diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (238) hide show
  1. diffusers/__init__.py +26 -2
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +13 -8
  4. diffusers/dependency_versions_check.py +0 -1
  5. diffusers/dependency_versions_table.py +5 -5
  6. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  7. diffusers/image_processor.py +463 -51
  8. diffusers/loaders/__init__.py +82 -0
  9. diffusers/loaders/ip_adapter.py +159 -0
  10. diffusers/loaders/lora.py +1553 -0
  11. diffusers/loaders/lora_conversion_utils.py +284 -0
  12. diffusers/loaders/single_file.py +637 -0
  13. diffusers/loaders/textual_inversion.py +455 -0
  14. diffusers/loaders/unet.py +828 -0
  15. diffusers/loaders/utils.py +59 -0
  16. diffusers/models/__init__.py +26 -9
  17. diffusers/models/activations.py +9 -6
  18. diffusers/models/attention.py +301 -29
  19. diffusers/models/attention_flax.py +9 -1
  20. diffusers/models/attention_processor.py +378 -6
  21. diffusers/models/autoencoders/__init__.py +5 -0
  22. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
  23. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
  24. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
  25. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
  26. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
  27. diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
  28. diffusers/models/controlnet.py +59 -39
  29. diffusers/models/controlnet_flax.py +19 -18
  30. diffusers/models/downsampling.py +338 -0
  31. diffusers/models/embeddings.py +112 -29
  32. diffusers/models/embeddings_flax.py +2 -0
  33. diffusers/models/lora.py +131 -1
  34. diffusers/models/modeling_flax_utils.py +14 -8
  35. diffusers/models/modeling_outputs.py +17 -0
  36. diffusers/models/modeling_utils.py +37 -29
  37. diffusers/models/normalization.py +110 -4
  38. diffusers/models/resnet.py +299 -652
  39. diffusers/models/transformer_2d.py +22 -5
  40. diffusers/models/transformer_temporal.py +183 -1
  41. diffusers/models/unet_2d_blocks_flax.py +5 -0
  42. diffusers/models/unet_2d_condition.py +46 -0
  43. diffusers/models/unet_2d_condition_flax.py +13 -13
  44. diffusers/models/unet_3d_blocks.py +957 -173
  45. diffusers/models/unet_3d_condition.py +16 -8
  46. diffusers/models/unet_kandinsky3.py +535 -0
  47. diffusers/models/unet_motion_model.py +48 -33
  48. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  49. diffusers/models/upsampling.py +454 -0
  50. diffusers/models/uvit_2d.py +471 -0
  51. diffusers/models/vae_flax.py +7 -0
  52. diffusers/models/vq_model.py +12 -3
  53. diffusers/optimization.py +16 -9
  54. diffusers/pipelines/__init__.py +137 -76
  55. diffusers/pipelines/amused/__init__.py +62 -0
  56. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  57. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  58. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  59. diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
  60. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  61. diffusers/pipelines/auto_pipeline.py +23 -13
  62. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  63. diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
  64. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
  65. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
  66. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
  67. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
  68. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
  69. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  70. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  71. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  72. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  73. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  74. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  75. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  76. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  77. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  78. diffusers/pipelines/deprecated/__init__.py +153 -0
  79. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  80. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
  81. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
  82. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  83. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  84. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  85. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  86. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  87. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  88. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  89. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  90. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  91. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  92. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  93. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
  94. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  95. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  96. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  97. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  98. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  100. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
  101. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
  102. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
  103. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
  104. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
  105. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
  106. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  107. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  108. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  109. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
  110. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  111. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
  112. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
  113. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
