churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
from .databricks_generator import DatabricksSpecGenerator
|
|
2
|
+
from .generic_generator import GenericSpecGenerator
|
|
3
|
+
from .mlflow_pipeline_generator import (
|
|
4
|
+
CleanAction,
|
|
5
|
+
MLflowConfig,
|
|
6
|
+
MLflowPipelineGenerator,
|
|
7
|
+
RecommendationParser,
|
|
8
|
+
TransformAction,
|
|
9
|
+
)
|
|
10
|
+
from .pipeline_spec import (
|
|
11
|
+
ColumnSpec,
|
|
12
|
+
FeatureSpec,
|
|
13
|
+
ModelSpec,
|
|
14
|
+
PipelineSpec,
|
|
15
|
+
QualityGateSpec,
|
|
16
|
+
SchemaSpec,
|
|
17
|
+
SourceSpec,
|
|
18
|
+
TransformSpec,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
__all__ = [
|
|
22
|
+
"PipelineSpec",
|
|
23
|
+
"SourceSpec",
|
|
24
|
+
"SchemaSpec",
|
|
25
|
+
"ColumnSpec",
|
|
26
|
+
"TransformSpec",
|
|
27
|
+
"FeatureSpec",
|
|
28
|
+
"ModelSpec",
|
|
29
|
+
"QualityGateSpec",
|
|
30
|
+
"GenericSpecGenerator",
|
|
31
|
+
"DatabricksSpecGenerator",
|
|
32
|
+
"MLflowPipelineGenerator",
|
|
33
|
+
"MLflowConfig",
|
|
34
|
+
"RecommendationParser",
|
|
35
|
+
"CleanAction",
|
|
36
|
+
"TransformAction",
|
|
37
|
+
]
|
|
@@ -0,0 +1,433 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from typing import Any, Dict, List
|
|
4
|
+
|
|
5
|
+
from .pipeline_spec import PipelineSpec
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class DatabricksSpecGenerator:
|
|
9
|
+
def __init__(self,
|
|
10
|
+
catalog: str = "main",
|
|
11
|
+
schema: str = "default",
|
|
12
|
+
output_dir: str = "./databricks_artifacts"):
|
|
13
|
+
self.catalog = catalog
|
|
14
|
+
self.schema = schema
|
|
15
|
+
self.output_dir = Path(output_dir)
|
|
16
|
+
|
|
17
|
+
def generate_lakeflow_connect(self, spec: PipelineSpec) -> dict:
|
|
18
|
+
sources = []
|
|
19
|
+
for source in spec.sources:
|
|
20
|
+
sources.append({
|
|
21
|
+
"name": source.name,
|
|
22
|
+
"type": self._infer_connector_type(source.format),
|
|
23
|
+
"path": source.path,
|
|
24
|
+
"options": source.options
|
|
25
|
+
})
|
|
26
|
+
|
|
27
|
+
return {
|
|
28
|
+
"ingestion": {
|
|
29
|
+
"name": f"{spec.name}_ingestion",
|
|
30
|
+
"version": spec.version,
|
|
31
|
+
"target_catalog": self.catalog,
|
|
32
|
+
"target_schema": self.schema,
|
|
33
|
+
"sources": sources,
|
|
34
|
+
"target_tables": [
|
|
35
|
+
{
|
|
36
|
+
"name": f"{spec.name}_bronze",
|
|
37
|
+
"format": "delta",
|
|
38
|
+
"mode": "append"
|
|
39
|
+
}
|
|
40
|
+
],
|
|
41
|
+
"schedule": {
|
|
42
|
+
"quartz_cron_expression": "0 0 * * * ?",
|
|
43
|
+
"timezone_id": "UTC"
|
|
44
|
+
}
|
|
45
|
+
}
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
def _infer_connector_type(self, format: str) -> str:
|
|
49
|
+
format_map = {
|
|
50
|
+
"csv": "file",
|
|
51
|
+
"parquet": "file",
|
|
52
|
+
"json": "file",
|
|
53
|
+
"delta": "delta",
