(down_block_types):
450
453
  raise ValueError(
451
- "Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`:"
452
- f" {block_out_channels}. `down_block_types`: {down_block_types}."
454
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
453
455
  )
454
456
 
455
457
  if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
456
458
  raise ValueError(
457
- "Must provide the same number of `only_cross_attention` as `down_block_types`."
458
- f" `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
459
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
459
460
  )
460
461
 
461
462
  if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
462
463
  raise ValueError(
463
- "Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`:"
464
- f" {num_attention_heads}. `down_block_types`: {down_block_types}."
464
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
465
465
  )
466
466
 
467
467
  if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
468
468
  raise ValueError(
469
- "Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`:"
470
- f" {attention_head_dim}. `down_block_types`: {down_block_types}."
469
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
471
470
  )
472
471
 
473
472
  if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
474
473
  raise ValueError(
475
- "Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`:"
476
- f" {cross_attention_dim}. `down_block_types`: {down_block_types}."
474
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
477
475
  )
478
476
 
479
477
  if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
480
478
  raise ValueError(
481
- "Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`:"
482
- f" {layers_per_block}. `down_block_types`: {down_block_types}."
479
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
483
480
  )
484
481
  if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
485
482
  for layer_number_per_block in transformer_layers_per_block:
@@ -897,8 +894,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
897
894
  processor = AttnProcessor()
898
895
  else:
899
896
  raise ValueError(
900
- "Cannot call `set_default_attn_processor` when attention processors are of type"
901
- f" {next(iter(self.attn_processors.values()))}"
897
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
902
898
  )
903
899
 
904
900
  self.set_attn_processor(processor, _remove_lora=True)
@@ -1004,6 +1000,42 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1004
1000
  if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
1005
1001
  setattr(upsample_block, k, None)
1006
1002
 
1003
+ def fuse_qkv_projections(self):
1004
+ """
1005
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
1006
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
1007
+
1008
+ <Tip warning={true}>
1009
+
1010
+ This API is 🧪 experimental.
1011
+
1012
+ </Tip>
1013
+ """
1014
+ self.original_attn_processors = None
1015
+
1016
+ for _, attn_processor in self.attn_processors.items():
1017
+ if "Added" in str(attn_processor.__class__.__name__):
1018
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
1019
+
1020
+ self.original_attn_processors = self.attn_processors
1021
+
1022
+ for module in self.modules():
1023
+ if isinstance(module, Attention):
1024
+ module.fuse_projections(fuse=True)
1025
+
1026
+ def unfuse_qkv_projections(self):
1027
+ """Disables the fused QKV projection if enabled.
1028
+
1029
+ <Tip warning={true}>
1030
+
1031
+ This API is 🧪 experimental.
1032
+
1033
+ </Tip>
1034
+
1035
+ """
1036
+ if self.original_attn_processors is not None:
1037
+ self.set_attn_processor(self.original_attn_processors)
1038
+
1007
1039
  def forward(
1008
1040
  self,
1009
1041
  sample: torch.FloatTensor,
@@ -1166,8 +1198,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1166
1198
  # Kandinsky 2.1 - style
1167
1199
  if "image_embeds" not in added_cond_kwargs:
1168
1200
  raise ValueError(
1169
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires"
1170
- " the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1201
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1171
1202
  )
1172
1203
 
1173
1204
  image_embs = added_cond_kwargs.get("image_embeds")
@@ -1177,14 +1208,12 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1177
1208
  # SDXL - style
1178
1209
  if "text_embeds" not in added_cond_kwargs:
1179
1210
  raise ValueError(
1180
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires"
1181
- " the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
1211
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
1182
1212
  )
1183
1213
  text_embeds = added_cond_kwargs.get("text_embeds")
1184
1214
  if "time_ids" not in added_cond_kwargs:
1185
1215
  raise ValueError(
1186
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires"
1187
- " the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
1216
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
1188
1217
  )
1189
1218
  time_ids = added_cond_kwargs.get("time_ids")
1190
1219
  time_embeds = self.add_time_proj(time_ids.flatten())
@@ -1196,8 +1225,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1196
1225
  # Kandinsky 2.2 - style
1197
1226
  if "image_embeds" not in added_cond_kwargs:
1198
1227
  raise ValueError(
1199
- f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the"
1200
- " keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1228
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1201
1229
  )
1202
1230
  image_embs = added_cond_kwargs.get("image_embeds")
1203
1231
  aug_emb = self.add_embedding(image_embs)
@@ -1205,8 +1233,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1205
1233
  # Kandinsky 2.2 - style
1206
1234
  if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
1207
1235
  raise ValueError(
1208
- f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires"
1209
- " the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1236
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1210
1237
  )
1211
1238
  image_embs = added_cond_kwargs.get("image_embeds")
1212
1239
  hint = added_cond_kwargs.get("hint")
@@ -1224,8 +1251,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1224
1251
  # Kadinsky 2.1 - style
1225
1252
  if "image_embeds" not in added_cond_kwargs:
1226
1253
  raise ValueError(
1227
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which"
1228
- " requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1254
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1229
1255
  )
1230
1256
 