  114. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  115. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  116. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  117. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  118. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  119. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  120. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  122. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  123. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  124. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
  125. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
  126. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
  127. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
  128. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  129. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  130. diffusers/pipelines/onnx_utils.py +8 -5
  131. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  132. diffusers/pipelines/pipeline_flax_utils.py +11 -8
  133. diffusers/pipelines/pipeline_utils.py +63 -42
  134. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
  135. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  136. diffusers/pipelines/stable_diffusion/__init__.py +37 -65
  137. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
  138. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  139. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  140. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  141. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
  142. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  143. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  144. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
  145. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
  146. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
  147. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  151. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  152. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
  153. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  154. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
  155. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  156. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
  157. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  158. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  159. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
  160. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  161. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
  162. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  163. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
  164. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  165. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  166. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
  171. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  172. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
  175. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
  179. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
  180. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  181. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  182. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  183. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  184. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  185. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  186. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  187. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
  188. diffusers/schedulers/__init__.py +4 -4
  189. diffusers/schedulers/deprecated/__init__.py +50 -0
  190. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  191. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  192. diffusers/schedulers/scheduling_amused.py +162 -0
  193. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  194. diffusers/schedulers/scheduling_ddim.py +1 -3
  195. diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
  196. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  197. diffusers/schedulers/scheduling_ddpm.py +47 -3
  198. diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
  199. diffusers/schedulers/scheduling_deis_multistep.py +28 -6
  200. diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
  201. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
  202. diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
  203. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
  204. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
  205. diffusers/schedulers/scheduling_euler_discrete.py +102 -16
  206. diffusers/schedulers/scheduling_heun_discrete.py +17 -5
  207. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
  208. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
  209. diffusers/schedulers/scheduling_lcm.py +123 -29
  210. diffusers/schedulers/scheduling_lms_discrete.py +3 -3
  211. diffusers/schedulers/scheduling_pndm.py +1 -3
  212. diffusers/schedulers/scheduling_repaint.py +1 -3
  213. diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
  214. diffusers/schedulers/scheduling_utils.py +3 -1
  215. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  216. diffusers/training_utils.py +1 -1
  217. diffusers/utils/__init__.py +1 -2
  218. diffusers/utils/constants.py +10 -12
  219. diffusers/utils/dummy_pt_objects.py +75 -0
  220. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  221. diffusers/utils/dynamic_modules_utils.py +18 -22
  222. diffusers/utils/export_utils.py +8 -3
  223. diffusers/utils/hub_utils.py +24 -36
  224. diffusers/utils/logging.py +11 -11
  225. diffusers/utils/outputs.py +5 -5
  226. diffusers/utils/peft_utils.py +88 -44
  227. diffusers/utils/state_dict_utils.py +8 -0
  228. diffusers/utils/testing_utils.py +199 -1
  229. diffusers/utils/torch_utils.py +4 -4
  230. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
  231. diffusers-0.25.0.dist-info/RECORD +360 -0
  232. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  233. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  234. diffusers/loaders.py +0 -3336
  235. diffusers-0.23.1.dist-info/RECORD +0 -323
  236. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  237. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  238. {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -92,6 +92,43 @@ def betas_for_alpha_bar(
92
92
  return torch.tensor(betas, dtype=torch.float32)
93
93
 