|
|
54
|
+
"jdbc": "jdbc",
|
|
55
|
+
"kafka": "kafka"
|
|
56
|
+
}
|
|
57
|
+
return format_map.get(format.lower(), "file")
|
|
58
|
+
|
|
59
|
+
def generate_dlt_pipeline(self, spec: PipelineSpec) -> str:
|
|
60
|
+
lines = [
|
|
61
|
+
"import dlt",
|
|
62
|
+
"from pyspark.sql import functions as F",
|
|
63
|
+
"",
|
|
64
|
+
f"# DLT Pipeline: {spec.name}",
|
|
65
|
+
f"# Version: {spec.version}",
|
|
66
|
+
"",
|
|
67
|
+
]
|
|
68
|
+
|
|
69
|
+
lines.extend(self._generate_bronze_tables(spec))
|
|
70
|
+
lines.append("")
|
|
71
|
+
lines.extend(self._generate_silver_tables(spec))
|
|
72
|
+
lines.append("")
|
|
73
|
+
lines.extend(self._generate_gold_tables(spec))
|
|
74
|
+
|
|
75
|
+
return "\n".join(lines)
|
|
76
|
+
|
|
77
|
+
def _generate_bronze_tables(self, spec: PipelineSpec) -> List[str]:
|
|
78
|
+
lines = ["# Bronze Layer - Raw Data Ingestion", ""]
|
|
79
|
+
|
|
80
|
+
for source in spec.sources:
|
|
81
|
+
table_name = f"{spec.name}_bronze"
|
|
82
|
+
lines.extend([
|
|
83
|
+
'@dlt.table(',
|
|
84
|
+
f' name="{table_name}",',
|
|
85
|
+
f' comment="Raw data from {source.name}"',
|
|
86
|
+
')',
|
|
87
|
+
'@dlt.expect_or_drop("valid_record", "1=1")',
|
|
88
|
+
f'def {table_name}():',
|
|
89
|
+
' return (',
|
|
90
|
+
' spark.read',
|
|
91
|
+
f' .format("{source.format}")',
|
|
92
|
+
f' .load("{source.path}")',
|
|
93
|
+
' )',
|
|
94
|
+
""
|
|
95
|
+
])
|
|
96
|
+
|
|
97
|
+
return lines
|
|
98
|
+
|
|
99
|
+
def _generate_silver_tables(self, spec: PipelineSpec) -> List[str]:
|
|
100
|
+
lines = ["# Silver Layer - Cleaned and Standardized", ""]
|
|
101
|
+
|
|
102
|
+
table_name = f"{spec.name}_silver"
|
|
103
|
+
bronze_table = f"{spec.name}_bronze"
|
|
104
|
+
|
|
105
|
+
expectations = []
|
|
106
|
+
for gate in spec.quality_gates:
|
|
107
|
+
if gate.gate_type == "null_percentage":
|
|
108
|
+
expectations.append(
|
|
109
|
+
f'@dlt.expect_or_warn("{gate.name}", "{gate.column} IS NOT NULL")'
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
lines.extend([
|
|
113
|
+
'@dlt.table(',
|
|
114
|
+
f' name="{table_name}",',
|
|
115
|
+
' comment="Cleaned and standardized data"',
|
|
116
|
+
')',
|
|
117
|
+
])
|
|
118
|
+
for exp in expectations:
|
|
119
|
+
lines.append(exp)
|
|
120
|
+
|
|
121
|
+
lines.extend([
|
|
122
|
+
f'def {table_name}():',
|
|
123
|
+
f' df = dlt.read("{bronze_table}")',
|
|
124
|
+
""
|
|
125
|
+
])
|
|
126
|
+
|
|
127
|
+
if spec.silver_transforms:
|
|
128
|
+
for transform in spec.silver_transforms:
|
|
129
|
+
if transform.transform_type == "standard_scaling":
|
|
130
|
+
col = transform.input_columns[0]
|
|
131
|
+
out_col = transform.output_columns[0]
|
|
132
|
+
lines.append(f' # {transform.name}')
|
|
133
|
+
lines.append(f' df = df.withColumn("{out_col}", F.col("{col}"))')
|
|
134
|
+
