diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (238) hide show
  1. diffusers/__init__.py +26 -2
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +13 -8
  4. diffusers/dependency_versions_check.py +0 -1
  5. diffusers/dependency_versions_table.py +5 -5
  6. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  7. diffusers/image_processor.py +463 -51
  8. diffusers/loaders/__init__.py +82 -0
  9. diffusers/loaders/ip_adapter.py +159 -0
  10. diffusers/loaders/lora.py +1553 -0
  11. diffusers/loaders/lora_conversion_utils.py +284 -0
  12. diffusers/loaders/single_file.py +637 -0
  13. diffusers/loaders/textual_inversion.py +455 -0
  14. diffusers/loaders/unet.py +828 -0
  15. diffusers/loaders/utils.py +59 -0
  16. diffusers/models/__init__.py +26 -9
  17. diffusers/models/activations.py +9 -6
  18. diffusers/models/attention.py +301 -29
  19. diffusers/models/attention_flax.py +9 -1
  20. diffusers/models/attention_processor.py +378 -6
  21. diffusers/models/autoencoders/__init__.py +5 -0
  22. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
  23. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
  24. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
  25. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
  26. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
  27. diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
  28. diffusers/models/controlnet.py +59 -39
  29. diffusers/models/controlnet_flax.py +19 -18
  30. diffusers/models/downsampling.py +338 -0
  31. diffusers/models/embeddings.py +112 -29
  32. diffusers/models/embeddings_flax.py +2 -0
  33. diffusers/models/lora.py +131 -1
  34. diffusers/models/modeling_flax_utils.py +14 -8
  35. diffusers/models/modeling_outputs.py +17 -0
  36. diffusers/models/modeling_utils.py +37 -29
  37. diffusers/models/normalization.py +110 -4
  38. diffusers/models/resnet.py +299 -652
  39. diffusers/models/transformer_2d.py +22 -5
  40. diffusers/models/transformer_temporal.py +183 -1
  41. diffusers/models/unet_2d_blocks_flax.py +5 -0
  42. diffusers/models/unet_2d_condition.py +46 -0
  43. diffusers/models/unet_2d_condition_flax.py +13 -13
  44. diffusers/models/unet_3d_blocks.py +957 -173
  45. diffusers/models/unet_3d_condition.py +16 -8
  46. diffusers/models/unet_kandinsky3.py +535 -0
  47. diffusers/models/unet_motion_model.py +48 -33
  48. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  49. diffusers/models/upsampling.py +454 -0
  50. diffusers/models/uvit_2d.py +471 -0
  51. diffusers/models/vae_flax.py +7 -0
  52. diffusers/models/vq_model.py +12 -3
  53. diffusers/optimization.py +16 -9
  54. diffusers/pipelines/__init__.py +137 -76
  55. diffusers/pipelines/amused/__init__.py +62 -0
  56. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  57. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  58. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  59. diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
  60. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  61. diffusers/pipelines/auto_pipeline.py +23 -13
  62. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  63. diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
  64. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
  65. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
  66. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
  67. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
  68. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
  69. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  70. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  71. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  72. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  73. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  74. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  75. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  76. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  77. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  78. diffusers/pipelines/deprecated/__init__.py +153 -0
  79. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  80. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
  81. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
  82. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  83. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  84. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  85. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  86. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  87. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  88. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  89. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  90. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  91. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  92. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  93. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
  94. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  95. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  96. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  97. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  98. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  100. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
  101. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
  102. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
  103. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
  104. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
  105. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
  106. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  107. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  108. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  109. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
  110. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  111. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
  112. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
  113. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
  114. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  115. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  116. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  117. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  118. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  119. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  120. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  122. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  123. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  124. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
