diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -16,11 +16,11 @@ import inspect
|
|
16
16
|
from typing import Any, Callable, Dict, List, Optional, Union
|
17
17
|
|
18
18
|
import torch
|
19
|
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
19
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
20
20
|
|
21
|
-
from ...image_processor import VaeImageProcessor
|
22
|
-
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
23
|
-
from ...models import AutoencoderKL, UNet2DConditionModel
|
21
|
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
22
|
+
from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
23
|
+
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
24
24
|
from ...models.lora import adjust_lora_scale_text_encoder
|
25
25
|
from ...schedulers import DDIMScheduler
|
26
26
|
from ...utils import (
|
@@ -33,8 +33,8 @@ from ...utils import (
|
|
33
33
|
)
|
34
34
|
from ...utils.torch_utils import randn_tensor
|
35
35
|
from ..pipeline_utils import DiffusionPipeline
|
36
|
-
from
|
37
|
-
from .safety_checker import StableDiffusionSafetyChecker
|
36
|
+
from ..stable_diffusion import StableDiffusionPipelineOutput
|
37
|
+
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
38
38
|
|
39
39
|
|
40
40
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -59,13 +59,19 @@ EXAMPLE_DOC_STRING = """
|
|
59
59
|
"""
|
60
60
|
|
61
61
|
|
62
|
-
class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
62
|
+
class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin):
|
63
63
|
r"""
|
64
64
|
Pipeline for text-to-image generation using MultiDiffusion.
|
65
65
|
|
66
66
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
67
67
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
68
68
|
|
69
|
+
The pipeline also inherits the following loading methods:
|
70
|
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
71
|
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
72
|
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
73
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
74
|
+
|
69
75
|
Args:
|
70
76
|
vae ([`AutoencoderKL`]):
|
71
77
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
@@ -85,8 +91,9 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
85
91
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
86
92
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
87
93
|
"""
|
94
|
+
|
88
95
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
89
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
96
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
90
97
|
_exclude_from_cpu_offload = ["safety_checker"]
|
91
98
|
|
92
99
|
def __init__(
|
@@ -98,6 +105,7 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
98
105
|
scheduler: DDIMScheduler,
|
99
106
|
safety_checker: StableDiffusionSafetyChecker,
|
100
107
|
feature_extractor: CLIPImageProcessor,
|
108
|
+
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
|
101
109
|
requires_safety_checker: bool = True,
|
102
110
|
):
|
103
111
|
super().__init__()
|
@@ -126,6 +134,7 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
126
134
|
scheduler=scheduler,
|
127
135
|
safety_checker=safety_checker,
|
128
136
|
feature_extractor=feature_extractor,
|
137
|
+
image_encoder=image_encoder,
|
129
138
|
)
|
130
139
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
131
140
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
@@ -362,6 +371,31 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
362
371
|
|
363
372
|
return prompt_embeds, negative_prompt_embeds
|
364
373
|
|
374
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
375
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
376
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
377
|
+
|
378
|
+
if not isinstance(image, torch.Tensor):
|
379
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
380
|
+
|
381
|
+
image = image.to(device=device, dtype=dtype)
|
382
|
+
if output_hidden_states:
|
383
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
384
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
385
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
386
|
+
torch.zeros_like(image), output_hidden_states=True
|
387
|
+
).hidden_states[-2]
|
388
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
389
|
+
num_images_per_prompt, dim=0
|
390
|
+
)
|
391
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
392
|
+
else:
|
393
|
+
image_embeds = self.image_encoder(image).image_embeds
|
394
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
395
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
396
|
+
|
397
|
+
return image_embeds, uncond_image_embeds
|
398
|
+
|
365
399
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
366
400
|
def run_safety_checker(self, image, device, dtype):
|
367
401
|
if self.safety_checker is None:
|
@@ -528,6 +562,7 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
528
562
|
latents: Optional[torch.FloatTensor] = None,
|
529
563
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
530
564
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
565
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
531
566
|
output_type: Optional[str] = "pil",
|
532
567
|
return_dict: bool = True,
|
533
568
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
@@ -577,6 +612,8 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
577
612
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
578
613
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
579
614
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
615
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
616
|
+
Optional image input to work with IP Adapters.
