churnkit 0.75.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (302) hide show
  1. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
  2. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
  3. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
  4. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
  5. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
  6. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
  7. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
  8. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
  9. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
  10. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
  11. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
  12. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
  13. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
  14. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
  15. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
  16. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
  17. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
  18. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
  19. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
  20. churnkit-0.75.0a1.dist-info/METADATA +229 -0
  21. churnkit-0.75.0a1.dist-info/RECORD +302 -0
  22. churnkit-0.75.0a1.dist-info/WHEEL +4 -0
  23. churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
  24. churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
  25. customer_retention/__init__.py +37 -0
  26. customer_retention/analysis/__init__.py +0 -0
  27. customer_retention/analysis/auto_explorer/__init__.py +62 -0
  28. customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
  29. customer_retention/analysis/auto_explorer/explorer.py +258 -0
  30. customer_retention/analysis/auto_explorer/findings.py +291 -0
  31. customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
  32. customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
  33. customer_retention/analysis/auto_explorer/recommendations.py +418 -0
  34. customer_retention/analysis/business/__init__.py +26 -0
  35. customer_retention/analysis/business/ab_test_designer.py +144 -0
  36. customer_retention/analysis/business/fairness_analyzer.py +166 -0
  37. customer_retention/analysis/business/intervention_matcher.py +121 -0
  38. customer_retention/analysis/business/report_generator.py +222 -0
  39. customer_retention/analysis/business/risk_profile.py +199 -0
  40. customer_retention/analysis/business/roi_analyzer.py +139 -0
  41. customer_retention/analysis/diagnostics/__init__.py +20 -0
  42. customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
  43. customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
  44. customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
  45. customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
  46. customer_retention/analysis/diagnostics/noise_tester.py +140 -0
  47. customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
  48. customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
  49. customer_retention/analysis/discovery/__init__.py +8 -0
  50. customer_retention/analysis/discovery/config_generator.py +49 -0
  51. customer_retention/analysis/discovery/discovery_flow.py +19 -0
  52. customer_retention/analysis/discovery/type_inferencer.py +147 -0
  53. customer_retention/analysis/interpretability/__init__.py +13 -0
  54. customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
  55. customer_retention/analysis/interpretability/counterfactual.py +175 -0
  56. customer_retention/analysis/interpretability/individual_explainer.py +141 -0
  57. customer_retention/analysis/interpretability/pdp_generator.py +103 -0
  58. customer_retention/analysis/interpretability/shap_explainer.py +106 -0
  59. customer_retention/analysis/jupyter_save_hook.py +28 -0
  60. customer_retention/analysis/notebook_html_exporter.py +136 -0
  61. customer_retention/analysis/notebook_progress.py +60 -0
  62. customer_retention/analysis/plotly_preprocessor.py +154 -0
  63. customer_retention/analysis/recommendations/__init__.py +54 -0
  64. customer_retention/analysis/recommendations/base.py +158 -0
  65. customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
  66. customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
  67. customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
  68. customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
  69. customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