  125. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
  126. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
  127. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
  128. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  129. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  130. diffusers/pipelines/onnx_utils.py +8 -5
  131. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  132. diffusers/pipelines/pipeline_flax_utils.py +11 -8
  133. diffusers/pipelines/pipeline_utils.py +63 -42
  134. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
  135. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  136. diffusers/pipelines/stable_diffusion/__init__.py +37 -65
  137. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
  138. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  139. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  140. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  141. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
  142. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  143. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  144. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
  145. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
  146. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
  147. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  151. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  152. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
  153. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  154. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
  155. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  156. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
  157. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  158. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  159. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
  160. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  161. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
  162. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  163. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
  164. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  165. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  166. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
  171. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  172. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
  175. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
  179. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
  180. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  181. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  182. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  183. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  184. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  185. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  186. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  187. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
  188. diffusers/schedulers/__init__.py +4 -4
  189. diffusers/schedulers/deprecated/__init__.py +50 -0
  190. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  191. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  192. diffusers/schedulers/scheduling_amused.py +162 -0
  193. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  194. diffusers/schedulers/scheduling_ddim.py +1 -3
  195. diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
  196. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  197. diffusers/schedulers/scheduling_ddpm.py +47 -3
  198. diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
  199. diffusers/schedulers/scheduling_deis_multistep.py +28 -6
  200. diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
  201. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
  202. diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
  203. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
  204. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
  205. diffusers/schedulers/scheduling_euler_discrete.py +102 -16
  206. diffusers/schedulers/scheduling_heun_discrete.py +17 -5
  207. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
  208. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
  209. diffusers/schedulers/scheduling_lcm.py +123 -29
  210. diffusers/schedulers/scheduling_lms_discrete.py +3 -3
  211. diffusers/schedulers/scheduling_pndm.py +1 -3
  212. diffusers/schedulers/scheduling_repaint.py +1 -3
  213. diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
  214. diffusers/schedulers/scheduling_utils.py +3 -1
  215. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  216. diffusers/training_utils.py +1 -1
  217. diffusers/utils/__init__.py +1 -2
  218. diffusers/utils/constants.py +10 -12
  219. diffusers/utils/dummy_pt_objects.py +75 -0
  220. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  221. diffusers/utils/dynamic_modules_utils.py +18 -22
  222. diffusers/utils/export_utils.py +8 -3
  223. diffusers/utils/hub_utils.py +24 -36
  224. diffusers/utils/logging.py +11 -11
  225. diffusers/utils/outputs.py +5 -5
  226. diffusers/utils/peft_utils.py +88 -44
  227. diffusers/utils/state_dict_utils.py +8 -0
  228. diffusers/utils/testing_utils.py +199 -1
  229. diffusers/utils/torch_utils.py +4 -4
  230. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
  231. diffusers-0.25.0.dist-info/RECORD +360 -0
  232. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  233. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  234. diffusers/loaders.py +0 -3336
  235. diffusers-0.23.1.dist-info/RECORD +0 -323
  236. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  237. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  238. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,378 @@
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from transformers import CLIPTextModelWithProjection, CLIPTokenizer
20
+
21
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
22
+ from ...models import UVit2DModel, VQModel
23
+ from ...schedulers import AmusedScheduler
24
+ from ...utils import replace_example_docstring
25
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
26
+
27
+
28
+ EXAMPLE_DOC_STRING = """
29
+ Examples:
30
+ ```py
31
+ >>> import torch
32
+ >>> from diffusers import AmusedInpaintPipeline
33
+ >>> from diffusers.utils import load_image
34
+
35
+ >>> pipe = AmusedInpaintPipeline.from_pretrained(
36
+ ... "amused/amused-512", variant="fp16", torch_dtype=torch.float16
37
+ ... )
38
+ >>> pipe = pipe.to("cuda")