1231
1257
  image_embeds = added_cond_kwargs.get("image_embeds")
@@ -1234,11 +1260,19 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1234
1260
  # Kandinsky 2.2 - style
1235
1261
  if "image_embeds" not in added_cond_kwargs:
1236
1262
  raise ValueError(
1237
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires"
1238
- " the keyword argument `image_embeds` to be passed in `added_conditions`"
1263
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1239
1264
  )
1240
1265
  image_embeds = added_cond_kwargs.get("image_embeds")
1241
1266
  encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1267
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
1268
+ if "image_embeds" not in added_cond_kwargs:
1269
+ raise ValueError(
1270
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1271
+ )
1272
+ image_embeds = added_cond_kwargs.get("image_embeds")
1273
+ image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
1274
+ encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
1275
+
1242
1276
  # 2. pre-process
1243
1277
  sample = self.conv_in(sample)
1244
1278
 
@@ -1264,10 +1298,9 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1264
1298
  deprecate(
1265
1299
  "T2I should not use down_block_additional_residuals",
1266
1300
  "1.3.0",
1267
- "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated "
1268
- " and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only"
1269
- " be used for ControlNet. Please make sure use"
1270
- " `down_intrablock_additional_residuals` instead. ",
1301
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1302
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
1303
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
1271
1304
  standard_warn=False,
1272
1305
  )
1273
1306
  down_intrablock_additional_residuals = down_block_additional_residuals
@@ -2102,8 +2135,7 @@ class UNetMidBlockFlat(nn.Module):
2102
2135
 
2103
2136
  if attention_head_dim is None:
2104
2137
  logger.warn(
2105
- "It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to"
2106
- f" `in_channels`: {in_channels}."
2138
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
2107
2139
  )
2108
2140
  attention_head_dim = in_channels
2109
2141
 
@@ -5,10 +5,10 @@ import PIL.Image
5
5
  import torch
6
6
  from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel
7
7
 
8
- from ...models import AutoencoderKL, UNet2DConditionModel
9
- from ...schedulers import KarrasDiffusionSchedulers
10
- from ...utils import logging
11
- from ..pipeline_utils import DiffusionPipeline
8
+ from ....models import AutoencoderKL, UNet2DConditionModel
9
+ from ....schedulers import KarrasDiffusionSchedulers
10
+ from ....utils import logging
11
+ from ...pipeline_utils import DiffusionPipeline
12
12
  from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
13
13
  from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
14
14
  from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
@@ -26,12 +26,12 @@ from transformers import (
26
26
  CLIPVisionModelWithProjection,
27
27
  )
28
28
 
29
- from ...image_processor import VaeImageProcessor
30
- from ...models import AutoencoderKL, DualTransformer2DModel, Transformer2DModel, UNet2DConditionModel
31
- from ...schedulers import KarrasDiffusionSchedulers
32
- from ...utils import deprecate, logging
33
- from ...utils.torch_utils import randn_tensor
34
- from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
29
+ from ....image_processor import VaeImageProcessor
30
+ from ....models import AutoencoderKL, DualTransformer2DModel, Transformer2DModel, UNet2DConditionModel
31
+ from ....schedulers import KarrasDiffusionSchedulers
32
+ from ....utils import deprecate, logging
33
+ from ....utils.torch_utils import randn_tensor
34
+ from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
35
35
  from .modeling_text_unet import UNetFlatConditionModel
36
36
 
37
37
 
@@ -58,6 +58,7 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
58
58
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
59
59
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
60
60
  """
61
+
61
62
  model_cpu_offload_seq = "bert->unet->vqvae"
62
63
 