|
580
617
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
581
618
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
582
619
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -631,6 +668,14 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
631
668
|
# corresponds to doing no classifier free guidance.
|
632
669
|
do_classifier_free_guidance = guidance_scale > 1.0
|
633
670
|
|
671
|
+
if ip_adapter_image is not None:
|
672
|
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
673
|
+
image_embeds, negative_image_embeds = self.encode_image(
|
674
|
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
675
|
+
)
|
676
|
+
if do_classifier_free_guidance:
|
677
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
678
|
+
|
634
679
|
# 3. Encode input prompt
|
635
680
|
text_encoder_lora_scale = (
|
636
681
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
@@ -680,6 +725,9 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
680
725
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
681
726
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
682
727
|
|
728
|
+
# 7.1 Add image embeds for IP-Adapter
|
729
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
730
|
+
|
683
731
|
# 8. Denoising loop
|
684
732
|
# Each denoising step also includes refinement of the latents with respect to the
|
685
733
|
# views.
|
@@ -742,6 +790,7 @@ class StableDiffusionPanoramaPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
742
790
|
t,
|
743
791
|
encoder_hidden_states=prompt_embeds_input,
|
744
792
|
cross_attention_kwargs=cross_attention_kwargs,
|
793
|
+
added_cond_kwargs=added_cond_kwargs,
|
745
794
|
).sample
|
746
795
|
|
747
796
|
# perform guidance
|
@@ -5,10 +5,12 @@ from typing import Callable, List, Optional, Union
|
|
5
5
|
import numpy as np
|
6
6
|
import torch
|
7
7
|
from packaging import version
|
8
|
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
8
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
9
9
|
|
10
10
|
from ...configuration_utils import FrozenDict
|
11
|
-
from ...
|
11
|
+
from ...image_processor import PipelineImageInput
|
12
|
+
from ...loaders import IPAdapterMixin
|
13
|
+
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
12
14
|
from ...schedulers import KarrasDiffusionSchedulers
|
13
15
|
from ...utils import deprecate, logging
|
14
16
|
from ...utils.torch_utils import randn_tensor
|
@@ -20,13 +22,16 @@ from .safety_checker import SafeStableDiffusionSafetyChecker
|
|
20
22
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21
23
|
|
22
24
|
|
23
|
-
class StableDiffusionPipelineSafe(DiffusionPipeline):
|
25
|
+
class StableDiffusionPipelineSafe(DiffusionPipeline, IPAdapterMixin):
|
24
26
|
r"""
|
25
27
|
Pipeline based on the [`StableDiffusionPipeline`] for text-to-image generation using Safe Latent Diffusion.
|
26
28
|
|
27
29
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
28
30
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
29
31
|
|
32
|
+
The pipeline also inherits the following loading methods:
|
33
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
34
|
+
|
30
35
|
Args:
|
31
36
|
vae ([`AutoencoderKL`]):
|
32
37
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
@@ -48,7 +53,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
48
53
|
"""
|
49
54
|
|
50
55
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
51
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
56
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
52
57
|
|
53
58
|
def __init__(
|
54
59
|
self,
|
@@ -59,6 +64,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
59
64
|
scheduler: KarrasDiffusionSchedulers,
|
60
65
|
safety_checker: SafeStableDiffusionSafetyChecker,
|
61
66
|
feature_extractor: CLIPImageProcessor,
|
67
|
+
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
|
62
68
|
requires_safety_checker: bool = True,
|
63
69
|
):
|
64
70
|
super().__init__()
|
@@ -140,6 +146,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
140
146
|
scheduler=scheduler,
|
141
147
|
safety_checker=safety_checker,
|
142
148
|
feature_extractor=feature_extractor,
|
149
|
+
image_encoder=image_encoder,
|
143
150
|
)
|
144
151
|
self._safety_text_concept = safety_concept
|
145
152
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
@@ -467,6 +474,31 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
467
474
|
noise_guidance = noise_guidance - noise_guidance_safety
|
468
475
|
return noise_guidance, safety_momentum
|
469
476
|
|
477
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
478
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
479
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
480
|
+
|
481
|
+
if not isinstance(image, torch.Tensor):
|
482
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
483
|
+
|
484
|
+
image = image.to(device=device, dtype=dtype)
|
485
|
+
if output_hidden_states:
|
486
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
487
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
488
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
489
|
+
torch.zeros_like(image), output_hidden_states=True
|
490
|
+
).hidden_states[-2]
|
491
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
492
|
+
num_images_per_prompt, dim=0
|
493
|
+
)
|
494
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
495
|
+
else:
|
496
|
+
image_embeds = self.image_encoder(image).image_embeds
|
497
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
498
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
499
|
+
|
500
|
+
return image_embeds, uncond_image_embeds
|
501
|
+
|
470
502
|
@torch.no_grad()
|
471
503
|
def __call__(
|
472
504
|
self,
|
@@ -480,6 +512,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
480
512
|
eta: float = 0.0,
|
481
513
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
482
514
|
latents: Optional[torch.FloatTensor] = None,
|
515
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
483
516
|
output_type: Optional[str] = "pil",
|
484
517
|
return_dict: bool = True,
|
485
518
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
@@ -521,6 +554,8 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
521
554
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
522
555
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
523
556
|
tensor is generated by sampling using the supplied random `generator`.