elif transform.transform_type == "one_hot_encoding":
|
|
135
|
+
col = transform.input_columns[0]
|
|
136
|
+
lines.append(f' # {transform.name}')
|
|
137
|
+
lines.append(' # Note: One-hot encoding applied in feature engineering')
|
|
138
|
+
|
|
139
|
+
lines.append("")
|
|
140
|
+
|
|
141
|
+
lines.extend([
|
|
142
|
+
' return df',
|
|
143
|
+
""
|
|
144
|
+
])
|
|
145
|
+
|
|
146
|
+
return lines
|
|
147
|
+
|
|
148
|
+
def _generate_gold_tables(self, spec: PipelineSpec) -> List[str]:
|
|
149
|
+
lines = ["# Gold Layer - Feature Engineering", ""]
|
|
150
|
+
|
|
151
|
+
table_name = f"{spec.name}_gold"
|
|
152
|
+
silver_table = f"{spec.name}_silver"
|
|
153
|
+
|
|
154
|
+
lines.extend([
|
|
155
|
+
'@dlt.table(',
|
|
156
|
+
f' name="{table_name}",',
|
|
157
|
+
' comment="Feature-engineered data ready for modeling"',
|
|
158
|
+
')',
|
|
159
|
+
f'def {table_name}():',
|
|
160
|
+
f' df = dlt.read("{silver_table}")',
|
|
161
|
+
""
|
|
162
|
+
])
|
|
163
|
+
|
|
164
|
+
if spec.feature_definitions:
|
|
165
|
+
for feature in spec.feature_definitions:
|
|
166
|
+
lines.append(f' # Feature: {feature.name}')
|
|
167
|
+
if feature.computation == "days_since_today":
|
|
168
|
+
col = feature.source_columns[0]
|
|
169
|
+
lines.append(
|
|
170
|
+
f' df = df.withColumn("{feature.name}", '
|
|
171
|
+
f'F.datediff(F.current_date(), F.col("{col}")))'
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
lines.append("")
|
|
175
|
+
|
|
176
|
+
lines.extend([
|
|
177
|
+
' return df',
|
|
178
|
+
""
|
|
179
|
+
])
|
|
180
|
+
|
|
181
|
+
return lines
|
|
182
|
+
|
|
183
|
+
def generate_workflow_jobs(self, spec: PipelineSpec) -> dict:
|
|
184
|
+
tasks = [
|
|
185
|
+
{
|
|
186
|
+
"task_key": "run_dlt_pipeline",
|
|
187
|
+
"pipeline_task": {
|
|
188
|
+
"pipeline_id": f"{{{{pipelines.{spec.name}_dlt.id}}}}"
|
|
189
|
+
}
|
|
190
|
+
},
|
|
191
|
+
{
|
|
192
|
+
"task_key": "train_model",
|
|
193
|
+
"depends_on": [{"task_key": "run_dlt_pipeline"}],
|
|
194
|
+
"notebook_task": {
|
|
195
|
+
"notebook_path": f"/Repos/{spec.name}/notebooks/train_model",
|
|
196
|
+
"base_parameters": {
|
|
197
|
+
"catalog": self.catalog,
|
|
198
|
+
"schema": self.schema,
|
|
199
|
+
"table": f"{spec.name}_gold"
|
|
200
|
+
}
|
|
201
|
+
}
|
|
202
|
+
},
|
|
203
|
+
{
|
|
204
|
+
"task_key": "validate_model",
|
|
205
|
+
"depends_on": [{"task_key": "train_model"}],
|
|
206
|
+
"notebook_task": {
|
|
207
|
+
"notebook_path": f"/Repos/{spec.name}/notebooks/validate_model"
|
|
208
|
+
}
|
|
209
|
+
}
|
|
210
|
+
]
|
|
211
|
+
|
|
212
|
+
return {
|
|
213
|
+
"name": f"{spec.name}_workflow",
|
|
214
|
+
"tasks": tasks,
|
|
215
|
+
"schedule": {
|
|
216
|
+
"quartz_cron_expression": "0 0 0 * * ?",
|
|
217
|
+
"timezone_id": "UTC",
|
|
218
|
+
"pause_status": "UNPAUSED"
|
|
219
|
+
},
|
|
220