94
94
 
95
+ # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
96
+ def rescale_zero_terminal_snr(betas):
97
+ """
98
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
99
+
100
+
101
+ Args:
102
+ betas (`torch.FloatTensor`):
103
+ the betas that the scheduler is being initialized with.
104
+
105
+ Returns:
106
+ `torch.FloatTensor`: rescaled betas with zero terminal SNR
107
+ """
108
+ # Convert betas to alphas_bar_sqrt
109
+ alphas = 1.0 - betas
110
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
111
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
112
+
113
+ # Store old values.
114
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
115
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
116
+
117
+ # Shift so the last timestep is zero.
118
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
119
+
120
+ # Scale so the first timestep is back to the old value.
121
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
122
+
123
+ # Convert alphas_bar_sqrt to betas
124
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
125
+ alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
126
+ alphas = torch.cat([alphas_bar[0:1], alphas])
127
+ betas = 1 - alphas
128
+
129
+ return betas
130
+
131
+
95
132
  class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
96
133
  """
97
134
  Euler scheduler.
@@ -128,6 +165,10 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
128
165
  An offset added to the inference steps. You can use a combination of `offset=1` and
129
166
  `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
130
167
  Diffusion.
168
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
169
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
170
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
171
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
131
172
  """
132
173
 
133
174
  _compatibles = [e.name for e in KarrasDiffusionSchedulers]
@@ -144,8 +185,12 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
144
185
  prediction_type: str = "epsilon",
145
186
  interpolation_type: str = "linear",
146
187
  use_karras_sigmas: Optional[bool] = False,
188
+ sigma_min: Optional[float] = None,
189
+ sigma_max: Optional[float] = None,
147
190
  timestep_spacing: str = "linspace",
191
+ timestep_type: str = "discrete", # can be "discrete" or "continuous"
148
192
  steps_offset: int = 0,
193
+ rescale_betas_zero_snr: bool = False,
149
194
  ):
150
195
  if trained_betas is not None:
151
196
  self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -153,38 +198,55 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
153
198
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
154
199
  elif beta_schedule == "scaled_linear":
155
200
  # this schedule is very specific to the latent diffusion model.
156
- self.betas = (
157
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
158
- )
201
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
159
202
  elif beta_schedule == "squaredcos_cap_v2":
160
203
  # Glide cosine schedule
161
204
  self.betas = betas_for_alpha_bar(num_train_timesteps)
162
205
  else:
163
206
  raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
164
207
 
208
+ if rescale_betas_zero_snr:
209
+ self.betas = rescale_zero_terminal_snr(self.betas)
210
+
165
211
  self.alphas = 1.0 - self.betas
166
212
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
167
213
 
214
+ if rescale_betas_zero_snr:
215
+ # Close to 0 without being 0 so first sigma is not inf
216
+ # FP16 smallest positive subnormal works well here
217
+ self.alphas_cumprod[-1] = 2**-24
218
+
168
219
  sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
169
- sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
170
- self.sigmas = torch.from_numpy(sigmas)
220
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
221
+
222
+ sigmas = torch.from_numpy(sigmas[::-1].copy()).to(dtype=torch.float32)
223
+ timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
171
224
 
172
225
  # setable values
173
226
  self.num_inference_steps = None
174
- timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
175
- self.timesteps = torch.from_numpy(timesteps)
227
+
228
+ # TODO: Support the full EDM scalings for all prediction types and timestep types
229
+ if timestep_type == "continuous" and prediction_type == "v_prediction":
230
+ self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas])
231
+ else:
232
+ self.timesteps = timesteps
233
+
234
+ self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
235
+
176
236
  self.is_scale_input_called = False
177
237
  self.use_karras_sigmas = use_karras_sigmas
178
238
 
179
239
  self._step_index = None
240
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
180
241
 
181
242
  @property
182
243
  def init_noise_sigma(self):
183
244
  # standard deviation of the initial noise distribution
245
+ max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max()
184
246
  if self.config.timestep_spacing in ["linspace", "trailing"]:
185
- return self.sigmas.max()
247
+ return max_sigma
186
248
 
187
- return (self.sigmas.max() ** 2 + 1) ** 0.5
249
+ return (max_sigma**2 + 1) ** 0.5
188
250
 
189
251
  @property
190
252
  def step_index(self):
@@ -259,7 +321,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
259
321
  if self.config.interpolation_type == "linear":
260
322
  sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
261
323
  elif self.config.interpolation_type == "log_linear":
262
- sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp()
324
+ sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy()
263
325
  else:
264
326
  raise ValueError(
265
327
  f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
@@ -270,11 +332,17 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
270
332
  sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
271
333
  timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
272
334
 
273
- sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
274
- self.sigmas = torch.from_numpy(sigmas).to(device=device)
335
+ sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
275
336
 
276
- self.timesteps = torch.from_numpy(timesteps).to(device=device)
337
+ # TODO: Support the full EDM scalings for all prediction types and timestep types
338
+ if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction":
339
+ self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(device=device)
340
+ else:
341
+ self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device)
342
+
343
+ self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
277
344
  self._step_index = None
345
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
278
346
 
279
347
  def _sigma_to_t(self, sigma, log_sigmas):
280
348
  # get log sigma
@@ -303,8 +371,20 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
303
371
  def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
304
372
  """Constructs the noise schedule of Karras et al. (2022)."""
305
373
 
306
- sigma_min: float = in_sigmas[-1].item()
307
- sigma_max: float = in_sigmas[0].item()
374
+ # Hack to make sure that other schedulers which copy this function don't break
375
+ # TODO: Add this logic to the other schedulers
376
+ if hasattr(self.config, "sigma_min"):
377
+ sigma_min = self.config.sigma_min
378
+ else:
379
+ sigma_min = None
380
+
381
+ if hasattr(self.config, "sigma_max"):
382
+ sigma_max = self.config.sigma_max
383
+ else:
384
+ sigma_max = None
385
+
386
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
387
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
308
388
 