63
64
  tokenizer: CLIPTokenizer
@@ -21,12 +21,12 @@ import torch
21
21
  import torch.utils.checkpoint
22
22
  from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
23
23
 
24
- from ...image_processor import VaeImageProcessor
25
- from ...models import AutoencoderKL, UNet2DConditionModel
26
- from ...schedulers import KarrasDiffusionSchedulers
27
- from ...utils import deprecate, logging
28
- from ...utils.torch_utils import randn_tensor
29
- from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
24
+ from ....image_processor import VaeImageProcessor
25
+ from ....models import AutoencoderKL, UNet2DConditionModel
26
+ from ....schedulers import KarrasDiffusionSchedulers
27
+ from ....utils import deprecate, logging
28
+ from ....utils.torch_utils import randn_tensor
29
+ from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
30
30
 
31
31
 
32
32
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -52,6 +52,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
52
52
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
53
53
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
54
54
  """
55
+
55
56
  model_cpu_offload_seq = "bert->unet->vqvae"
56
57
 
57
58
  image_feature_extractor: CLIPImageProcessor
@@ -19,12 +19,12 @@ import torch
19
19
  import torch.utils.checkpoint
20
20
  from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer
21
21
 
22
- from ...image_processor import VaeImageProcessor
23
- from ...models import AutoencoderKL, Transformer2DModel, UNet2DConditionModel
24
- from ...schedulers import KarrasDiffusionSchedulers
25
- from ...utils import deprecate, logging
26
- from ...utils.torch_utils import randn_tensor
27
- from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
22
+ from ....image_processor import VaeImageProcessor
23
+ from ....models import AutoencoderKL, Transformer2DModel, UNet2DConditionModel
24
+ from ....schedulers import KarrasDiffusionSchedulers
25
+ from ....utils import deprecate, logging
26
+ from ....utils.torch_utils import randn_tensor
27
+ from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
28
28
  from .modeling_text_unet import UNetFlatConditionModel
29
29
 
30
30
 
@@ -51,6 +51,7 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
51
51
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
52
52
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
53
53
  """
54
+
54
55
  model_cpu_offload_seq = "bert->unet->vqvae"
55
56
 
56
57
  tokenizer: CLIPTokenizer
@@ -1,6 +1,6 @@
1
1
  from typing import TYPE_CHECKING
2
2
 
3
- from ...utils import (
3
+ from ....utils import (
4
4
  DIFFUSERS_SLOW_IMPORT,
5
5
  OptionalDependencyNotAvailable,
6
6
  _LazyModule,
@@ -16,7 +16,7 @@ try:
16
16
  if not (is_transformers_available() and is_torch_available()):
17
17
  raise OptionalDependencyNotAvailable()
18
18
  except OptionalDependencyNotAvailable:
19
- from ...utils.dummy_torch_and_transformers_objects import (
19
+ from ....utils.dummy_torch_and_transformers_objects import (
20
20
  LearnedClassifierFreeSamplingEmbeddings,
21
21
  VQDiffusionPipeline,
22
22
  )
@@ -36,7 +36,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
36
36
  if not (is_transformers_available() and is_torch_available()):
37
37
  raise OptionalDependencyNotAvailable()
38
38
  except OptionalDependencyNotAvailable:
39
- from ...utils.dummy_torch_and_transformers_objects import (
39
+ from ....utils.dummy_torch_and_transformers_objects import (
40
40
  LearnedClassifierFreeSamplingEmbeddings,
41
41
  VQDiffusionPipeline,
42
42
  )
@@ -17,11 +17,11 @@ from typing import Callable, List, Optional, Tuple, Union
17
17
  import torch
18
18
  from transformers import CLIPTextModel, CLIPTokenizer
19
19
 
20
- from ...configuration_utils import ConfigMixin, register_to_config
21
- from ...models import ModelMixin, Transformer2DModel, VQModel
22
- from ...schedulers import VQDiffusionScheduler
23
- from ...utils import logging
24
- from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
20
+ from ....configuration_utils import ConfigMixin, register_to_config
21
+ from ....models import ModelMixin, Transformer2DModel, VQModel
22
+ from ....schedulers import VQDiffusionScheduler
23
+ from ....utils import logging
24
+ from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
25
25
 
26
26
 
27
27
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -43,6 +43,7 @@ class DiTPipeline(DiffusionPipeline):
43
43
  scheduler ([`DDIMScheduler`]):
44
44
  A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
45
45
  """
46
+
46
47
  model_cpu_offload_seq = "transformer->vae"
47
48
 