39
+
40
+ >>> prompt = "fall mountains"
41
+ >>> input_image = (
42
+ ... load_image(
43
+ ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg"
44
+ ... )
45
+ ... .resize((512, 512))
46
+ ... .convert("RGB")
47
+ ... )
48
+ >>> mask = (
49
+ ... load_image(
50
+ ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
51
+ ... )
52
+ ... .resize((512, 512))
53
+ ... .convert("L")
54
+ ... )
55
+ >>> pipe(prompt, input_image, mask).images[0].save("out.png")
56
+ ```
57
+ """
58
+
59
+
60
+ class AmusedInpaintPipeline(DiffusionPipeline):
61
+ image_processor: VaeImageProcessor
62
+ vqvae: VQModel
63
+ tokenizer: CLIPTokenizer
64
+ text_encoder: CLIPTextModelWithProjection
65
+ transformer: UVit2DModel
66
+ scheduler: AmusedScheduler
67
+
68
+ model_cpu_offload_seq = "text_encoder->transformer->vqvae"
69
+
70
+ # TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before
71
+ # the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter
72
+ # off the meta device. There should be a way to fix this instead of just not offloading it
73
+ _exclude_from_cpu_offload = ["vqvae"]
74
+
75
+ def __init__(
76
+ self,
77
+ vqvae: VQModel,
78
+ tokenizer: CLIPTokenizer,
79
+ text_encoder: CLIPTextModelWithProjection,
80
+ transformer: UVit2DModel,
81
+ scheduler: AmusedScheduler,
82
+ ):
83
+ super().__init__()
84
+
85
+ self.register_modules(
86
+ vqvae=vqvae,
87
+ tokenizer=tokenizer,
88
+ text_encoder=text_encoder,
89
+ transformer=transformer,
90
+ scheduler=scheduler,
91
+ )
92
+ self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
93
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
94
+ self.mask_processor = VaeImageProcessor(
95
+ vae_scale_factor=self.vae_scale_factor,
96
+ do_normalize=False,
97
+ do_binarize=True,
98
+ do_convert_grayscale=True,
99
+ do_resize=True,
100
+ )
101
+ self.scheduler.register_to_config(masking_schedule="linear")
102
+
103
+ @torch.no_grad()
104
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
105
+ def __call__(
106
+ self,
107
+ prompt: Optional[Union[List[str], str]] = None,
108
+ image: PipelineImageInput = None,
109
+ mask_image: PipelineImageInput = None,
110
+ strength: float = 1.0,
111
+ num_inference_steps: int = 12,
112
+ guidance_scale: float = 10.0,
113
+ negative_prompt: Optional[Union[str, List[str]]] = None,
114
+ num_images_per_prompt: Optional[int] = 1,
115
+ generator: Optional[torch.Generator] = None,
116
+ prompt_embeds: Optional[torch.Tensor] = None,
117
+ encoder_hidden_states: Optional[torch.Tensor] = None,
118
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
119
+ negative_encoder_hidden_states: Optional[torch.Tensor] = None,
120
+ output_type="pil",
121
+ return_dict: bool = True,
122
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
123
+ callback_steps: int = 1,
124
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
125
+ micro_conditioning_aesthetic_score: int = 6,
126
+ micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
127
+ temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
128
+ ):
129
+ """
130
+ The call function to the pipeline for generation.
131
+
132
+ Args:
133
+ prompt (`str` or `List[str]`, *optional*):
134
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
135
+ image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
136
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
137
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
138
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
139
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
140
+ latents as `image`, but if passing latents directly it is not encoded again.
141
+ mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
142
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
143
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
144
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
145
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
146
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
147
+ 1)`, or `(H, W)`.
148
+ strength (`float`, *optional*, defaults to 1.0):
149
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
150
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
151
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
152
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
153
+ essentially ignores `image`.
154
+ num_inference_steps (`int`, *optional*, defaults to 16):
155
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
156
+ expense of slower inference.
157
+ guidance_scale (`float`, *optional*, defaults to 10.0):
158
+ A higher guidance scale value encourages the model to generate images closely linked to the text
159
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
160
+ negative_prompt (`str` or `List[str]`, *optional*):
161
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
162
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
163
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
164
+ The number of images to generate per prompt.
165
+ generator (`torch.Generator`, *optional*):
166
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
167
+ generation deterministic.
168
+ prompt_embeds (`torch.FloatTensor`, *optional*):
169
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
170
+ provided, text embeddings are generated from the `prompt` input argument. A single vector from the
171
+ pooled and projected final hidden states.
172
+ encoder_hidden_states (`torch.FloatTensor`, *optional*):
173
+ Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
174
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
175
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
176
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
177
+ negative_encoder_hidden_states (`torch.FloatTensor`, *optional*):
178
+ Analogous to `encoder_hidden_states` for the positive prompt.
179
+ output_type (`str`, *optional*, defaults to `"pil"`):
180
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
181
+ return_dict (`bool`, *optional*, defaults to `True`):
182
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
183
+ plain tuple.
184
+ callback (`Callable`, *optional*):
185
+ A function that calls every `callback_steps` steps during inference. The function is called with the
186
+ following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
187
+ callback_steps (`int`, *optional*, defaults to 1):
188
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
189
+ every step.
190
+ cross_attention_kwargs (`dict`, *optional*):
191
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
192
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
193
+ micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
194
+ The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/
195
+ and the micro-conditioning section of https://arxiv.org/abs/2307.01952.
196
+ micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
197
+ The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952.
198
+ temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
199
+ Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
200
+
201
+ Examples:
202
+
203
+ Returns:
204
+ [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
205
+ If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
206
+ `tuple` is returned where the first element is a list with the generated images.
207
+ """
208
+
209
+ if (prompt_embeds is not None and encoder_hidden_states is None) or (
210
+ prompt_embeds is None and encoder_hidden_states is not None
211
+ ):
212
+ raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
213
+
214
+ if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
215
+ negative_prompt_embeds is None and negative_encoder_hidden_states is not None
216
+ ):
217
+ raise ValueError(
218
+ "pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
219
+ )
220
+
221
+ if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
222
+ raise ValueError("pass only one of `prompt` or `prompt_embeds`")
223
+
224
+ if isinstance(prompt, str):
225
+ prompt = [prompt]
226
+
227
+ if prompt is not None:
228
+ batch_size = len(prompt)
229
+ else:
230
+ batch_size = prompt_embeds.shape[0]
231
+
232
+ batch_size = batch_size * num_images_per_prompt
233
+
234
+ if prompt_embeds is None:
235
+ input_ids = self.tokenizer(
236
+ prompt,
237
+ return_tensors="pt",
238
+ padding="max_length",
239
+ truncation=True,
240
+ max_length=self.tokenizer.model_max_length,
241
+ ).input_ids.to(self._execution_device)
242
+
243
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
244
+ prompt_embeds = outputs.text_embeds
245
+ encoder_hidden_states = outputs.hidden_states[-2]
246
+
247
+ prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
248
+ encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
249
+
250
+ if guidance_scale > 1.0:
251
+ if negative_prompt_embeds is None:
252
+ if negative_prompt is None:
253
+ negative_prompt = [""] * len(prompt)
254
+
255
+ if isinstance(negative_prompt, str):
256
+ negative_prompt = [negative_prompt]
257
+
258
+ input_ids = self.tokenizer(
259
+ negative_prompt,
260
+ return_tensors="pt",
261
+ padding="max_length",
262
+ truncation=True,
263
+ max_length=self.tokenizer.model_max_length,
264
+ ).input_ids.to(self._execution_device)
265
+
266
+ outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
267
+ negative_prompt_embeds = outputs.text_embeds
268
+ negative_encoder_hidden_states = outputs.hidden_states[-2]
269
+
270
+ negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
271
+ negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
272
+
273
+ prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
274
+ encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
275
+
276
+ image = self.image_processor.preprocess(image)
277
+
278
+ height, width = image.shape[-2:]
279
+
280
+ # Note that the micro conditionings _do_ flip the order of width, height for the original size
281
+ # and the crop coordinates. This is how it was done in the original code base
282
+ micro_conds = torch.tensor(
283
+ [
284
+ width,
285
+ height,
286
+ micro_conditioning_crop_coord[0],
287
+ micro_conditioning_crop_coord[1],
288
+ micro_conditioning_aesthetic_score,
289
+ ],
290
+ device=self._execution_device,
291
+ dtype=encoder_hidden_states.dtype,
292
+ )
293
+
294
+ micro_conds = micro_conds.unsqueeze(0)
295
+ micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
296
+
297
+ self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
298
+ num_inference_steps = int(len(self.scheduler.timesteps) * strength)
299
+ start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps
300
+
301
+ needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
302
+
303
+ if needs_upcasting:
304
+ self.vqvae.float()
305
+
306
+ latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents
307
+ latents_bsz, channels, latents_height, latents_width = latents.shape
308
+ latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width)
309
+
310
+ mask = self.mask_processor.preprocess(
311
+ mask_image, height // self.vae_scale_factor, width // self.vae_scale_factor
312
+ )
313
+ mask = mask.reshape(mask.shape[0], latents_height, latents_width).bool().to(latents.device)
314
+ latents[mask] = self.scheduler.config.mask_token_id
315
+
316
+ starting_mask_ratio = mask.sum() / latents.numel()
317
+
318
+ latents = latents.repeat(num_images_per_prompt, 1, 1)
319
+
320
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
321
+ for i in range(start_timestep_idx, len(self.scheduler.timesteps)):
322
+ timestep = self.scheduler.timesteps[i]
323
+
324
+ if guidance_scale > 1.0:
325
+ model_input = torch.cat([latents] * 2)
326
+ else:
327
+ model_input = latents
328
+
329
+ model_output = self.transformer(
330
+ model_input,
331
+ micro_conds=micro_conds,
332
+ pooled_text_emb=prompt_embeds,
333
+ encoder_hidden_states=encoder_hidden_states,
334
+ cross_attention_kwargs=cross_attention_kwargs,
335
+ )
336
+
337
+ if guidance_scale > 1.0:
338
+ uncond_logits, cond_logits = model_output.chunk(2)
339
+ model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
340
+
341
+ latents = self.scheduler.step(
342
+ model_output=model_output,
343
+ timestep=timestep,
344
+ sample=latents,
345
+ generator=generator,
346
+ starting_mask_ratio=starting_mask_ratio,
347
+ ).prev_sample
348
+
349
+ if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
350
+ progress_bar.update()
351
+ if callback is not None and i % callback_steps == 0:
352
+ step_idx = i // getattr(self.scheduler, "order", 1)
353
+ callback(step_idx, timestep, latents)
354
+
355
+ if output_type == "latent":
356
+ output = latents
357
+ else:
358
+ output = self.vqvae.decode(
359
+ latents,
360
+ force_not_quantize=True,
361
+ shape=(
362
+ batch_size,
363
+ height // self.vae_scale_factor,
364
+ width // self.vae_scale_factor,
365
+ self.vqvae.config.latent_channels,
366
+ ),
367
+ ).sample.clip(0, 1)
368
+ output = self.image_processor.postprocess(output, output_type)
369
+
370
+ if needs_upcasting:
371
+ self.vqvae.half()
372
+
373
+ self.maybe_free_model_hooks()
374
+
375
+ if not return_dict:
376
+ return (output,)
377
+
378
+ return ImagePipelineOutput(output)
@@ -18,11 +18,11 @@ from typing import Any, Callable, Dict, List, Optional, Union
18
18
 