  70. customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
  71. customer_retention/analysis/recommendations/datetime/extract.py +149 -0
  72. customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
  73. customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
  74. customer_retention/analysis/recommendations/pipeline.py +74 -0
  75. customer_retention/analysis/recommendations/registry.py +76 -0
  76. customer_retention/analysis/recommendations/selection/__init__.py +3 -0
  77. customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
  78. customer_retention/analysis/recommendations/transform/__init__.py +4 -0
  79. customer_retention/analysis/recommendations/transform/power.py +94 -0
  80. customer_retention/analysis/recommendations/transform/scale.py +112 -0
  81. customer_retention/analysis/visualization/__init__.py +15 -0
  82. customer_retention/analysis/visualization/chart_builder.py +2619 -0
  83. customer_retention/analysis/visualization/console.py +122 -0
  84. customer_retention/analysis/visualization/display.py +171 -0
  85. customer_retention/analysis/visualization/number_formatter.py +36 -0
  86. customer_retention/artifacts/__init__.py +3 -0
  87. customer_retention/artifacts/fit_artifact_registry.py +146 -0
  88. customer_retention/cli.py +93 -0
  89. customer_retention/core/__init__.py +0 -0
  90. customer_retention/core/compat/__init__.py +193 -0
  91. customer_retention/core/compat/detection.py +99 -0
  92. customer_retention/core/compat/ops.py +48 -0
  93. customer_retention/core/compat/pandas_backend.py +57 -0
  94. customer_retention/core/compat/spark_backend.py +75 -0
  95. customer_retention/core/components/__init__.py +11 -0
  96. customer_retention/core/components/base.py +79 -0
  97. customer_retention/core/components/components/__init__.py +13 -0
  98. customer_retention/core/components/components/deployer.py +26 -0
  99. customer_retention/core/components/components/explainer.py +26 -0
  100. customer_retention/core/components/components/feature_eng.py +33 -0
  101. customer_retention/core/components/components/ingester.py +34 -0
  102. customer_retention/core/components/components/profiler.py +34 -0
  103. customer_retention/core/components/components/trainer.py +38 -0
  104. customer_retention/core/components/components/transformer.py +36 -0
  105. customer_retention/core/components/components/validator.py +37 -0
  106. customer_retention/core/components/enums.py +33 -0
  107. customer_retention/core/components/orchestrator.py +94 -0
  108. customer_retention/core/components/registry.py +59 -0
  109. customer_retention/core/config/__init__.py +39 -0
  110. customer_retention/core/config/column_config.py +95 -0
  111. customer_retention/core/config/experiments.py +71 -0
  112. customer_retention/core/config/pipeline_config.py +117 -0
  113. customer_retention/core/config/source_config.py +83 -0
  114. customer_retention/core/utils/__init__.py +28 -0
  115. customer_retention/core/utils/leakage.py +85 -0
  116. customer_retention/core/utils/severity.py +53 -0
  117. customer_retention/core/utils/statistics.py +90 -0
  118. customer_retention/generators/__init__.py +0 -0
  119. customer_retention/generators/notebook_generator/__init__.py +167 -0
  120. customer_retention/generators/notebook_generator/base.py +55 -0
  121. customer_retention/generators/notebook_generator/cell_builder.py +49 -0
  122. customer_retention/generators/notebook_generator/config.py +47 -0
  123. customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
  124. customer_retention/generators/notebook_generator/local_generator.py +48 -0
  125. customer_retention/generators/notebook_generator/project_init.py +174 -0
  126. customer_retention/generators/notebook_generator/runner.py +150 -0
  127. customer_retention/generators/notebook_generator/script_generator.py +110 -0
  128. customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
  129. customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
  130. customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
  131. customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
  132. customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
  133. customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
  134. customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
  135. customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
  136. customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
