diffusers 0.23.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -2
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +13 -8
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +5 -5
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +463 -51
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +159 -0
- diffusers/loaders/lora.py +1553 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +637 -0
- diffusers/loaders/textual_inversion.py +455 -0
- diffusers/loaders/unet.py +828 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +26 -9
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +301 -29
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +378 -6
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +17 -12
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +47 -23
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +24 -28
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +51 -44
- diffusers/models/{vae.py → autoencoders/vae.py} +71 -17
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +14 -8
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +37 -29
- diffusers/models/normalization.py +110 -4
- diffusers/models/resnet.py +299 -652
- diffusers/models/transformer_2d.py +22 -5
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +46 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandinsky3.py +535 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +12 -3
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +137 -76
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +66 -8
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +23 -13
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +238 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +148 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +155 -41
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +123 -43
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +216 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +106 -34
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +177 -34
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +182 -37
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +5 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +8 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +34 -13
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +7 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +12 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +17 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +11 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +14 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +83 -51
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +7 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +7 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +589 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +654 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +111 -11
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +102 -9
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +11 -8
- diffusers/pipelines/pipeline_utils.py +63 -42
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +247 -38
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +37 -65
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +75 -78
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +174 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +178 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +224 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +74 -20
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +7 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +6 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +3 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +3 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +4 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +7 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +51 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +57 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +68 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +194 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +205 -16
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +206 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +23 -17
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +652 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +115 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +23 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +334 -10
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +1331 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -1
- diffusers/schedulers/__init__.py +4 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -7
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +47 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +47 -3
- diffusers/schedulers/scheduling_deis_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +28 -6
- diffusers/schedulers/scheduling_dpmsolver_sde.py +3 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +28 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +59 -3
- diffusers/schedulers/scheduling_euler_discrete.py +102 -16
- diffusers/schedulers/scheduling_heun_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +17 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +17 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +3 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +28 -6
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +1 -2
- diffusers/utils/constants.py +10 -12
- diffusers/utils/dummy_pt_objects.py +75 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
- diffusers/utils/dynamic_modules_utils.py +18 -22
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +11 -11
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +4 -4
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/METADATA +86 -69
- diffusers-0.25.0.dist-info/RECORD +360 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- diffusers/loaders.py +0 -3336
- diffusers-0.23.1.dist-info/RECORD +0 -323
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,652 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
from dataclasses import dataclass
|
17
|
+
from typing import Callable, Dict, List, Optional, Union
|
18
|
+
|
19
|
+
import numpy as np
|
20
|
+
import PIL.Image
|
21
|
+
import torch
|
22
|
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
23
|
+
|
24
|
+
from ...image_processor import VaeImageProcessor
|
25
|
+
from ...models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
|
26
|
+
from ...schedulers import EulerDiscreteScheduler
|
27
|
+
from ...utils import BaseOutput, logging
|
28
|
+
from ...utils.torch_utils import is_compiled_module, randn_tensor
|
29
|
+
from ..pipeline_utils import DiffusionPipeline
|
30
|
+
|
31
|
+
|
32
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33
|
+
|
34
|
+
|
35
|
+
def _append_dims(x, target_dims):
|
36
|
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
37
|
+
dims_to_append = target_dims - x.ndim
|
38
|
+
if dims_to_append < 0:
|
39
|
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
40
|
+
return x[(...,) + (None,) * dims_to_append]
|
41
|
+
|
42
|
+
|
43
|
+
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
44
|
+
# Based on:
|
45
|
+
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
46
|
+
|
47
|
+
batch_size, channels, num_frames, height, width = video.shape
|
48
|
+
outputs = []
|
49
|
+
for batch_idx in range(batch_size):
|
50
|
+
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
51
|
+
batch_output = processor.postprocess(batch_vid, output_type)
|
52
|
+
|
53
|
+
outputs.append(batch_output)
|
54
|
+
|
55
|
+
return outputs
|
56
|
+
|
57
|
+
|
58
|
+
@dataclass
|
59
|
+
class StableVideoDiffusionPipelineOutput(BaseOutput):
|
60
|
+
r"""
|
61
|
+
Output class for zero-shot text-to-video pipeline.
|
62
|
+
|
63
|
+
Args:
|
64
|
+
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
|
65
|
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
66
|
+
num_channels)`.
