churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,446 @@
|
|
|
1
|
+
from dataclasses import dataclass, field
|
|
2
|
+
from enum import IntEnum
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
from typing import Any, Dict, List, Optional, Union
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import pandas as pd
|
|
8
|
+
import yaml
|
|
9
|
+
|
|
10
|
+
from customer_retention.core.utils.leakage import get_valid_feature_columns
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class MismatchSeverity(IntEnum):
|
|
14
|
+
LOW = 1
|
|
15
|
+
MEDIUM = 2
|
|
16
|
+
HIGH = 3
|
|
17
|
+
CRITICAL = 4
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@dataclass
|
|
21
|
+
class FeatureMismatch:
|
|
22
|
+
feature_name: str
|
|
23
|
+
severity: MismatchSeverity
|
|
24
|
+
training_mean: float
|
|
25
|
+
scoring_mean: float
|
|
26
|
+
max_absolute_diff: float
|
|
27
|
+
mismatch_percentage: float
|
|
28
|
+
training_std: Optional[float] = None
|
|
29
|
+
scoring_std: Optional[float] = None
|
|
30
|
+
sample_differences: Optional[List[Dict[str, Any]]] = None
|
|
31
|
+
|
|
32
|
+
def to_dict(self) -> dict:
|
|
33
|
+
return {
|
|
34
|
+
"feature_name": self.feature_name,
|
|
35
|
+
"severity": self.severity.name,
|
|
36
|
+
"training_mean": self.training_mean,
|
|
37
|
+
"scoring_mean": self.scoring_mean,
|
|
38
|
+
"max_absolute_diff": self.max_absolute_diff,
|
|
39
|
+
"mismatch_percentage": self.mismatch_percentage,
|
|
40
|
+
"training_std": self.training_std,
|
|
41
|
+
"scoring_std": self.scoring_std,
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@dataclass
|
|
46
|
+
class PredictionMismatch:
|
|
47
|
+
entity_id: str
|
|
48
|
+
training_prediction: int
|
|
49
|
+
scoring_prediction: int
|
|
50
|
+
training_proba: Optional[float] = None
|
|
51
|
+
scoring_proba: Optional[float] = None
|
|
52
|
+
|
|
53
|
+
def to_dict(self) -> dict:
|
|
54
|
+
return {
|
|
55
|
+
"entity_id": self.entity_id,
|
|
56
|
+
"training_prediction": self.training_prediction,
|
|
57
|
+
"scoring_prediction": self.scoring_prediction,
|
|
58
|
+
"training_proba": self.training_proba,
|
|
59
|
+
"scoring_proba": self.scoring_proba,
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
@dataclass
|
|
64
|
+
class ValidationConfig:
|
|
65
|
+
absolute_tolerance: float = 1e-6
|
|
66
|
+
relative_tolerance: float = 1e-5
|
|
67
|
+
prediction_threshold: float = 0.5
|
|
68
|
+
max_sample_differences: int = 10
|
|
69
|
+
severity_thresholds: Dict[str, float] = field(default_factory=lambda: {
|
|
70
|
+
"low": 0.01,
|
|
71
|
+
"medium": 0.05,
|
|
72
|
+
"high": 0.10,
|
|
73
|
+
"critical": 0.25,
|
|
74
|
+
})
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@dataclass
|
|
78
|
+
class ValidationReport:
|
|
79
|
+
passed: bool = True
|
|
80
|
+
feature_mismatches: List[FeatureMismatch] = field(default_factory=list)
|
|
81
|
+
prediction_mismatches: List[PredictionMismatch] = field(default_factory=list)
|
|
82
|
+
features_validated: bool = False
|
|
83
|
+
predictions_validated: bool = False
|
|
84
|
+
missing_entities_count: int = 0
|
|
85
|
+
extra_entities_count: int = 0
|
|
86
|
+
total_entities_compared: int = 0
|
|
87
|
+