  137. customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
  138. customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
  139. customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
  140. customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
  141. customer_retention/generators/orchestration/__init__.py +23 -0
  142. customer_retention/generators/orchestration/code_generator.py +196 -0
  143. customer_retention/generators/orchestration/context.py +147 -0
  144. customer_retention/generators/orchestration/data_materializer.py +188 -0
  145. customer_retention/generators/orchestration/databricks_exporter.py +411 -0
  146. customer_retention/generators/orchestration/doc_generator.py +311 -0
  147. customer_retention/generators/pipeline_generator/__init__.py +26 -0
  148. customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
  149. customer_retention/generators/pipeline_generator/generator.py +142 -0
  150. customer_retention/generators/pipeline_generator/models.py +166 -0
  151. customer_retention/generators/pipeline_generator/renderer.py +2125 -0
  152. customer_retention/generators/spec_generator/__init__.py +37 -0
  153. customer_retention/generators/spec_generator/databricks_generator.py +433 -0
  154. customer_retention/generators/spec_generator/generic_generator.py +373 -0
  155. customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
  156. customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
  157. customer_retention/integrations/__init__.py +0 -0
  158. customer_retention/integrations/adapters/__init__.py +13 -0
  159. customer_retention/integrations/adapters/base.py +10 -0
  160. customer_retention/integrations/adapters/factory.py +25 -0
  161. customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
  162. customer_retention/integrations/adapters/feature_store/base.py +57 -0
  163. customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
  164. customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
  165. customer_retention/integrations/adapters/feature_store/local.py +75 -0
  166. customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
  167. customer_retention/integrations/adapters/mlflow/base.py +32 -0
  168. customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
  169. customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
  170. customer_retention/integrations/adapters/mlflow/local.py +50 -0
  171. customer_retention/integrations/adapters/storage/__init__.py +5 -0
  172. customer_retention/integrations/adapters/storage/base.py +33 -0
  173. customer_retention/integrations/adapters/storage/databricks.py +76 -0
  174. customer_retention/integrations/adapters/storage/local.py +59 -0
  175. customer_retention/integrations/feature_store/__init__.py +47 -0
  176. customer_retention/integrations/feature_store/definitions.py +215 -0
  177. customer_retention/integrations/feature_store/manager.py +744 -0
  178. customer_retention/integrations/feature_store/registry.py +412 -0
  179. customer_retention/integrations/iteration/__init__.py +28 -0
  180. customer_retention/integrations/iteration/context.py +212 -0
  181. customer_retention/integrations/iteration/feedback_collector.py +184 -0
  182. customer_retention/integrations/iteration/orchestrator.py +168 -0
  183. customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
  184. customer_retention/integrations/iteration/signals.py +212 -0
  185. customer_retention/integrations/llm_context/__init__.py +4 -0
  186. customer_retention/integrations/llm_context/context_builder.py +201 -0
  187. customer_retention/integrations/llm_context/prompts.py +100 -0
  188. customer_retention/integrations/streaming/__init__.py +103 -0
  189. customer_retention/integrations/streaming/batch_integration.py +149 -0
  190. customer_retention/integrations/streaming/early_warning_model.py +227 -0
  191. customer_retention/integrations/streaming/event_schema.py +214 -0
  192. customer_retention/integrations/streaming/online_store_writer.py +249 -0
  193. customer_retention/integrations/streaming/realtime_scorer.py +261 -0
  194. customer_retention/integrations/streaming/trigger_engine.py +293 -0
  195. customer_retention/integrations/streaming/window_aggregator.py +393 -0
  196. customer_retention/stages/__init__.py +0 -0
  197. customer_retention/stages/cleaning/__init__.py +9 -0
  198. customer_retention/stages/cleaning/base.py +28 -0
  199. customer_retention/stages/cleaning/missing_handler.py +160 -0
  200. customer_retention/stages/cleaning/outlier_handler.py +204 -0