|
+
"email_notifications": {
|
|
221
|
+
"on_failure": []
|
|
222
|
+
},
|
|
223
|
+
"max_concurrent_runs": 1,
|
|
224
|
+
"trigger": {
|
|
225
|
+
"periodic": {
|
|
226
|
+
"interval": 1,
|
|
227
|
+
"unit": "DAYS"
|
|
228
|
+
}
|
|
229
|
+
}
|
|
230
|
+
}
|
|
231
|
+
|
|
232
|
+
def generate_feature_tables(self, spec: PipelineSpec) -> str:
|
|
233
|
+
primary_key = None
|
|
234
|
+
if spec.schema and spec.schema.primary_key:
|
|
235
|
+
primary_key = spec.schema.primary_key
|
|
236
|
+
|
|
237
|
+
lines = [
|
|
238
|
+
"from databricks.feature_store import FeatureStoreClient",
|
|
239
|
+
"from databricks.feature_store import FeatureLookup",
|
|
240
|
+
"from pyspark.sql import functions as F",
|
|
241
|
+
"",
|
|
242
|
+
f"# Feature Store Tables for {spec.name}",
|
|
243
|
+
"",
|
|
244
|
+
"fs = FeatureStoreClient()",
|
|
245
|
+
"",
|
|
246
|
+
'# Create feature table',
|
|
247
|
+
f'feature_table_name = "{self.catalog}.{self.schema}.{spec.name}_features"',
|
|
248
|
+
""
|
|
249
|
+
]
|
|
250
|
+
|
|
251
|
+
if primary_key:
|
|
252
|
+
lines.extend([
|
|
253
|
+
f'# Define the feature table with primary key: {primary_key}',
|
|
254
|
+
'fs.create_table(',
|
|
255
|
+
' name=feature_table_name,',
|
|
256
|
+
f' primary_keys=["{primary_key}"],',
|
|
257
|
+
f' df=spark.table("{self.catalog}.{self.schema}.{spec.name}_gold"),',
|
|
258
|
+
f' description="Features for {spec.name}"',
|
|
259
|
+
')',
|
|
260
|
+
""
|
|
261
|
+
])
|
|
262
|
+
else:
|
|
263
|
+
lines.extend([
|
|
264
|
+
'# Write features to table',
|
|
265
|
+
f'df = spark.table("{self.catalog}.{self.schema}.{spec.name}_gold")',
|
|
266
|
+
'fs.write_table(',
|
|
267
|
+
' name=feature_table_name,',
|
|
268
|
+
' df=df,',
|
|
269
|
+
' mode="overwrite"',
|
|
270
|
+
')',
|
|
271
|
+
""
|
|
272
|
+
])
|
|
273
|
+
|
|
274
|
+
if spec.feature_definitions:
|
|
275
|
+
lines.extend([
|
|
276
|
+
"# Feature lookups for training",
|
|
277
|
+
"feature_lookups = ["
|
|
278
|
+
])
|
|
279
|
+
for feature in spec.feature_definitions:
|
|
280
|
+
lines.append(' FeatureLookup(')
|
|
281
|
+
lines.append(' table_name=feature_table_name,')
|
|
282
|
+
lines.append(f' feature_names=["{feature.name}"],')
|
|
283
|
+
if primary_key:
|
|
284
|
+
lines.append(f' lookup_key="{primary_key}"')
|
|
285
|
+
lines.append(' ),')
|
|
286
|
+
lines.append("]")
|
|
287
|
+
|
|
288
|
+
return "\n".join(lines)
|
|
289
|
+
|
|
290
|
+
def generate_mlflow_experiment(self, spec: PipelineSpec) -> str:
|
|
291
|
+
target = spec.model_config.target_column if spec.model_config else "target"
|
|
292
|
+
model_type = spec.model_config.model_type if spec.model_config else "gradient_boosting"
|
|
293
|
+
model_name = spec.model_config.name if spec.model_config else "model"
|
|
294
|
+
|
|
295
|
+
lines = [
|
|
296
|
+
"import mlflow",