|
67
|
+
"""
|
68
|
+
|
69
|
+
frames: Union[List[PIL.Image.Image], np.ndarray]
|
70
|
+
|
71
|
+
|
72
|
+
class StableVideoDiffusionPipeline(DiffusionPipeline):
|
73
|
+
r"""
|
74
|
+
Pipeline to generate video from an input image using Stable Video Diffusion.
|
75
|
+
|
76
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
77
|
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
78
|
+
|
79
|
+
Args:
|
80
|
+
vae ([`AutoencoderKL`]):
|
81
|
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
82
|
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
83
|
+
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
|
84
|
+
unet ([`UNetSpatioTemporalConditionModel`]):
|
85
|
+
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
|
86
|
+
scheduler ([`EulerDiscreteScheduler`]):
|
87
|
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
88
|
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
89
|
+
A `CLIPImageProcessor` to extract features from generated images.
|
90
|
+
"""
|
91
|
+
|
92
|
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
93
|
+
_callback_tensor_inputs = ["latents"]
|
94
|
+
|
95
|
+
def __init__(
|
96
|
+
self,
|
97
|
+
vae: AutoencoderKLTemporalDecoder,
|
98
|
+
image_encoder: CLIPVisionModelWithProjection,
|
99
|
+
unet: UNetSpatioTemporalConditionModel,
|
100
|
+
scheduler: EulerDiscreteScheduler,
|
101
|
+
feature_extractor: CLIPImageProcessor,
|
102
|
+
):
|
103
|
+
super().__init__()
|
104
|
+
|
105
|
+
self.register_modules(
|
106
|
+
vae=vae,
|
107
|
+
image_encoder=image_encoder,
|
108
|
+
unet=unet,
|
109
|
+
scheduler=scheduler,
|
110
|
+
feature_extractor=feature_extractor,
|
111
|
+
)
|
112
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
113
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
114
|
+
|
115
|
+
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance):
|
116
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
117
|
+
|
118
|
+
if not isinstance(image, torch.Tensor):
|
119
|
+
image = self.image_processor.pil_to_numpy(image)
|
120
|
+
image = self.image_processor.numpy_to_pt(image)
|
121
|
+
|
122
|
+
# We normalize the image before resizing to match with the original implementation.
|
123
|
+
# Then we unnormalize it after resizing.
|
124
|
+
image = image * 2.0 - 1.0
|
125
|
+
image = _resize_with_antialiasing(image, (224, 224))
|
126
|
+
image = (image + 1.0) / 2.0
|
127
|
+
|
128
|
+
# Normalize the image with for CLIP input
|
129
|
+
image = self.feature_extractor(
|
130
|
+
images=image,
|
131
|
+
do_normalize=True,
|
132
|
+
do_center_crop=False,
|
133
|
+
do_resize=False,
|
134
|
+
do_rescale=False,
|
135
|
+
return_tensors="pt",
|
136
|
+
).pixel_values
|
137
|
+
|
138
|
+
image = image.to(device=device, dtype=dtype)
|
139
|
+
image_embeddings = self.image_encoder(image).image_embeds
|
140
|
+
image_embeddings = image_embeddings.unsqueeze(1)
|
141
|
+
|
142
|
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
143
|
+
bs_embed, seq_len, _ = image_embeddings.shape
|
144
|
+
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
|
145
|
+
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
146
|
+
|
147
|
+
if do_classifier_free_guidance:
|
148
|
+
negative_image_embeddings = torch.zeros_like(image_embeddings)
|
149
|
+
|
150
|
+
# For classifier free guidance, we need to do two forward passes.
|
151
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
152
|
+
# to avoid doing two forward passes
|
153
|
+
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
|
154
|
+
|
155
|
+
return image_embeddings
|
156
|
+
|
157
|
+
def _encode_vae_image(
|
158
|
+
self,
|
159
|
+
image: torch.Tensor,
|
160
|
+
device,
|
161
|
+
num_videos_per_prompt,
|
162
|
+
do_classifier_free_guidance,
|
163
|
+
):
|
164
|
+
image = image.to(device=device)
|
165
|
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
166
|
+
|
167
|
+
if do_classifier_free_guidance:
|
168
|
+
negative_image_latents = torch.zeros_like(image_latents)