48
49
  def __init__(
@@ -181,7 +181,7 @@ class KandinskyV22Pipeline(DiffusionPipeline):
181
181
  callback_on_step_end_tensor_inputs (`List`, *optional*):
182
182
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
183
183
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
184
- `._callback_tensor_inputs` attribute of your pipeine class.
184
+ `._callback_tensor_inputs` attribute of your pipeline class.
185
185
 
186
186
  Examples:
187
187
 
@@ -283,7 +283,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
283
283
  callback_on_step_end_tensor_inputs (`List`, *optional*):
284
284
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
285
285
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
286
- `._callback_tensor_inputs` attribute of your pipeine class.
286
+ `._callback_tensor_inputs` attribute of your pipeline class.
287
287
 
288
288
  Examples:
289
289
 
@@ -759,7 +759,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
759
759
  prior_callback_on_step_end_tensor_inputs (`List`, *optional*):
760
760
  The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the
761
761
  list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in
762
- the `._callback_tensor_inputs` attribute of your pipeine class.
762
+ the `._callback_tensor_inputs` attribute of your pipeline class.
763
763
  callback_on_step_end (`Callable`, *optional*):
764
764
  A function that calls at the end of each denoising steps during the inference. The function is called
765
765
  with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
@@ -768,7 +768,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
768
768
  callback_on_step_end_tensor_inputs (`List`, *optional*):
769
769
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
770
770
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
771
- `._callback_tensor_inputs` attribute of your pipeine class.
771
+ `._callback_tensor_inputs` attribute of your pipeline class.
772
772
 
773
773
 
774
774
  Examples:
@@ -255,7 +255,7 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
255
255
  callback_on_step_end_tensor_inputs (`List`, *optional*):
256
256
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
257
257
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
258
- `._callback_tensor_inputs` attribute of your pipeine class.
258
+ `._callback_tensor_inputs` attribute of your pipeline class.
259
259
 
260
260
  Examples:
261
261
 
@@ -362,7 +362,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
362
362
  callback_on_step_end_tensor_inputs (`List`, *optional*):
363
363
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
364
364
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
365
- `._callback_tensor_inputs` attribute of your pipeine class.
365
+ `._callback_tensor_inputs` attribute of your pipeline class.
366
366
 
367
367
  Examples:
368
368
 
@@ -423,7 +423,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
423
423
  callback_on_step_end_tensor_inputs (`List`, *optional*):
424
424
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
425
425
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
426
- `._callback_tensor_inputs` attribute of your pipeine class.
426
+ `._callback_tensor_inputs` attribute of your pipeline class.
427
427
 