|
557
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
558
|
+
Optional image input to work with IP Adapters.
|
524
559
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
525
560
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
526
561
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -560,10 +595,11 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
560
595
|
```py
|
561
596
|
import torch
|
562
597
|
from diffusers import StableDiffusionPipelineSafe
|
598
|
+
from diffusers.pipelines.stable_diffusion_safe import SafetyConfig
|
563
599
|
|
564
600
|
pipeline = StableDiffusionPipelineSafe.from_pretrained(
|
565
601
|
"AIML-TUDA/stable-diffusion-safe", torch_dtype=torch.float16
|
566
|
-
)
|
602
|
+
).to("cuda")
|
567
603
|
prompt = "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c. leyendecker"
|
568
604
|
image = pipeline(prompt=prompt, **SafetyConfig.MEDIUM).images[0]
|
569
605
|
```
|
@@ -588,6 +624,17 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
588
624
|
if not enable_safety_guidance:
|
589
625
|
warnings.warn("Safety checker disabled!")
|
590
626
|
|
627
|
+
if ip_adapter_image is not None:
|
628
|
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
629
|
+
image_embeds, negative_image_embeds = self.encode_image(
|
630
|
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
631
|
+
)
|
632
|
+
if do_classifier_free_guidance:
|
633
|
+
if enable_safety_guidance:
|
634
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds, image_embeds])
|
635
|
+
else:
|
636
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
637
|
+
|
591
638
|
# 3. Encode input prompt
|
592
639
|
prompt_embeds = self._encode_prompt(
|
593
640
|
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, enable_safety_guidance
|
@@ -613,6 +660,9 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
613
660
|
# 6. Prepare extra step kwargs.
|
614
661
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
615
662
|
|
663
|
+
# 6.1 Add image embeds for IP-Adapter
|
664
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
665
|
+
|
616
666
|
safety_momentum = None
|
617
667
|
|
618
668
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
@@ -627,7 +677,9 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
|
|
627
677
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
628
678
|
|
629
679
|
# predict the noise residual
|
630
|
-
noise_pred = self.unet(
|
680
|
+
noise_pred = self.unet(
|
681
|
+
latent_model_input, t, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs
|
682
|
+
).sample
|
631
683
|
|
632
684
|
# perform guidance
|
633
685
|
if do_classifier_free_guidance:
|
@@ -0,0 +1,48 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
|
3
|
+
from ...utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
|
+
OptionalDependencyNotAvailable,
|
6
|
+
_LazyModule,
|
7
|
+
get_objects_from_module,
|
8
|
+
is_torch_available,
|
9
|
+
is_transformers_available,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
_dummy_objects = {}
|
14
|
+
_import_structure = {}
|
15
|
+
|
16
|
+
|
17
|
+
try:
|
18
|
+
if not (is_transformers_available() and is_torch_available()):
|
19
|
+
raise OptionalDependencyNotAvailable()
|
20
|
+
except OptionalDependencyNotAvailable:
|
21
|
+
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
22
|
+
|
23
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
24
|
+
else:
|
25
|
+
_import_structure["pipeline_stable_diffusion_sag"] = ["StableDiffusionSAGPipeline"]
|
26
|
+
|
27
|
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
28
|
+
try:
|
29
|
+
if not (is_transformers_available() and is_torch_available()):
|
30
|
+
raise OptionalDependencyNotAvailable()
|
31
|
+
|
32
|
+
except OptionalDependencyNotAvailable:
|
33
|
+
from ...utils.dummy_torch_and_transformers_objects import *
|
34
|
+
else:
|
35
|
+
from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
|
36
|
+
|
37
|
+
else:
|
38
|
+
import sys
|
39
|
+
|
40
|
+
sys.modules[__name__] = _LazyModule(
|
41
|
+
__name__,
|
42
|
+
globals()["__file__"],
|
43
|
+
_import_structure,
|
44
|
+
module_spec=__spec__,
|
45
|
+
)
|
46
|
+
|
47
|
+
for name, value in _dummy_objects.items():
|
48
|
+
setattr(sys.modules[__name__], name, value)
|
diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py
RENAMED
@@ -17,11 +17,11 @@ from typing import Any, Callable, Dict, List, Optional, Union
|
|
17
17
|
|
18
18
|
import torch
|
19
19
|
import torch.nn.functional as F
|
20
|
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
20
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
21
21
|
|
22
|
-
from ...image_processor import VaeImageProcessor
|
23
|
-
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
24
|
-
from ...models import AutoencoderKL, UNet2DConditionModel
|
22
|
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
23
|
+
from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
24
|
+
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
25
25
|
from ...models.lora import adjust_lora_scale_text_encoder