|
169
|
+
|
170
|
+
# For classifier free guidance, we need to do two forward passes.
|
171
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
172
|
+
# to avoid doing two forward passes
|
173
|
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
174
|
+
|
175
|
+
# duplicate image_latents for each generation per prompt, using mps friendly method
|
176
|
+
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
|
177
|
+
|
178
|
+
return image_latents
|
179
|
+
|
180
|
+
def _get_add_time_ids(
|
181
|
+
self,
|
182
|
+
fps,
|
183
|
+
motion_bucket_id,
|
184
|
+
noise_aug_strength,
|
185
|
+
dtype,
|
186
|
+
batch_size,
|
187
|
+
num_videos_per_prompt,
|
188
|
+
do_classifier_free_guidance,
|
189
|
+
):
|
190
|
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
191
|
+
|
192
|
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
|
193
|
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
194
|
+
|
195
|
+
if expected_add_embed_dim != passed_add_embed_dim:
|
196
|
+
raise ValueError(
|
197
|
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
198
|
+
)
|
199
|
+
|
200
|
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
201
|
+
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
|
202
|
+
|
203
|
+
if do_classifier_free_guidance:
|
204
|
+
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
205
|
+
|
206
|
+
return add_time_ids
|
207
|
+
|
208
|
+
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
|
209
|
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
210
|
+
latents = latents.flatten(0, 1)
|
211
|
+
|
212
|
+
latents = 1 / self.vae.config.scaling_factor * latents
|
213
|
+
|
214
|
+
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
215
|
+
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
216
|
+
|
217
|
+
# decode decode_chunk_size frames at a time to avoid OOM
|
218
|
+
frames = []
|
219
|
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
220
|
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
221
|
+
decode_kwargs = {}
|
222
|
+
if accepts_num_frames:
|
223
|
+
# we only pass num_frames_in if it's expected
|
224
|
+
decode_kwargs["num_frames"] = num_frames_in
|
225
|
+
|
226
|
+
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
|
227
|
+
frames.append(frame)
|
228
|
+
frames = torch.cat(frames, dim=0)
|
229
|
+
|
230
|
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
231
|
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
232
|
+
|
233
|
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
234
|
+
frames = frames.float()
|
235
|
+
return frames
|
236
|
+
|
237
|
+
def check_inputs(self, image, height, width):
|
238
|
+
if (
|
239
|
+
not isinstance(image, torch.Tensor)
|
240
|
+
and not isinstance(image, PIL.Image.Image)
|
241
|
+
and not isinstance(image, list)
|
242
|
+
):
|
243
|
+
raise ValueError(
|
244
|
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
245
|
+
f" {type(image)}"
|
246
|
+
)
|
247
|
+
|
248
|
+
if height % 8 != 0 or width % 8 != 0:
|
249
|
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
250
|
+
|
251
|
+
def prepare_latents(
|
252
|
+
self,
|
253
|
+
batch_size,
|
254
|
+
num_frames,
|
255
|
+
num_channels_latents,
|
256
|
+
height,
|
257
|
+
width,
|
258
|
+
dtype,
|
259
|
+
device,
|
260
|
+
generator,
|
261
|
+
latents=None,
|
262
|
+
):
|
263
|
+
shape = (
|
264
|
+
batch_size,
|
265
|
+
num_frames,
|
266
|
+
num_channels_latents // 2,
|
267
|
+
height // self.vae_scale_factor,
|
268
|
+
width // self.vae_scale_factor,
|
269
|
+
)
|
270
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
271
|
+
raise ValueError(
|
272
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
273
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
274
|
+
)
|
275
|
+
|
276
|
+
if latents is None:
|
277
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
278
|
+
else:
|
279
|
+
latents = latents.to(device)
|
280
|
+
|
281
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
282
|
+
latents = latents * self.scheduler.init_noise_sigma
|
283
|
+
return latents
|
284
|
+
|
285
|
+
@property
|
286
|
+
def guidance_scale(self):