19
19
  import numpy as np
20
20
  import torch
21
- from transformers import CLIPTextModel, CLIPTokenizer
21
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
22
22
 
23
- from ...image_processor import VaeImageProcessor
24
- from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
25
- from ...models import AutoencoderKL, UNet2DConditionModel, UNetMotionModel
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
26
26
  from ...models.lora import adjust_lora_scale_text_encoder
27
27
  from ...models.unet_motion_model import MotionAdapter
28
28
  from ...schedulers import (
@@ -33,7 +33,14 @@ from ...schedulers import (
33
33
  LMSDiscreteScheduler,
34
34
  PNDMScheduler,
35
35
  )
36
- from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
36
+ from ...utils import (
37
+ USE_PEFT_BACKEND,
38
+ BaseOutput,
39
+ logging,
40
+ replace_example_docstring,
41
+ scale_lora_layers,
42
+ unscale_lora_layers,
43
+ )
37
44
  from ...utils.torch_utils import randn_tensor
38
45
  from ..pipeline_utils import DiffusionPipeline
39
46
 
@@ -47,7 +54,7 @@ EXAMPLE_DOC_STRING = """
47
54
  >>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
48
55
  >>> from diffusers.utils import export_to_gif
49
56
 
50
- >>> adapter = MotionAdapter.from_pretrained("diffusers/motion-adapter")
57
+ >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
51
58
  >>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
52
59
  >>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)
53
60
  >>> output = pipe(prompt="A corgi walking in the park")
@@ -77,13 +84,19 @@ class AnimateDiffPipelineOutput(BaseOutput):
77
84
  frames: Union[torch.Tensor, np.ndarray]
78
85
 
79
86
 
80
- class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
87
+ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin):
81
88
  r"""
82
89
  Pipeline for text-to-video generation.
83
90
 
84
91
  This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
85
92
  implemented for all pipelines (downloading, saving, running on a particular device, etc.).
86
93
 
94
+ The pipeline also inherits the following loading methods:
95
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
96
+ - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
97
+ - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
98
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
99
+
87
100
  Args:
88
101
  vae ([`AutoencoderKL`]):
89
102
  Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
@@ -99,7 +112,9 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
99
112
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
100
113
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
101
114
  """
102
- model_cpu_offload_seq = "text_encoder->unet->vae"
115
+
116
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
117
+ _optional_components = ["feature_extractor", "image_encoder"]
103
118
 