309
389
  rho = 7.0 # 7.0 is the value used in the paper
310
390
  ramp = np.linspace(0, 1, num_inference_steps)
@@ -392,6 +472,9 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
392
472
  if self.step_index is None:
393
473
  self._init_step_index(timestep)
394
474
 
475
+ # Upcast to avoid precision issues when computing prev_sample
476
+ sample = sample.to(torch.float32)
477
+
395
478
  sigma = self.sigmas[self.step_index]
396
479
 
397
480
  gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
@@ -414,7 +497,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
414
497
  elif self.config.prediction_type == "epsilon":
415
498
  pred_original_sample = sample - sigma_hat * model_output
416
499
  elif self.config.prediction_type == "v_prediction":
417
- # * c_out + input * c_skip
500
+ # denoised = model_output * c_out + input * c_skip
418
501
  pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
419
502
  else:
420
503
  raise ValueError(
@@ -428,6 +511,9 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
428
511
 
429
512
  prev_sample = sample + derivative * dt
430
513
 
514
+ # Cast sample back to model compatible dtype
515
+ prev_sample = prev_sample.to(model_output.dtype)
516
+
431
517
  # upon completion increase step index by one
432
518
  self._step_index += 1
433
519
 
@@ -131,9 +131,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
131
131
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
132
132
  elif beta_schedule == "scaled_linear":
133
133
  # this schedule is very specific to the latent diffusion model.
134
- self.betas = (
135
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
136
- )
134
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
137
135
  elif beta_schedule == "squaredcos_cap_v2":
138
136
  # Glide cosine schedule
139
137
  self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
@@ -150,6 +148,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
150
148
  self.use_karras_sigmas = use_karras_sigmas
151
149
 
152
150
  self._step_index = None
151
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
153
152
 
154
153
  def index_for_timestep(self, timestep, schedule_timesteps=None):
155
154
  if schedule_timesteps is None:
@@ -271,6 +270,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
271
270
  self.dt = None
272
271
 
273
272
  self._step_index = None
273
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
274
274
 
275
275
  # (YiYi Notes: keep this for now since we are keeping add_noise function which use index_for_timestep)
276
276
  # for exp beta schedules, such as the one for `pipeline_shap_e.py`
@@ -305,8 +305,20 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
305
305
  def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
306
306
  """Constructs the noise schedule of Karras et al. (2022)."""
307
307
 
308
- sigma_min: float = in_sigmas[-1].item()
309
- sigma_max: float = in_sigmas[0].item()
308
+ # Hack to make sure that other schedulers which copy this function don't break
309
+ # TODO: Add this logic to the other schedulers
310
+ if hasattr(self.config, "sigma_min"):
311
+ sigma_min = self.config.sigma_min
312
+ else:
313
+ sigma_min = None
314
+
315
+ if hasattr(self.config, "sigma_max"):
316
+ sigma_max = self.config.sigma_max
317
+ else:
318
+ sigma_max = None
319
+
320
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
321
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
310
322
 
311
323
  rho = 7.0 # 7.0 is the value used in the paper
312
324
  ramp = np.linspace(0, 1, num_inference_steps)
@@ -127,9 +127,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
127
127
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
128
128
  elif beta_schedule == "scaled_linear":
129
129
  # this schedule is very specific to the latent diffusion model.
130
- self.betas = (
131
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
132
- )
130
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
133
131
  elif beta_schedule == "squaredcos_cap_v2":
134
132
  # Glide cosine schedule
135
133
  self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -142,6 +140,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
142
140
  # set all values
143
141
  self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
144
142
  self._step_index = None
143
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
145
144
 
146
145
  # Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.index_for_timestep
147
146
  def index_for_timestep(self, timestep, schedule_timesteps=None):
@@ -297,6 +296,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
297
296
  self._index_counter = defaultdict(int)
298
297
 
299
298
  self._step_index = None
299
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
300
300
 
301
301
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
302
302
  def _sigma_to_t(self, sigma, log_sigmas):
@@ -326,8 +326,20 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
326
326
  def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
327
327
  """Constructs the noise schedule of Karras et al. (2022)."""
328
328
 