|
287
|
+
return self._guidance_scale
|
288
|
+
|
289
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
290
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
291
|
+
# corresponds to doing no classifier free guidance.
|
292
|
+
@property
|
293
|
+
def do_classifier_free_guidance(self):
|
294
|
+
if isinstance(self.guidance_scale, (int, float)):
|
295
|
+
return self.guidance_scale
|
296
|
+
return self.guidance_scale.max() > 1
|
297
|
+
|
298
|
+
@property
|
299
|
+
def num_timesteps(self):
|
300
|
+
return self._num_timesteps
|
301
|
+
|
302
|
+
@torch.no_grad()
|
303
|
+
def __call__(
|
304
|
+
self,
|
305
|
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
|
306
|
+
height: int = 576,
|
307
|
+
width: int = 1024,
|
308
|
+
num_frames: Optional[int] = None,
|
309
|
+
num_inference_steps: int = 25,
|
310
|
+
min_guidance_scale: float = 1.0,
|
311
|
+
max_guidance_scale: float = 3.0,
|
312
|
+
fps: int = 7,
|
313
|
+
motion_bucket_id: int = 127,
|
314
|
+
noise_aug_strength: int = 0.02,
|
315
|
+
decode_chunk_size: Optional[int] = None,
|
316
|
+
num_videos_per_prompt: Optional[int] = 1,
|
317
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
318
|
+
latents: Optional[torch.FloatTensor] = None,
|
319
|
+
output_type: Optional[str] = "pil",
|
320
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
321
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
322
|
+
return_dict: bool = True,
|
323
|
+
):
|
324
|
+
r"""
|
325
|
+
The call function to the pipeline for generation.
|
326
|
+
|
327
|
+
Args:
|
328
|
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
329
|
+
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
|
330
|
+
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
|
331
|
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
332
|
+
The height in pixels of the generated image.
|
333
|
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
334
|
+
The width in pixels of the generated image.
|
335
|
+
num_frames (`int`, *optional*):
|
336
|
+
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
|
337
|
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
338
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
339
|
+
expense of slower inference. This parameter is modulated by `strength`.
|
340
|
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
341
|
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
342
|
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
343
|
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
344
|
+
fps (`int`, *optional*, defaults to 7):
|
345
|
+
Frames per second. The rate at which the generated images shall be exported to a video after generation.
|
346
|
+
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
347
|
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
348
|
+
The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.
|
349
|
+
noise_aug_strength (`int`, *optional*, defaults to 0.02):
|
350
|
+
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
|
351
|
+
decode_chunk_size (`int`, *optional*):
|
352
|
+
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
|
353
|
+
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
|
354
|
+
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
|
355
|
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
356
|
+
The number of images to generate per prompt.
|
357
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
358
|
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
359
|
+
generation deterministic.
|
360
|
+
latents (`torch.FloatTensor`, *optional*):
|
361
|
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
362
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
363
|
+
tensor is generated by sampling using the supplied random `generator`.
|
364
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
365
|
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
366
|
+
callback_on_step_end (`Callable`, *optional*):
|
367
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
368
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
369
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
370
|
+
`callback_on_step_end_tensor_inputs`.
|
371
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
372
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
373
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
374
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
375
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
376
|
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
377
|
+
plain tuple.
|
378
|
+
|
379
|
+
Returns:
|
380
|
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
|
381
|
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
|
382
|
+
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
|
383
|
+
|
384
|
+
Examples:
|
385
|
+
|
386
|
+
```py
|
387
|
+
from diffusers import StableVideoDiffusionPipeline
|
388
|
+
from diffusers.utils import load_image, export_to_video
|
389
|
+
|
390
|
+
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
|
391
|
+
pipe.to("cuda")
|
392
|
+
|
393
|
+
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
|
394
|
+
image = image.resize((1024, 576))
|
395
|
+
|
396
|
+
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
|
397
|
+
export_to_video(frames, "generated.mp4", fps=7)
|
398
|
+
```
|
399
|
+
"""
|
400
|
+
# 0. Default height and width to unet
|
401
|
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
402
|
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
403
|
+
|
404
|
+
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
|
405
|
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
|
406
|
+
|
407
|
+
# 1. Check inputs. Raise error if not correct
|
408
|
+
self.check_inputs(image, height, width)
|
409
|
+
|
410
|
+
# 2. Define call parameters
|
411
|
+
if isinstance(image, PIL.Image.Image):
|
412
|
+
batch_size = 1
|
413
|
+
elif isinstance(image, list):
|
414
|
+
batch_size = len(image)
|
415
|
+
else:
|
416
|
+
batch_size = image.shape[0]