|
26
26
|
from ...schedulers import KarrasDiffusionSchedulers
|
27
27
|
from ...utils import (
|
@@ -34,8 +34,8 @@ from ...utils import (
|
|
34
34
|
)
|
35
35
|
from ...utils.torch_utils import randn_tensor
|
36
36
|
from ..pipeline_utils import DiffusionPipeline
|
37
|
-
from
|
38
|
-
from .safety_checker import StableDiffusionSafetyChecker
|
37
|
+
from ..stable_diffusion import StableDiffusionPipelineOutput
|
38
|
+
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
39
39
|
|
40
40
|
|
41
41
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -98,13 +98,17 @@ class CrossAttnStoreProcessor:
|
|
98
98
|
|
99
99
|
|
100
100
|
# Modified to get self-attention guidance scale in this paper (https://arxiv.org/pdf/2210.00939.pdf) as an input
|
101
|
-
class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin):
|
101
|
+
class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin):
|
102
102
|
r"""
|
103
103
|
Pipeline for text-to-image generation using Stable Diffusion.
|
104
104
|
|
105
105
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
106
106
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
107
107
|
|
108
|
+
The pipeline also inherits the following loading methods:
|
109
|
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
110
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
111
|
+
|
108
112
|
Args:
|
109
113
|
vae ([`AutoencoderKL`]):
|
110
114
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
@@ -124,8 +128,9 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
124
128
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
125
129
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
126
130
|
"""
|
131
|
+
|
127
132
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
128
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
133
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
129
134
|
_exclude_from_cpu_offload = ["safety_checker"]
|
130
135
|
|
131
136
|
def __init__(
|
@@ -137,6 +142,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
137
142
|
scheduler: KarrasDiffusionSchedulers,
|
138
143
|
safety_checker: StableDiffusionSafetyChecker,
|
139
144
|
feature_extractor: CLIPImageProcessor,
|
145
|
+
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
|
140
146
|
requires_safety_checker: bool = True,
|
141
147
|
):
|
142
148
|
super().__init__()
|
@@ -149,6 +155,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
149
155
|
scheduler=scheduler,
|
150
156
|
safety_checker=safety_checker,
|
151
157
|
feature_extractor=feature_extractor,
|
158
|
+
image_encoder=image_encoder,
|
152
159
|
)
|
153
160
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
154
161
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
@@ -385,6 +392,31 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
385
392
|
|
386
393
|
return prompt_embeds, negative_prompt_embeds
|
387
394
|
|
395
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
396
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
397
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
398
|
+
|
399
|
+
if not isinstance(image, torch.Tensor):
|
400
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
401
|
+
|
402
|
+
image = image.to(device=device, dtype=dtype)
|
403
|
+
if output_hidden_states:
|
404
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
405
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
406
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
407
|
+
torch.zeros_like(image), output_hidden_states=True
|
408
|
+
).hidden_states[-2]
|
409
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
410
|
+
num_images_per_prompt, dim=0
|
411
|
+
)
|
412
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
413
|
+
else:
|
414
|
+
image_embeds = self.image_encoder(image).image_embeds
|
415
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
416
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
417
|
+
|
418
|
+
return image_embeds, uncond_image_embeds
|
419
|
+
|
388
420
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
389
421
|
def run_safety_checker(self, image, device, dtype):
|
390
422
|
if self.safety_checker is None:
|
@@ -518,6 +550,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
518
550
|
latents: Optional[torch.FloatTensor] = None,
|
519
551
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
520
552
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
553
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
521
554
|
output_type: Optional[str] = "pil",
|
522
555
|
return_dict: bool = True,
|
523
556
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
@@ -564,6 +597,8 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
564
597
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
565
598
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
566
599
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
600
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
601
|
+
Optional image input to work with IP Adapters.