329
- sigma_min: float = in_sigmas[-1].item()
330
- sigma_max: float = in_sigmas[0].item()
329
+ # Hack to make sure that other schedulers which copy this function don't break
330
+ # TODO: Add this logic to the other schedulers
331
+ if hasattr(self.config, "sigma_min"):
332
+ sigma_min = self.config.sigma_min
333
+ else:
334
+ sigma_min = None
335
+
336
+ if hasattr(self.config, "sigma_max"):
337
+ sigma_max = self.config.sigma_max
338
+ else:
339
+ sigma_max = None
340
+
341
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
342
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
331
343
 
332
344
  rho = 7.0 # 7.0 is the value used in the paper
333
345
  ramp = np.linspace(0, 1, num_inference_steps)
@@ -126,9 +126,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
126
126
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
127
127
  elif beta_schedule == "scaled_linear":
128
128
  # this schedule is very specific to the latent diffusion model.
129
- self.betas = (
130
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
131
- )
129
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
132
130
  elif beta_schedule == "squaredcos_cap_v2":
133
131
  # Glide cosine schedule
134
132
  self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -142,6 +140,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
142
140
  self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
143
141
 
144
142
  self._step_index = None
143
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
145
144
 
146
145
  # Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.index_for_timestep
147
146
  def index_for_timestep(self, timestep, schedule_timesteps=None):
@@ -286,6 +285,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
286
285
  self._index_counter = defaultdict(int)
287
286
 
288
287
  self._step_index = None
288
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
289
289
 
290
290
  @property
291
291
  def state_in_first_order(self):
@@ -337,8 +337,20 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
337
337
  def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
338
338
  """Constructs the noise schedule of Karras et al. (2022)."""
339
339
 
340
- sigma_min: float = in_sigmas[-1].item()
341
- sigma_max: float = in_sigmas[0].item()
340
+ # Hack to make sure that other schedulers which copy this function don't break
341
+ # TODO: Add this logic to the other schedulers
342
+ if hasattr(self.config, "sigma_min"):
343
+ sigma_min = self.config.sigma_min
344
+ else:
345
+ sigma_min = None
346
+
347
+ if hasattr(self.config, "sigma_max"):
348
+ sigma_max = self.config.sigma_max
349
+ else:
350
+ sigma_max = None
351
+
352
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
353
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
342
354
 
343
355
  rho = 7.0 # 7.0 is the value used in the paper
344
356
  ramp = np.linspace(0, 1, num_inference_steps)
@@ -221,9 +221,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
221
221
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
222
222
  elif beta_schedule == "scaled_linear":
223
223
  # this schedule is very specific to the latent diffusion model.
224
- self.betas = (
225
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
226
- )
224
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
227
225
  elif beta_schedule == "squaredcos_cap_v2":
228
226
  # Glide cosine schedule
229
227
  self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -249,6 +247,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
249
247
  # setable values
250
248
  self.num_inference_steps = None
251
249
  self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
250
+ self.custom_timesteps = False
252
251
 
253
252
  self._step_index = None
254
253
 
@@ -326,17 +325,19 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
326
325
 
327
326
  def set_timesteps(
328
327
  self,
329
- num_inference_steps: int,
328
+ num_inference_steps: Optional[int] = None,
330
329
  device: Union[str, torch.device] = None,
331
330
  original_inference_steps: Optional[int] = None,
331
+ timesteps: Optional[List[int]] = None,
332
332
  strength: int = 1.0,
333
333
  ):
334
334
  """
335
335
  Sets the discrete timesteps used for the diffusion chain (to be run before inference).
336
336
 
337
337
  Args:
338
- num_inference_steps (`int`):
339
- The number of diffusion steps used when generating samples with a pre-trained model.
338
+ num_inference_steps (`int`, *optional*):
339
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
340
+ `timesteps` must be `None`.
340
341
  device (`str` or `torch.device`, *optional*):
341
342
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
342
343
  original_inference_steps (`int`, *optional*):
@@ -344,16 +345,19 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
344
345
  schedule (which is different from the standard `diffusers` implementation). We will then take
345
346
  `num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
346
347
  our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
348
+ timesteps (`List[int]`, *optional*):
349
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
350
+ timestep spacing strategy of equal spacing between timesteps on the training/distillation timestep
351
+ schedule is used. If `timesteps` is passed, `num_inference_steps` must be `None`.
347
352
  """
353
+ # 0. Check inputs
354
+ if num_inference_steps is None and timesteps is None:
355
+ raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
348
356
 