104
119
  def __init__(
105
120
  self,
@@ -116,6 +131,8 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
116
131
  EulerAncestralDiscreteScheduler,
117
132
  DPMSolverMultistepScheduler,
118
133
  ],
134
+ feature_extractor: CLIPImageProcessor = None,
135
+ image_encoder: CLIPVisionModelWithProjection = None,
119
136
  ):
120
137
  super().__init__()
121
138
  unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
@@ -127,6 +144,8 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
127
144
  unet=unet,
128
145
  motion_adapter=motion_adapter,
129
146
  scheduler=scheduler,
147
+ feature_extractor=feature_extractor,
148
+ image_encoder=image_encoder,
130
149
  )
131
150
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
132
151
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@@ -313,6 +332,31 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
313
332
 
314
333
  return prompt_embeds, negative_prompt_embeds
315
334
 
335
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
336
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
337
+ dtype = next(self.image_encoder.parameters()).dtype
338
+
339
+ if not isinstance(image, torch.Tensor):
340
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
341
+
342
+ image = image.to(device=device, dtype=dtype)
343
+ if output_hidden_states:
344
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
345
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
346
+ uncond_image_enc_hidden_states = self.image_encoder(
347
+ torch.zeros_like(image), output_hidden_states=True
348
+ ).hidden_states[-2]
349
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
350
+ num_images_per_prompt, dim=0
351
+ )
352
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
353
+ else:
354
+ image_embeds = self.image_encoder(image).image_embeds
355
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
356
+ uncond_image_embeds = torch.zeros_like(image_embeds)
357
+
358
+ return image_embeds, uncond_image_embeds
359
+
316
360
  # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
317
361
  def decode_latents(self, latents):
318
362
  latents = 1 / self.vae.config.scaling_factor * latents
@@ -496,6 +540,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
496
540
  return latents
497
541
 
498
542
  @torch.no_grad()
543
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
499
544
  def __call__(
500
545
  self,
501
546
  prompt: Union[str, List[str]] = None,
@@ -511,6 +556,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
511
556
  latents: Optional[torch.FloatTensor] = None,
512
557
  prompt_embeds: Optional[torch.FloatTensor] = None,
513
558
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
559
+ ip_adapter_image: Optional[PipelineImageInput] = None,
514
560
  output_type: Optional[str] = "pil",
515
561
  return_dict: bool = True,
516
562
  callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
@@ -557,6 +603,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
557
603
  negative_prompt_embeds (`torch.FloatTensor`, *optional*):
558
604
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
559
605
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
606
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
560
607
  output_type (`str`, *optional*, defaults to `"pil"`):
561
608
  The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
562
609
  `np.array`.
@@ -628,6 +675,14 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
628
675
  if do_classifier_free_guidance:
629
676
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
630
677
 
678
+ if ip_adapter_image is not None:
679
+ output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
680
+ image_embeds, negative_image_embeds = self.encode_image(
681
+ ip_adapter_image, device, num_videos_per_prompt, output_hidden_state
682
+ )
683
+ if do_classifier_free_guidance:
684
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
685
+
631
686
  # 4. Prepare timesteps
632
687
  self.scheduler.set_timesteps(num_inference_steps, device=device)
633
688
  timesteps = self.scheduler.timesteps
@@ -648,6 +703,8 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
648
703
 
649
704
  # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
650
705
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
706
+ # 7 Add image embeds for IP-Adapter
707
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
651
708
 
652
709
  # Denoising loop
653
710
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
@@ -663,6 +720,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
663
720
  t,
664
721
  encoder_hidden_states=prompt_embeds,
665
722
  cross_attention_kwargs=cross_attention_kwargs,
723
+ added_cond_kwargs=added_cond_kwargs,
666
724
  ).sample
667
725
 
668
726
  # perform guidance
@@ -72,6 +72,7 @@ class AudioLDMPipeline(DiffusionPipeline):
72
72
  vocoder ([`~transformers.SpeechT5HifiGan`]):
73
73
  Vocoder of class `SpeechT5HifiGan`.
74
74
  """
75
+
75
76
  model_cpu_offload_seq = "text_encoder->unet->vae"
76
77
 
77
78
  def __init__(