|
|
297
|
+
"import mlflow.spark",
|
|
298
|
+
"from pyspark.ml.classification import GBTClassifier, RandomForestClassifier",
|
|
299
|
+
"from pyspark.ml.evaluation import BinaryClassificationEvaluator",
|
|
300
|
+
"",
|
|
301
|
+
f"# MLflow Experiment: {spec.name}",
|
|
302
|
+
"",
|
|
303
|
+
f'mlflow.set_experiment("/Users/{{username}}/{spec.name}_experiment")',
|
|
304
|
+
"",
|
|
305
|
+
f'with mlflow.start_run(run_name="{model_name}"):',
|
|
306
|
+
' # Load training data',
|
|
307
|
+
f' df = spark.table("{self.catalog}.{self.schema}.{spec.name}_gold")',
|
|
308
|
+
"",
|
|
309
|
+
' # Log parameters',
|
|
310
|
+
f' mlflow.log_param("target_column", "{target}")',
|
|
311
|
+
f' mlflow.log_param("model_type", "{model_type}")',
|
|
312
|
+
""
|
|
313
|
+
]
|
|
314
|
+
|
|
315
|
+
if spec.model_config and spec.model_config.hyperparameters:
|
|
316
|
+
lines.append(" # Log hyperparameters")
|
|
317
|
+
for key, value in spec.model_config.hyperparameters.items():
|
|
318
|
+
lines.append(f' mlflow.log_param("{key}", {repr(value)})')
|
|
319
|
+
lines.append("")
|
|
320
|
+
|
|
321
|
+
lines.extend([
|
|
322
|
+
' # Train model',
|
|
323
|
+
' model = GBTClassifier(',
|
|
324
|
+
' featuresCol="features",',
|
|
325
|
+
f' labelCol="{target}",',
|
|
326
|
+
' maxIter=100',
|
|
327
|
+
' )',
|
|
328
|
+
"",
|
|
329
|
+
' trained_model = model.fit(df)',
|
|
330
|
+
"",
|
|
331
|
+
' # Log model',
|
|
332
|
+
f' mlflow.spark.log_model(trained_model, "{model_name}")',
|
|
333
|
+
"",
|
|
334
|
+
' # Register model in Unity Catalog',
|
|
335
|
+
' mlflow.register_model(',
|
|
336
|
+
f' f"runs/{{mlflow.active_run().info.run_id}}/{model_name}",',
|
|
337
|
+
f' "{self.catalog}.{self.schema}.{spec.name}_model"',
|
|
338
|
+
' )',
|
|
339
|
+
])
|
|
340
|
+
|
|
341
|
+
return "\n".join(lines)
|
|
342
|
+
|
|
343
|
+
def generate_unity_catalog_schema(self, spec: PipelineSpec) -> str:
|
|
344
|
+
lines = [
|
|
345
|
+
f"-- Unity Catalog Schema for {spec.name}",
|
|
346
|
+
f"-- Generated from PipelineSpec version {spec.version}",
|
|
347
|
+
"",
|
|
348
|
+
f"CREATE SCHEMA IF NOT EXISTS {self.catalog}.{self.schema};",
|
|
349
|
+
"",
|
|
350
|
+
]
|
|
351
|
+
|
|
352
|
+
for layer in ["bronze", "silver", "gold"]:
|
|
353
|
+
table_name = f"{spec.name}_{layer}"
|
|
354
|
+
lines.extend([
|
|
355
|
+
f"CREATE OR REPLACE TABLE {self.catalog}.{self.schema}.{table_name} (",
|
|
356
|
+
])
|
|
357
|
+
|
|
358
|
+
if spec.schema:
|
|
359
|
+
col_defs = []
|
|
360
|
+
for col in spec.schema.columns:
|
|
361
|
+
spark_type = self._to_spark_type(col.data_type)
|
|
362
|
+
nullable = "" if col.nullable else " NOT NULL"
|
|
363
|
+
col_defs.append(f" {col.name} {spark_type}{nullable}")
|
|
364
|
+
|
|
365
|
+
lines.append(",\n".join(col_defs))
|
|
366
|
+
|
|
367
|
+
lines.extend([