349
- if num_inference_steps > self.config.num_train_timesteps:
350
- raise ValueError(
351
- f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
352
- f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
353
- f" maximal {self.config.num_train_timesteps} timesteps."
354
- )
357
+ if num_inference_steps is not None and timesteps is not None:
358
+ raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
355
359
 
356
- self.num_inference_steps = num_inference_steps
360
+ # 1. Calculate the LCM original training/distillation timestep schedule.
357
361
  original_steps = (
358
362
  original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps
359
363
  )
@@ -365,23 +369,97 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
365
369
  f" maximal {self.config.num_train_timesteps} timesteps."
366
370
  )
367
371
 
368
- if num_inference_steps > original_steps:
369
- raise ValueError(
370
- f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
371
- f" {original_steps} because the final timestep schedule will be a subset of the"
372
- f" `original_inference_steps`-sized initial timestep schedule."
373
- )
374
-
375
372
  # LCM Timesteps Setting
376
- # Currently, only linear spacing is supported.
377
- c = self.config.num_train_timesteps // original_steps
378
- # LCM Training Steps Schedule
379
- lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * c - 1
380
- skipping_step = len(lcm_origin_timesteps) // num_inference_steps
381
- # LCM Inference Steps Schedule
382
- timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps]
383
-
384
- self.timesteps = torch.from_numpy(timesteps.copy()).to(device=device, dtype=torch.long)
373
+ # The skipping step parameter k from the paper.
374
+ k = self.config.num_train_timesteps // original_steps
375
+ # LCM Training/Distillation Steps Schedule
376
+ # Currently, only a linearly-spaced schedule is supported (same as in the LCM distillation scripts).
377
+ lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1
378
+
379
+ # 2. Calculate the LCM inference timestep schedule.
380
+ if timesteps is not None:
381
+ # 2.1 Handle custom timestep schedules.
382
+ train_timesteps = set(lcm_origin_timesteps)
383
+ non_train_timesteps = []
384
+ for i in range(1, len(timesteps)):
385
+ if timesteps[i] >= timesteps[i - 1]:
386
+ raise ValueError("`custom_timesteps` must be in descending order.")
387
+
388
+ if timesteps[i] not in train_timesteps:
389
+ non_train_timesteps.append(timesteps[i])
390
+
391
+ if timesteps[0] >= self.config.num_train_timesteps:
392
+ raise ValueError(
393
+ f"`timesteps` must start before `self.config.train_timesteps`:"
394
+ f" {self.config.num_train_timesteps}."
395
+ )
396
+
397
+ # Raise warning if timestep schedule does not start with self.config.num_train_timesteps - 1
398
+ if strength == 1.0 and timesteps[0] != self.config.num_train_timesteps - 1:
399
+ logger.warning(
400
+ f"The first timestep on the custom timestep schedule is {timesteps[0]}, not"
401
+ f" `self.config.num_train_timesteps - 1`: {self.config.num_train_timesteps - 1}. You may get"
402
+ f" unexpected results when using this timestep schedule."
403
+ )
404
+
405
+ # Raise warning if custom timestep schedule contains timesteps not on original timestep schedule
406
+ if non_train_timesteps:
407
+ logger.warning(
408
+ f"The custom timestep schedule contains the following timesteps which are not on the original"
409
+ f" training/distillation timestep schedule: {non_train_timesteps}. You may get unexpected results"
410
+ f" when using this timestep schedule."
411
+ )
412
+
413
+ # Raise warning if custom timestep schedule is longer than original_steps
414
+ if len(timesteps) > original_steps:
415
+ logger.warning(
416
+ f"The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the"
417
+ f" the length of the timestep schedule used for training: {original_steps}. You may get some"
418
+ f" unexpected results when using this timestep schedule."
419
+ )
420
+
421
+ timesteps = np.array(timesteps, dtype=np.int64)
422
+ self.num_inference_steps = len(timesteps)
423
+ self.custom_timesteps = True
424
+
425
+ # Apply strength (e.g. for img2img pipelines) (see StableDiffusionImg2ImgPipeline.get_timesteps)
426
+ init_timestep = min(int(self.num_inference_steps * strength), self.num_inference_steps)
427
+ t_start = max(self.num_inference_steps - init_timestep, 0)
428
+ timesteps = timesteps[t_start * self.order :]
429
+ # TODO: also reset self.num_inference_steps?
430
+ else:
431
+ # 2.2 Create the "standard" LCM inference timestep schedule.
432
+ if num_inference_steps > self.config.num_train_timesteps:
433
+ raise ValueError(
434
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
435
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
436
+ f" maximal {self.config.num_train_timesteps} timesteps."
437
+ )
438
+
439
+ skipping_step = len(lcm_origin_timesteps) // num_inference_steps
440
+
441
+ if skipping_step < 1:
442
+ raise ValueError(
443
+ f"The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}."
444
+ )
445
+
446
+ self.num_inference_steps = num_inference_steps
447
+
448
+ if num_inference_steps > original_steps:
449
+ raise ValueError(
450
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
451
+ f" {original_steps} because the final timestep schedule will be a subset of the"
452
+ f" `original_inference_steps`-sized initial timestep schedule."
453
+ )
454
+
455
+ # LCM Inference Steps Schedule
456
+ lcm_origin_timesteps = lcm_origin_timesteps[::-1].copy()
457
+ # Select (approximately) evenly spaced indices from lcm_origin_timesteps.
458
+ inference_indices = np.linspace(0, len(lcm_origin_timesteps), num=num_inference_steps, endpoint=False)
459
+ inference_indices = np.floor(inference_indices).astype(np.int64)
460
+ timesteps = lcm_origin_timesteps[inference_indices]
461
+
462
+ self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long)
385
463
 