  201. customer_retention/stages/deployment/__init__.py +28 -0
  202. customer_retention/stages/deployment/batch_scorer.py +106 -0
  203. customer_retention/stages/deployment/champion_challenger.py +299 -0
  204. customer_retention/stages/deployment/model_registry.py +182 -0
  205. customer_retention/stages/deployment/retraining_trigger.py +245 -0
  206. customer_retention/stages/features/__init__.py +73 -0
  207. customer_retention/stages/features/behavioral_features.py +266 -0
  208. customer_retention/stages/features/customer_segmentation.py +505 -0
  209. customer_retention/stages/features/feature_definitions.py +265 -0
  210. customer_retention/stages/features/feature_engineer.py +551 -0
  211. customer_retention/stages/features/feature_manifest.py +340 -0
  212. customer_retention/stages/features/feature_selector.py +239 -0
  213. customer_retention/stages/features/interaction_features.py +160 -0
  214. customer_retention/stages/features/temporal_features.py +243 -0
  215. customer_retention/stages/ingestion/__init__.py +9 -0
  216. customer_retention/stages/ingestion/load_result.py +32 -0
  217. customer_retention/stages/ingestion/loaders.py +195 -0
  218. customer_retention/stages/ingestion/source_registry.py +130 -0
  219. customer_retention/stages/modeling/__init__.py +31 -0
  220. customer_retention/stages/modeling/baseline_trainer.py +139 -0
  221. customer_retention/stages/modeling/cross_validator.py +125 -0
  222. customer_retention/stages/modeling/data_splitter.py +205 -0
  223. customer_retention/stages/modeling/feature_scaler.py +99 -0
  224. customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
  225. customer_retention/stages/modeling/imbalance_handler.py +282 -0
  226. customer_retention/stages/modeling/mlflow_logger.py +95 -0
  227. customer_retention/stages/modeling/model_comparator.py +149 -0
  228. customer_retention/stages/modeling/model_evaluator.py +138 -0
  229. customer_retention/stages/modeling/threshold_optimizer.py +131 -0
  230. customer_retention/stages/monitoring/__init__.py +37 -0
  231. customer_retention/stages/monitoring/alert_manager.py +328 -0
  232. customer_retention/stages/monitoring/drift_detector.py +201 -0
  233. customer_retention/stages/monitoring/performance_monitor.py +242 -0
  234. customer_retention/stages/preprocessing/__init__.py +5 -0
  235. customer_retention/stages/preprocessing/transformer_manager.py +284 -0
  236. customer_retention/stages/profiling/__init__.py +256 -0
  237. customer_retention/stages/profiling/categorical_distribution.py +269 -0
  238. customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
  239. customer_retention/stages/profiling/column_profiler.py +527 -0
  240. customer_retention/stages/profiling/distribution_analysis.py +483 -0
  241. customer_retention/stages/profiling/drift_detector.py +310 -0
  242. customer_retention/stages/profiling/feature_capacity.py +507 -0
  243. customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
  244. customer_retention/stages/profiling/profile_result.py +212 -0
  245. customer_retention/stages/profiling/quality_checks.py +1632 -0
  246. customer_retention/stages/profiling/relationship_detector.py +256 -0
  247. customer_retention/stages/profiling/relationship_recommender.py +454 -0
  248. customer_retention/stages/profiling/report_generator.py +520 -0
  249. customer_retention/stages/profiling/scd_analyzer.py +151 -0
  250. customer_retention/stages/profiling/segment_analyzer.py +632 -0
  251. customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
  252. customer_retention/stages/profiling/target_level_analyzer.py +217 -0
  253. customer_retention/stages/profiling/temporal_analyzer.py +388 -0
  254. customer_retention/stages/profiling/temporal_coverage.py +488 -0
  255. customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
  256. customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
  257. customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
  258. customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
  259. customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
  260. customer_retention/stages/profiling/text_embedder.py +87 -0
  261. customer_retention/stages/profiling/text_processor.py +115 -0
  262. customer_retention/stages/profiling/text_reducer.py +60 -0
  263. customer_retention/stages/profiling/time_series_profiler.py +303 -0
  264. customer_retention/stages/profiling/time_window_aggregator.py +376 -0