|
567
602
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
568
603
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
569
604
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -617,6 +652,14 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
617
652
|
# `sag_scale = 0` means no self-attention guidance
|
618
653
|
do_self_attention_guidance = sag_scale > 0.0
|
619
654
|
|
655
|
+
if ip_adapter_image is not None:
|
656
|
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
657
|
+
image_embeds, negative_image_embeds = self.encode_image(
|
658
|
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
659
|
+
)
|
660
|
+
if do_classifier_free_guidance:
|
661
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
662
|
+
|
620
663
|
# 3. Encode input prompt
|
621
664
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
622
665
|
prompt,
|
@@ -654,6 +697,10 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
654
697
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
655
698
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
656
699
|
|
700
|
+
# 6.1 Add image embeds for IP-Adapter
|
701
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
702
|
+
added_uncond_kwargs = {"image_embeds": negative_image_embeds} if ip_adapter_image is not None else None
|
703
|
+
|
657
704
|
# 7. Denoising loop
|
658
705
|
store_processor = CrossAttnStoreProcessor()
|
659
706
|
self.unet.mid_block.attentions[0].transformer_blocks[0].attn1.processor = store_processor
|
@@ -679,6 +726,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
679
726
|
t,
|
680
727
|
encoder_hidden_states=prompt_embeds,
|
681
728
|
cross_attention_kwargs=cross_attention_kwargs,
|
729
|
+
added_cond_kwargs=added_cond_kwargs,
|
682
730
|
).sample
|
683
731
|
|
684
732
|
# perform guidance
|
@@ -702,7 +750,12 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
702
750
|
)
|
703
751
|
uncond_emb, _ = prompt_embeds.chunk(2)
|
704
752
|
# forward and give guidance
|
705
|
-
degraded_pred = self.unet(
|
753
|
+
degraded_pred = self.unet(
|
754
|
+
degraded_latents,
|
755
|
+
t,
|
756
|
+
encoder_hidden_states=uncond_emb,
|
757
|
+
added_cond_kwargs=added_uncond_kwargs,
|
758
|
+
).sample
|
706
759
|
noise_pred += sag_scale * (noise_pred_uncond - degraded_pred)
|
707
760
|
else:
|
708
761
|
# DDIM-like prediction of x0
|
@@ -714,7 +767,12 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, TextualInversionLoaderMixin)
|
|
714
767
|
pred_x0, cond_attn, map_size, t, self.pred_epsilon(latents, noise_pred, t)
|
715
768
|
)
|
716
769
|
# forward and give guidance
|
717
|
-
degraded_pred = self.unet(
|
770
|
+
degraded_pred = self.unet(
|
771
|
+
degraded_latents,
|
772
|
+
t,
|
773
|
+
encoder_hidden_states=prompt_embeds,
|
774
|
+
added_cond_kwargs=added_cond_kwargs,
|
775
|
+
).sample
|
718
776
|
noise_pred += sag_scale * (noise_pred - degraded_pred)
|
719
777
|
|
720
778
|
# compute the previous noisy sample x_t -> x_t-1
|