|
|
368
|
+
")",
|
|
369
|
+
"USING DELTA",
|
|
370
|
+
f"COMMENT '{layer.title()} layer table for {spec.name}';",
|
|
371
|
+
""
|
|
372
|
+
])
|
|
373
|
+
|
|
374
|
+
return "\n".join(lines)
|
|
375
|
+
|
|
376
|
+
def _to_spark_type(self, data_type: str) -> str:
|
|
377
|
+
type_map = {
|
|
378
|
+
"string": "STRING",
|
|
379
|
+
"integer": "INT",
|
|
380
|
+
"float": "DOUBLE",
|
|
381
|
+
"timestamp": "TIMESTAMP",
|
|
382
|
+
"date": "DATE",
|
|
383
|
+
"boolean": "BOOLEAN"
|
|
384
|
+
}
|
|
385
|
+
return type_map.get(data_type.lower(), "STRING")
|
|
386
|
+
|
|
387
|
+
def generate_all(self, spec: PipelineSpec) -> Dict[str, Any]:
|
|
388
|
+
return {
|
|
389
|
+
"lakeflow_connect": self.generate_lakeflow_connect(spec),
|
|
390
|
+
"dlt_pipeline": self.generate_dlt_pipeline(spec),
|
|
391
|
+
"workflow_jobs": self.generate_workflow_jobs(spec),
|
|
392
|
+
"feature_tables": self.generate_feature_tables(spec),
|
|
393
|
+
"mlflow_experiment": self.generate_mlflow_experiment(spec),
|
|
394
|
+
"unity_catalog_schema": self.generate_unity_catalog_schema(spec)
|
|
395
|
+
}
|
|
396
|
+
|
|
397
|
+
def save_all(self, spec: PipelineSpec) -> List[str]:
|
|
398
|
+
self.output_dir.mkdir(parents=True, exist_ok=True)
|
|
399
|
+
saved_files = []
|
|
400
|
+
|
|
401
|
+
artifacts = self.generate_all(spec)
|
|
402
|
+
|
|
403
|
+
lakeflow_path = self.output_dir / f"{spec.name}_lakeflow_connect.json"
|
|
404
|
+
with open(lakeflow_path, "w") as f:
|
|
405
|
+
json.dump(artifacts["lakeflow_connect"], f, indent=2)
|
|
406
|
+
saved_files.append(str(lakeflow_path))
|
|
407
|
+
|
|
408
|
+
dlt_path = self.output_dir / f"{spec.name}_dlt_pipeline.py"
|
|
409
|
+
with open(dlt_path, "w") as f:
|
|
410
|
+
f.write(artifacts["dlt_pipeline"])
|
|
411
|
+
saved_files.append(str(dlt_path))
|
|
412
|
+
|
|
413
|
+
jobs_path = self.output_dir / f"{spec.name}_workflow_jobs.json"
|
|
414
|
+
with open(jobs_path, "w") as f:
|
|
415
|
+
json.dump(artifacts["workflow_jobs"], f, indent=2)
|
|
416
|
+
saved_files.append(str(jobs_path))
|
|
417
|
+
|
|
418
|
+
features_path = self.output_dir / f"{spec.name}_feature_tables.py"
|
|
419
|
+
with open(features_path, "w") as f:
|
|
420
|
+
f.write(artifacts["feature_tables"])
|
|
421
|
+
saved_files.append(str(features_path))
|
|
422
|
+
|
|
423
|
+
mlflow_path = self.output_dir / f"{spec.name}_mlflow_experiment.py"
|
|
424
|
+
with open(mlflow_path, "w") as f:
|
|
425
|
+
f.write(artifacts["mlflow_experiment"])
|
|
426
|
+
saved_files.append(str(mlflow_path))
|
|
427
|
+
|
|
428
|
+
schema_path = self.output_dir / f"{spec.name}_unity_catalog.sql"
|
|
429
|
+
with open(schema_path, "w") as f:
|
|
430
|
+
f.write(artifacts["unity_catalog_schema"])
|
|
431
|
+
saved_files.append(str(schema_path))
|
|
432
|
+
|
|
433
|
+
return saved_files
|