428
428
  Examples:
429
429
 
@@ -0,0 +1,49 @@
1
+ from typing import TYPE_CHECKING
2
+
3
+ from ...utils import (
4
+ DIFFUSERS_SLOW_IMPORT,
5
+ OptionalDependencyNotAvailable,
6
+ _LazyModule,
7
+ get_objects_from_module,
8
+ is_torch_available,
9
+ is_transformers_available,
10
+ )
11
+
12
+
13
+ _dummy_objects = {}
14
+ _import_structure = {}
15
+
16
+ try:
17
+ if not (is_transformers_available() and is_torch_available()):
18
+ raise OptionalDependencyNotAvailable()
19
+ except OptionalDependencyNotAvailable:
20
+ from ...utils import dummy_torch_and_transformers_objects # noqa F403
21
+
22
+ _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
23
+ else:
24
+ _import_structure["pipeline_kandinsky3"] = ["Kandinsky3Pipeline"]
25
+ _import_structure["pipeline_kandinsky3_img2img"] = ["Kandinsky3Img2ImgPipeline"]
26
+
27
+
28
+ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
29
+ try:
30
+ if not (is_transformers_available() and is_torch_available()):
31
+ raise OptionalDependencyNotAvailable()
32
+
33
+ except OptionalDependencyNotAvailable:
34
+ from ...utils.dummy_torch_and_transformers_objects import *
35
+ else:
36
+ from .pipeline_kandinsky3 import Kandinsky3Pipeline
37
+ from .pipeline_kandinsky3_img2img import Kandinsky3Img2ImgPipeline
38
+ else:
39
+ import sys
40
+
41
+ sys.modules[__name__] = _LazyModule(
42
+ __name__,
43
+ globals()["__file__"],
44
+ _import_structure,
45
+ module_spec=__spec__,
46
+ )
47
+
48
+ for name, value in _dummy_objects.items():
49
+ setattr(sys.modules[__name__], name, value)
@@ -0,0 +1,98 @@
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import fnmatch
4
+
5
+ from safetensors.torch import load_file
6
+
7
+ from diffusers import Kandinsky3UNet
8
+
9
+
10
+ MAPPING = {
11
+ "to_time_embed.1": "time_embedding.linear_1",
12
+ "to_time_embed.3": "time_embedding.linear_2",
13
+ "in_layer": "conv_in",
14
+ "out_layer.0": "conv_norm_out",
15
+ "out_layer.2": "conv_out",
16
+ "down_samples": "down_blocks",
17
+ "up_samples": "up_blocks",
18
+ "projection_lin": "encoder_hid_proj.projection_linear",
19
+ "projection_ln": "encoder_hid_proj.projection_norm",
20
+ "feature_pooling": "add_time_condition",
21
+ "to_query": "to_q",
22
+ "to_key": "to_k",
23
+ "to_value": "to_v",
24
+ "output_layer": "to_out.0",
25
+ "self_attention_block": "attentions.0",
26
+ }
27
+
28
+ DYNAMIC_MAP = {
29
+ "resnet_attn_blocks.*.0": "resnets_in.*",
30
+ "resnet_attn_blocks.*.1": ("attentions.*", 1),
31
+ "resnet_attn_blocks.*.2": "resnets_out.*",
32
+ }
33
+ # MAPPING = {}
34
+
35
+
36
+ def convert_state_dict(unet_state_dict):
37
+ """
38
+ Convert the state dict of a U-Net model to match the key format expected by Kandinsky3UNet model.
39
+ Args:
40
+ unet_model (torch.nn.Module): The original U-Net model.
41
+ unet_kandi3_model (torch.nn.Module): The Kandinsky3UNet model to match keys with.
42
+
43
+ Returns:
44
+ OrderedDict: The converted state dictionary.
45
+ """
46
+ # Example of renaming logic (this will vary based on your model's architecture)
47
+ converted_state_dict = {}
48
+ for key in unet_state_dict:
49
+ new_key = key
50
+ for pattern, new_pattern in MAPPING.items():
51
+ new_key = new_key.replace(pattern, new_pattern)
52
+
53
+ for dyn_pattern, dyn_new_pattern in DYNAMIC_MAP.items():
54
+ has_matched = False
55
+ if fnmatch.fnmatch(new_key, f"*.{dyn_pattern}.*") and not has_matched:
56
+ star = int(new_key.split(dyn_pattern.split(".")[0])[-1].split(".")[1])
57
+
58
+ if isinstance(dyn_new_pattern, tuple):
59
+ new_star = star + dyn_new_pattern[-1]
60
+ dyn_new_pattern = dyn_new_pattern[0]
61
+ else:
62
+ new_star = star
63
+
64
+ pattern = dyn_pattern.replace("*", str(star))
65
+ new_pattern = dyn_new_pattern.replace("*", str(new_star))
66
+
67
+ new_key = new_key.replace(pattern, new_pattern)
68
+ has_matched = True
69
+
70
+ converted_state_dict[new_key] = unet_state_dict[key]
71
+
72
+ return converted_state_dict
73
+
74
+
75
+ def main(model_path, output_path):
76
+ # Load your original U-Net model
77
+ unet_state_dict = load_file(model_path)
78
+
79
+ # Initialize your Kandinsky3UNet model
80
+ config = {}
81
+
82
+ # Convert the state dict
83
+ converted_state_dict = convert_state_dict(unet_state_dict)
84
+
85
+ unet = Kandinsky3UNet(config)
86
+ unet.load_state_dict(converted_state_dict)
87
+
88
+ unet.save_pretrained(output_path)
89
+ print(f"Converted model saved to {output_path}")
90
+
91
+
92
+ if __name__ == "__main__":
93
+ parser = argparse.ArgumentParser(description="Convert U-Net PyTorch model to Kandinsky3UNet format")
94
+ parser.add_argument("--model_path", type=str, required=True, help="Path to the original U-Net PyTorch model")
95
+ parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model")
96
+
97
+ args = parser.parse_args()
98
+ main(args.model_path, args.output_path)