386
464
  self._step_index = None
387
465
 
@@ -536,3 +614,19 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
536
614
 
537
615
  def __len__(self):
538
616
  return self.config.num_train_timesteps
617
+
618
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
619
+ def previous_timestep(self, timestep):
620
+ if self.custom_timesteps:
621
+ index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
622
+ if index == self.timesteps.shape[0] - 1:
623
+ prev_t = torch.tensor(-1)
624
+ else:
625
+ prev_t = self.timesteps[index + 1]
626
+ else:
627
+ num_inference_steps = (
628
+ self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
629
+ )
630
+ prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
631
+
632
+ return prev_t
@@ -146,9 +146,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
146
146
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
147
147
  elif beta_schedule == "scaled_linear":
148
148
  # this schedule is very specific to the latent diffusion model.
149
- self.betas = (
150
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
151
- )
149
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
152
150
  elif beta_schedule == "squaredcos_cap_v2":
153
151
  # Glide cosine schedule
154
152
  self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -170,6 +168,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
170
168
  self.is_scale_input_called = False
171
169
 
172
170
  self._step_index = None
171
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
173
172
 
174
173
  @property
175
174
  def init_noise_sigma(self):
@@ -281,6 +280,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
281
280
  self.sigmas = torch.from_numpy(sigmas).to(device=device)
282
281
  self.timesteps = torch.from_numpy(timesteps).to(device=device)
283
282
  self._step_index = None
283
+ self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
284
284
 
285
285
  self.derivatives = []
286
286
 
@@ -132,9 +132,7 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
132
132
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
133
133
  elif beta_schedule == "scaled_linear":
134
134
  # this schedule is very specific to the latent diffusion model.
135
- self.betas = (
136
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
137
- )
135
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
138
136
  elif beta_schedule == "squaredcos_cap_v2":
139
137
  # Glide cosine schedule
140
138
  self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -134,9 +134,7 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
134
134
  self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
135
135
  elif beta_schedule == "scaled_linear":
136
136
  # this schedule is very specific to the latent diffusion model.
137
- self.betas = (
138
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
139
- )
137
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
140
138
  elif beta_schedule == "squaredcos_cap_v2":
141
139
  # Glide cosine schedule
142
140
  self.betas = betas_for_alpha_bar(num_train_timesteps)