  265. customer_retention/stages/profiling/type_detector.py +382 -0
  266. customer_retention/stages/profiling/window_recommendation.py +288 -0
  267. customer_retention/stages/temporal/__init__.py +166 -0
  268. customer_retention/stages/temporal/access_guard.py +180 -0
  269. customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
  270. customer_retention/stages/temporal/data_preparer.py +178 -0
  271. customer_retention/stages/temporal/point_in_time_join.py +134 -0
  272. customer_retention/stages/temporal/point_in_time_registry.py +148 -0
  273. customer_retention/stages/temporal/scenario_detector.py +163 -0
  274. customer_retention/stages/temporal/snapshot_manager.py +259 -0
  275. customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
  276. customer_retention/stages/temporal/timestamp_discovery.py +531 -0
  277. customer_retention/stages/temporal/timestamp_manager.py +255 -0
  278. customer_retention/stages/transformation/__init__.py +13 -0
  279. customer_retention/stages/transformation/binary_handler.py +85 -0
  280. customer_retention/stages/transformation/categorical_encoder.py +245 -0
  281. customer_retention/stages/transformation/datetime_transformer.py +97 -0
  282. customer_retention/stages/transformation/numeric_transformer.py +181 -0
  283. customer_retention/stages/transformation/pipeline.py +257 -0
  284. customer_retention/stages/validation/__init__.py +60 -0
  285. customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
  286. customer_retention/stages/validation/business_sense_gate.py +173 -0
  287. customer_retention/stages/validation/data_quality_gate.py +235 -0
  288. customer_retention/stages/validation/data_validators.py +511 -0
  289. customer_retention/stages/validation/feature_quality_gate.py +183 -0
  290. customer_retention/stages/validation/gates.py +117 -0
  291. customer_retention/stages/validation/leakage_gate.py +352 -0
  292. customer_retention/stages/validation/model_validity_gate.py +213 -0
  293. customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
  294. customer_retention/stages/validation/quality_scorer.py +544 -0
  295. customer_retention/stages/validation/rule_generator.py +57 -0
  296. customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
  297. customer_retention/stages/validation/timeseries_detector.py +769 -0
  298. customer_retention/transforms/__init__.py +47 -0
  299. customer_retention/transforms/artifact_store.py +50 -0
  300. customer_retention/transforms/executor.py +157 -0
  301. customer_retention/transforms/fitted.py +92 -0
  302. customer_retention/transforms/ops.py +148 -0
@@ -0,0 +1,376 @@
1
+ import warnings
2
+ from dataclasses import dataclass, field
3
+ from enum import Enum
4
+ from pathlib import Path
5
+ from typing import Dict, List, Optional, Union
6
+
7
+ import numpy as np
8
+
9
+ from customer_retention.core.compat import DataFrame, pd
10
+
11
+
12
+ class AggregationType(str, Enum):
13
+ SUM = "sum"
14
+ MEAN = "mean"
15
+ MAX = "max"
16
+ MIN = "min"
17
+ COUNT = "count"
18
+ STD = "std"
19
+ MEDIAN = "median"
20
+ FIRST = "first"
21
+ LAST = "last"
22
+ MODE = "mode"
23
+ NUNIQUE = "nunique"
24
+ MODE_RATIO = "mode_ratio"
25
+ ENTROPY = "entropy"
26
+ VALUE_COUNTS = "value_counts"
27
+
28
+
29
+ CATEGORICAL_AGG_FUNCS = {"mode", "nunique", "mode_ratio", "entropy", "value_counts"}
30
+ NUMERIC_AGG_FUNCS = {"sum", "mean", "max", "min", "count", "std", "median", "first", "last"}
31
+
32
+
33
+ @dataclass
34
+ class TimeWindow:
35
+ name: str
36
+ days: Optional[int]
37
+
38
+ @classmethod
39
+ def from_string(cls, window_str: str) -> "TimeWindow":
40
+ window_str = window_str.lower().strip()
41
+ if window_str == "all_time":
42
+ return cls(name="all_time", days=None)
43
+ if window_str.endswith("d"):
44
+ return cls(name=window_str, days=int(window_str[:-1]))
45
+ if window_str.endswith("h"):
46
+ return cls(name=window_str, days=int(window_str[:-1]) / 24)
47
+ if window_str.endswith("w"):
48
+ return cls(name=window_str, days=int(window_str[:-1]) * 7)
49
+ raise ValueError(f"Unknown window format: {window_str}")
50
+
51
+
52
+ @dataclass
53
+ class AggregationPlan:
54
+ entity_column: str
55
+ time_column: str
56
+ windows: List[TimeWindow]
57
+ value_columns: List[str]
58
+ agg_funcs: List[str]
59
+ feature_columns: List[str] = field(default_factory=list)
60
+ include_event_count: bool = True
61
+ include_recency: bool = False
62
+ include_tenure: bool = False
63
+ value_counts_categories: Dict[str, List[str]] = field(default_factory=dict)