|
417
|
+
device = self._execution_device
|
418
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
419
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
420
|
+
# corresponds to doing no classifier free guidance.
|
421
|
+
self._guidance_scale = max_guidance_scale
|
422
|
+
|
423
|
+
# 3. Encode input image
|
424
|
+
image_embeddings = self._encode_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance)
|
425
|
+
|
426
|
+
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
|
427
|
+
# is why it is reduced here.
|
428
|
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
429
|
+
fps = fps - 1
|
430
|
+
|
431
|
+
# 4. Encode input image using VAE
|
432
|
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
433
|
+
noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype)
|
434
|
+
image = image + noise_aug_strength * noise
|
435
|
+
|
436
|
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
437
|
+
if needs_upcasting:
|
438
|
+
self.vae.to(dtype=torch.float32)
|
439
|
+
|
440
|
+
image_latents = self._encode_vae_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance)
|
441
|
+
image_latents = image_latents.to(image_embeddings.dtype)
|
442
|
+
|
443
|
+
# cast back to fp16 if needed
|
444
|
+
if needs_upcasting:
|
445
|
+
self.vae.to(dtype=torch.float16)
|
446
|
+
|
447
|
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
448
|
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
449
|
+
image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
450
|
+
|
451
|
+
# 5. Get Added Time IDs
|
452
|
+
added_time_ids = self._get_add_time_ids(
|
453
|
+
fps,
|
454
|
+
motion_bucket_id,
|
455
|
+
noise_aug_strength,
|
456
|
+
image_embeddings.dtype,
|
457
|
+
batch_size,
|
458
|
+
num_videos_per_prompt,
|
459
|
+
self.do_classifier_free_guidance,
|
460
|
+
)
|
461
|
+
added_time_ids = added_time_ids.to(device)
|
462
|
+
|
463
|
+
# 4. Prepare timesteps
|
464
|
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
465
|
+
timesteps = self.scheduler.timesteps
|
466
|
+
|
467
|
+
# 5. Prepare latent variables
|
468
|
+
num_channels_latents = self.unet.config.in_channels
|
469
|
+
latents = self.prepare_latents(
|
470
|
+
batch_size * num_videos_per_prompt,
|
471
|
+
num_frames,
|
472
|
+
num_channels_latents,
|
473
|
+
height,
|
474
|
+
width,
|
475
|
+
image_embeddings.dtype,
|
476
|
+
device,
|
477
|
+
generator,
|
478
|
+
latents,
|
479
|
+
)
|
480
|
+
|
481
|
+
# 7. Prepare guidance scale
|
482
|
+
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
|
483
|
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
484
|
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
485
|
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
486
|
+
|
487
|
+
self._guidance_scale = guidance_scale
|
488
|
+
|
489
|
+
# 8. Denoising loop
|
490
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
491
|
+
self._num_timesteps = len(timesteps)
|
492
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
493
|
+
for i, t in enumerate(timesteps):
|
494
|
+
# expand the latents if we are doing classifier free guidance
|
495
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
496
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
497
|
+
|
498
|
+
# Concatenate image_latents over channels dimention
|
499
|
+
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
|
500
|
+
|
501
|
+
# predict the noise residual
|
502
|
+
noise_pred = self.unet(
|
503
|
+
latent_model_input,
|
504
|
+
t,
|
505
|
+
encoder_hidden_states=image_embeddings,
|
506
|
+
added_time_ids=added_time_ids,
|
507
|
+
return_dict=False,
|
508
|
+
)[0]
|
509
|
+
|
510
|
+
# perform guidance
|
511
|
+
if self.do_classifier_free_guidance:
|
512
|
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
513
|
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
514
|
+
|
515
|
+
# compute the previous noisy sample x_t -> x_t-1
|
516
|
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
517
|
+
|
518
|
+
if callback_on_step_end is not None:
|
519
|
+
callback_kwargs = {}
|
520
|
+
for k in callback_on_step_end_tensor_inputs:
|
521
|
+
callback_kwargs[k] = locals()[k]
|
522
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
523
|
+
|
524
|
+
latents = callback_outputs.pop("latents", latents)
|
525
|
+
|
526
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
527
|
+
progress_bar.update()
|
528
|
+
|
529
|
+
if not output_type == "latent":
|
530
|
+
# cast back to fp16 if needed
|
531
|
+
if needs_upcasting:
|
532
|
+
self.vae.to(dtype=torch.float16)
|
533
|
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
534
|
+
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
|
535
|
+
else:
|
536
|
+
frames = latents
|
537
|
+
|
538
|
+
self.maybe_free_model_hooks()
|
539
|
+
|
540
|
+
if not return_dict:
|
541
|
+
return frames
|
542
|
+
|
543
|
+
return StableVideoDiffusionPipelineOutput(frames=frames)
|
544
|
+
|
545
|
+
|
546
|
+
# resizing utils
|
547
|
+
# TODO: clean up later
|
548
|
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
549
|
+
h, w = input.shape[-2:]
|
550
|
+
factors = (h / size[0], w / size[1])
|
551
|
+
|
552
|
+
# First, we have to determine sigma
|
553
|
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
554
|
+
sigmas = (
|
555
|
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
556
|
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
557
|
+
)
|
558
|
+
|
559
|
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
560
|
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
561
|
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
562
|
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
563
|
+
|
564
|
+
# Make sure it is odd
|
565
|
+
if (ks[0] % 2) == 0:
|
566
|
+
ks = ks[0] + 1, ks[1]
|
567
|
+
|
568
|
+
if (ks[1] % 2) == 0:
|
569
|
+
ks = ks[0], ks[1] + 1
|
570
|
+
|
571
|
+
input = _gaussian_blur2d(input, ks, sigmas)
|
572
|
+
|
573
|
+
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
|
574
|
+
return output
|
575
|
+
|
576
|
+
|
577
|
+
def _compute_padding(kernel_size):
|
578
|
+
"""Compute padding tuple."""
|
579
|
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
580
|
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
581
|
+
if len(kernel_size) < 2:
|
582
|
+
raise AssertionError(kernel_size)
|
583
|
+
computed = [k - 1 for k in kernel_size]
|
584
|
+
|
585
|
+
# for even kernels we need to do asymmetric padding :(
|
586
|
+
out_padding = 2 * len(kernel_size) * [0]
|
587
|
+
|
588
|
+
for i in range(len(kernel_size)):
|
589
|
+
computed_tmp = computed[-(i + 1)]
|
590
|
+
|
591
|
+
pad_front = computed_tmp // 2
|
592
|
+
pad_rear = computed_tmp - pad_front
|
593
|
+
|
594
|
+
out_padding[2 * i + 0] = pad_front
|
595
|
+
out_padding[2 * i + 1] = pad_rear
|
596
|
+
|
597
|
+
return out_padding
|
598
|
+
|
599
|
+
|
600
|
+
def _filter2d(input, kernel):
|
601
|
+
# prepare kernel
|
602
|
+
b, c, h, w = input.shape
|
603
|
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
604
|
+
|
605
|
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
606
|
+
|
607
|
+
height, width = tmp_kernel.shape[-2:]
|
608
|
+
|
609
|
+
padding_shape: list[int] = _compute_padding([height, width])
|
610
|
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
611
|
+
|
612
|
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
613
|
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
614
|
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
615
|
+
|
616
|
+
# convolve the tensor with the kernel.
|
617
|
+
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
|
618
|
+
|
619
|
+
out = output.view(b, c, h, w)
|
620
|
+
return out
|
621
|
+
|
622
|
+
|
623
|
+
def _gaussian(window_size: int, sigma):
|
624
|
+
if isinstance(sigma, float):
|
625
|
+
sigma = torch.tensor([[sigma]])
|
626
|
+
|
627
|
+
batch_size = sigma.shape[0]
|
628
|
+
|
629
|
+
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
|
630
|
+
|
631
|
+
if window_size % 2 == 0:
|
632
|
+
x = x + 0.5
|
633
|
+
|
634
|
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
635
|
+
|
636
|
+
return gauss / gauss.sum(-1, keepdim=True)
|
637
|
+
|
638
|
+
|
639
|
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
640
|
+
if isinstance(sigma, tuple):
|
641
|
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
642
|
+
else:
|
643
|
+
sigma = sigma.to(dtype=input.dtype)
|
644
|
+
|
645
|
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
646
|
+
bs = sigma.shape[0]
|
647
|
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
648
|
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
649
|
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
650
|
+
out = _filter2d(out_x, kernel_y[..., None])
|
651
|
+
|
652
|
+
return out
|