64
+
65
+
66
+ class TimeWindowAggregator:
67
+ def __init__(self, entity_column: str, time_column: str):
68
+ self.entity_column = entity_column
69
+ self.time_column = time_column
70
+
71
+ def aggregate(
72
+ self, df: DataFrame, windows: Optional[List[str]] = None,
73
+ value_columns: Optional[List[str]] = None, agg_funcs: Optional[List[str]] = None,
74
+ reference_date: Optional[pd.Timestamp] = None, include_event_count: bool = False,
75
+ include_recency: bool = False, include_tenure: bool = False,
76
+ exclude_columns: Optional[List[str]] = None,
77
+ ) -> DataFrame:
78
+ if len(df) == 0:
79
+ return pd.DataFrame()
80
+
81
+ df = df.copy()
82
+ df[self.time_column] = pd.to_datetime(df[self.time_column])
83
+ reference_date = self._validate_reference_date(df, reference_date)
84
+ parsed_windows = [TimeWindow.from_string(w) for w in (windows or ["30d"])]
85
+
86
+ exclude_set = set(exclude_columns) if exclude_columns else set()
87
+ if value_columns:
88
+ value_columns = [c for c in value_columns if c not in exclude_set]
89
+
90
+ entities = df[self.entity_column].unique()
91
+ result_data = {self.entity_column: entities}
92
+
93
+ if include_event_count or (value_columns is None and agg_funcs is None):
94
+ for window in parsed_windows:
95
+ result_data[f"event_count_{window.name}"] = self._compute_event_counts(
96
+ df, entities, window, reference_date)
97
+
98
+ if value_columns and agg_funcs:
99
+ self._add_value_aggregations(
100
+ result_data, df, entities, parsed_windows, value_columns, agg_funcs, reference_date)
101
+
102
+ if include_recency:
103
+ result_data["days_since_last_event"] = self._compute_recency(df, entities, reference_date)
104
+ if include_tenure:
105
+ result_data["days_since_first_event"] = self._compute_tenure(df, entities, reference_date)
106
+
107
+ result = pd.DataFrame(result_data)
108
+ result.attrs["aggregation_reference_date"] = (
109
+ reference_date.isoformat() if hasattr(reference_date, "isoformat") else str(reference_date))
110
+ result.attrs["aggregation_timestamp"] = pd.Timestamp.now().isoformat()
111
+ return result
112
+
113
+ def _add_value_aggregations(
114
+ self, result_data: Dict, df: DataFrame, entities: np.ndarray,
115
+ windows: List[TimeWindow], value_columns: List[str], agg_funcs: List[str],
116
+ reference_date: pd.Timestamp,
117
+ ) -> None:
118
+ for window in windows:
119
+ for col in value_columns:
120
+ for func in agg_funcs:
121
+ if func == "value_counts":
122
+ result_data.update(self._compute_value_counts(df, entities, col, window, reference_date))
123
+ else:
124
+ result_data[f"{col}_{func}_{window.name}"] = self._compute_aggregation(
125
+ df, entities, col, func, window, reference_date)
126
+
127
+ def generate_plan(
128
+ self, df: DataFrame, windows: List[str], value_columns: List[str], agg_funcs: List[str],
129
+ include_event_count: bool = True, include_recency: bool = False, include_tenure: bool = False,
130
+ exclude_columns: Optional[List[str]] = None,
131
+ ) -> AggregationPlan:
132
+ parsed_windows = [TimeWindow.from_string(w) for w in windows]
133
+ exclude_set = set(exclude_columns) if exclude_columns else set()
134
+ value_columns = [c for c in value_columns if c not in exclude_set]
135
+
136
+ feature_columns, value_counts_categories = self._build_feature_column_list(
137
+ df, parsed_windows, value_columns, agg_funcs, include_event_count, include_recency, include_tenure)
138
+
139
+ return AggregationPlan(
140
+ entity_column=self.entity_column, time_column=self.time_column, windows=parsed_windows,
141
+ value_columns=value_columns, agg_funcs=agg_funcs, feature_columns=feature_columns,
142
+ include_event_count=include_event_count, include_recency=include_recency,
143
+ include_tenure=include_tenure, value_counts_categories=value_counts_categories)
144
+
145
+ def _build_feature_column_list(
146
+ self, df: DataFrame, windows: List[TimeWindow], value_columns: List[str],
147
+ agg_funcs: List[str], include_event_count: bool, include_recency: bool, include_tenure: bool,
148
+ ) -> tuple:
149
+ feature_columns = []
150
+ value_counts_categories: Dict[str, List[str]] = {}
151
+
152
+ if include_event_count:
153
+ feature_columns.extend(f"event_count_{w.name}" for w in windows)
154
+
155
+ for window in windows:
156
+ for col in value_columns:
157
+ for func in agg_funcs:
158
+ if func == "value_counts":
159
+ unique_vals = list(df[col].dropna().unique())
160
+ value_counts_categories[col] = unique_vals
161
+ feature_columns.extend(f"{col}_{val}_count_{window.name}" for val in unique_vals)
162
+ else:
163
+ feature_columns.append(f"{col}_{func}_{window.name}")
164
+
165
+ if include_recency:
166
+ feature_columns.append("days_since_last_event")
167
+ if include_tenure:
168
+ feature_columns.append("days_since_first_event")
169
+
170
+ return feature_columns, value_counts_categories
171
+
172
+ def _validate_reference_date(self, df: DataFrame, reference_date: Optional[pd.Timestamp]) -> pd.Timestamp:
173
+ data_min, data_max = df[self.time_column].min(), df[self.time_column].max()
174
+ current_date = pd.Timestamp.now()
175
+
176
+ if reference_date is None:
177
+ warnings.warn(
178
+ f"reference_date not provided, defaulting to data max ({data_max}). "
179
+ "For production use, provide explicit reference_date for PIT correctness. "
180
+ "This ensures features are computed as-of a specific point in time.",
181
+ UserWarning, stacklevel=3)
182
+ return data_max
183
+
184
+ if reference_date > current_date:
185
+ warnings.warn(
186
+ f"reference_date ({reference_date}) is in the future (current: {current_date}). "
187
+ "This may indicate incorrect date handling. Features will use future data.",
188
+ UserWarning, stacklevel=3)
189
+
190
+ if reference_date < data_min:
191
+ warnings.warn(
192
+ f"reference_date ({reference_date}) is before all data ({data_min}). "
193
+ "All time-windowed features will be empty or zero.",
194
+ UserWarning, stacklevel=3)
195
+
196
+ return reference_date
197
+
198
+ def _compute_event_counts(
199
+ self, df: DataFrame, entities: np.ndarray, window: TimeWindow, reference_date: pd.Timestamp,
200
+ ) -> np.ndarray:
201
+ filtered_df = self._filter_by_window(df, window, reference_date)
202
+ counts = filtered_df.groupby(self.entity_column).size()
203
+ return np.array([counts.get(e, 0) for e in entities])
204
+
205
+ def _filter_by_window(self, df: DataFrame, window: TimeWindow, reference_date: pd.Timestamp) -> DataFrame:
206
+ if window.days is None:
207
+ return df
208
+ cutoff = reference_date - pd.Timedelta(days=window.days)
209
+ return df[df[self.time_column] >= cutoff]
210
+
211
+ def _compute_aggregation(
212
+ self,
213
+ df: DataFrame,
214
+ entities: np.ndarray,
215
+ value_column: str,
216
+ agg_func: str,
217
+ window: TimeWindow,
218
+ reference_date: pd.Timestamp,
219
+ ) -> np.ndarray:
220
+ filtered_df = self._filter_by_window(df, window, reference_date)
221
+ if len(filtered_df) == 0:
222
+ default = 0 if agg_func in ["sum", "count", "nunique"] else np.nan
223
+ return np.full(len(entities), default)
224
+
225
+ is_numeric = pd.api.types.is_numeric_dtype(df[value_column])
226
+ if agg_func in CATEGORICAL_AGG_FUNCS:
227
+ return self._compute_categorical_agg(filtered_df, entities, value_column, agg_func)
228
+ elif agg_func in NUMERIC_AGG_FUNCS and not is_numeric:
229
+ return np.full(len(entities), np.nan)
230
+ return self._compute_numeric_agg(filtered_df, entities, value_column, agg_func)
231
+
232
+ def _compute_numeric_agg(
233
+ self, filtered_df: DataFrame, entities: np.ndarray, value_column: str, agg_func: str
234
+ ) -> np.ndarray:
235
+ if agg_func == "count":
236
+ agg_result = filtered_df.groupby(self.entity_column)[value_column].count()
237
+ else:
238
+ agg_result = filtered_df.groupby(self.entity_column)[value_column].agg(agg_func)
239
+ default = 0 if agg_func in ["sum", "count"] else np.nan
240
+ return np.array([agg_result.get(e, default) for e in entities])
241
+
242
+ def _compute_categorical_agg(
243
+ self, filtered_df: DataFrame, entities: np.ndarray, value_column: str, agg_func: str
244
+ ) -> np.ndarray:
245
+ if agg_func == "mode":
246
+ return self._agg_mode(filtered_df, entities, value_column)
247
+ elif agg_func == "nunique":
248
+ return self._agg_nunique(filtered_df, entities, value_column)
249
+ elif agg_func == "mode_ratio":
250
+ return self._agg_mode_ratio(filtered_df, entities, value_column)
251
+ elif agg_func == "entropy":
252
+ return self._agg_entropy(filtered_df, entities, value_column)
253
+ return np.full(len(entities), np.nan)
254
+
255
+ def _agg_mode(self, df: DataFrame, entities: np.ndarray, col: str) -> np.ndarray:
256
+ def get_mode(x):
257
+ if len(x) == 0:
258
+ return None
259
+ return x.value_counts().idxmax()
260
+
261
+ mode_result = df.groupby(self.entity_column)[col].apply(get_mode)
262
+ return np.array([mode_result.get(e, None) for e in entities], dtype=object)
263
+
264
+ def _agg_nunique(self, df: DataFrame, entities: np.ndarray, col: str) -> np.ndarray:
265
+ nunique_result = df.groupby(self.entity_column)[col].nunique()
266
+ return np.array([nunique_result.get(e, 0) for e in entities])
267
+
268
+ def _agg_mode_ratio(self, df: DataFrame, entities: np.ndarray, col: str) -> np.ndarray:
269
+ def get_mode_ratio(x):
270
+ if len(x) == 0:
271
+ return np.nan
272
+ counts = x.value_counts()
273
+ return counts.iloc[0] / len(x)
274
+
275
+ ratio_result = df.groupby(self.entity_column)[col].apply(get_mode_ratio)
276
+ return np.array([ratio_result.get(e, np.nan) for e in entities])
277
+
278
+ def _agg_entropy(self, df: DataFrame, entities: np.ndarray, col: str) -> np.ndarray:
279
+ def calc_entropy(x):
280
+ if len(x) == 0:
281
+ return np.nan
282
+ probs = x.value_counts(normalize=True)
283
+ if len(probs) == 1:
284
+ return 0.0
285
+ return -np.sum(probs * np.log2(probs))
286
+
287
+ entropy_result = df.groupby(self.entity_column)[col].apply(calc_entropy)
288
+ return np.array([entropy_result.get(e, np.nan) for e in entities])
289
+
290
+ def _compute_value_counts(
291
+ self, df: DataFrame, entities: np.ndarray, col: str, window: TimeWindow, reference_date: pd.Timestamp
292
+ ) -> Dict[str, np.ndarray]:
293
+ filtered_df = self._filter_by_window(df, window, reference_date)
294
+ unique_values = df[col].dropna().unique()
295
+ result = {}
296
+ for val in unique_values:
297
+ col_name = f"{col}_{val}_count_{window.name}"
298
+ if len(filtered_df) == 0:
299
+ result[col_name] = np.zeros(len(entities))
300
+ else:
301
+ counts = filtered_df[filtered_df[col] == val].groupby(self.entity_column).size()
302
+ result[col_name] = np.array([counts.get(e, 0) for e in entities])
303
+ return result
304
+
305
+ def _compute_recency(self, df: DataFrame, entities: np.ndarray, reference_date: pd.Timestamp) -> np.ndarray:
306
+ last_dates = df.groupby(self.entity_column)[self.time_column].max()
307
+ days_since_last = (reference_date - last_dates).dt.days
308
+ return np.array([days_since_last.get(e, np.nan) for e in entities])
309
+
310
+ def _compute_tenure(self, df: DataFrame, entities: np.ndarray, reference_date: pd.Timestamp) -> np.ndarray:
311
+ first_dates = df.groupby(self.entity_column)[self.time_column].min()
312
+ days_since_first = (reference_date - first_dates).dt.days
313
+ return np.array([days_since_first.get(e, np.nan) for e in entities])
314
+
315
+
316
+ def save_aggregated_parquet(df: DataFrame, path: Union[str, Path]) -> Dict[str, str]:
317
+ import pyarrow as pa
318
+ import pyarrow.parquet as pq
319
+
320
+ path = Path(path)
321
+ path.parent.mkdir(parents=True, exist_ok=True)
322
+
323
+ metadata = _extract_temporal_metadata(df)
324
+
325
+ df_clean = df.copy()
326
+ df_clean.attrs = {}
327
+ table = pa.Table.from_pandas(df_clean)
328
+
329
+ if metadata:
330
+ existing_metadata = table.schema.metadata or {}
331
+ encoded_metadata = {k.encode("utf-8"): v.encode("utf-8") for k, v in metadata.items()}
332
+ encoded_metadata.update(existing_metadata)
333
+ table = table.replace_schema_metadata(encoded_metadata)
334
+
335
+ pq.write_table(table, path)
336
+ return metadata
337
+
338
+
339
+ def _extract_temporal_metadata(df: DataFrame) -> Dict[str, str]:
340
+ metadata = {}
341
+ for key in ["aggregation_reference_date", "aggregation_timestamp"]:
342
+ if key in df.attrs:
343
+ value = df.attrs[key]
344
+ metadata[key] = value.isoformat() if hasattr(value, "isoformat") else str(value)
345
+ return metadata
346
+
347
+
348
+ def save_aggregated_delta(df: DataFrame, path: Union[str, Path]) -> Dict[str, str]:
349
+ import json as _json
350
+
351
+ path = Path(path)
352
+ path.parent.mkdir(parents=True, exist_ok=True)
353
+
354
+ metadata = _extract_temporal_metadata(df)
355
+
356
+ try:
357
+ from customer_retention.integrations.adapters.factory import get_delta
358
+ storage = get_delta(force_local=True)
359
+ storage.write(df.copy(), str(path))
360
+ except ImportError:
361
+ df.to_parquet(str(path) + ".parquet", index=False)
362
+
363
+ if metadata:
364
+ sidecar_path = path.parent / f"{path.name}_temporal_metadata.json"
365
+ with open(sidecar_path, "w") as f:
366
+ _json.dump(metadata, f, indent=2)
367
+
368
+ return metadata
369
+
370
+
371
+ def save_aggregated(df: DataFrame, path: Union[str, Path]) -> Dict[str, str]:
372
+ try:
373
+ from customer_retention.integrations.adapters.factory import get_delta # noqa: F401
374
+ return save_aggregated_delta(df, path)
375
+ except ImportError:
376
+ return save_aggregated_parquet(df, path)