validation_timestamp: Optional[str] = None
|
|
88
|
+
|
|
89
|
+
def __post_init__(self):
|
|
90
|
+
if self.feature_mismatches or self.prediction_mismatches:
|
|
91
|
+
self.passed = False
|
|
92
|
+
if self.missing_entities_count > 0:
|
|
93
|
+
self.passed = False
|
|
94
|
+
|
|
95
|
+
def summary(self) -> dict:
|
|
96
|
+
high_severity = sum(1 for m in self.feature_mismatches if m.severity >= MismatchSeverity.HIGH)
|
|
97
|
+
return {
|
|
98
|
+
"passed": self.passed,
|
|
99
|
+
"total_feature_mismatches": len(self.feature_mismatches),
|
|
100
|
+
"total_prediction_mismatches": len(self.prediction_mismatches),
|
|
101
|
+
"high_severity_features": high_severity,
|
|
102
|
+
"missing_entities": self.missing_entities_count,
|
|
103
|
+
"extra_entities": self.extra_entities_count,
|
|
104
|
+
"total_compared": self.total_entities_compared,
|
|
105
|
+
}
|
|
106
|
+
|
|
107
|
+
def to_dict(self) -> dict:
|
|
108
|
+
return {
|
|
109
|
+
"passed": self.passed,
|
|
110
|
+
"feature_mismatches": [m.to_dict() for m in self.feature_mismatches],
|
|
111
|
+
"prediction_mismatches": [m.to_dict() for m in self.prediction_mismatches],
|
|
112
|
+
"features_validated": self.features_validated,
|
|
113
|
+
"predictions_validated": self.predictions_validated,
|
|
114
|
+
"missing_entities_count": self.missing_entities_count,
|
|
115
|
+
"extra_entities_count": self.extra_entities_count,
|
|
116
|
+
"total_entities_compared": self.total_entities_compared,
|
|
117
|
+
"summary": self.summary(),
|
|
118
|
+
}
|
|
119
|
+
|
|
120
|
+
def to_text(self) -> str:
|
|
121
|
+
lines = ["=" * 60, "SCORING PIPELINE VALIDATION REPORT", "=" * 60]
|
|
122
|
+
lines.append(f"Status: {'PASSED' if self.passed else 'FAILED'}")
|
|
123
|
+
lines.append(f"Entities compared: {self.total_entities_compared}")
|
|
124
|
+
if self.missing_entities_count:
|
|
125
|
+
lines.append(f"Missing entities: {self.missing_entities_count}")
|
|
126
|
+
if self.extra_entities_count:
|
|
127
|
+
lines.append(f"Extra entities: {self.extra_entities_count}")
|
|
128
|
+
if self.feature_mismatches:
|
|
129
|
+
lines.append("\nFEATURE MISMATCHES:")
|
|
130
|
+
lines.append("-" * 40)
|
|
131
|
+
for m in self.feature_mismatches:
|
|
132
|
+
lines.append(f" {m.feature_name} [{m.severity.name}]:")
|
|
133
|
+
lines.append(f" Training mean: {m.training_mean:.6f}")
|
|
134
|
+
lines.append(f" Scoring mean: {m.scoring_mean:.6f}")
|
|
135
|
+
lines.append(f" Max diff: {m.max_absolute_diff:.6f}")
|
|
136
|
+
lines.append(f" Mismatch %: {m.mismatch_percentage:.2f}%")
|
|
137
|
+
if self.prediction_mismatches:
|
|
138
|
+
lines.append("\nPREDICTION MISMATCHES:")
|
|
139
|
+
lines.append("-" * 40)
|
|
140
|
+
for m in self.prediction_mismatches[:10]:
|
|
141
|
+
lines.append(f" {m.entity_id}: train={m.training_prediction} vs score={m.scoring_prediction}")
|
|
142
|
+
if len(self.prediction_mismatches) > 10:
|
|
143
|
+
lines.append(f" ... and {len(self.prediction_mismatches) - 10} more")
|
|
144
|
+
return "\n".join(lines)
|
|
145
|
+
|
|
146
|
+
def to_dataframe(self) -> pd.DataFrame:
|
|
147
|
+
if not self.feature_mismatches:
|
|
148
|
+
return pd.DataFrame(columns=["feature_name", "severity", "training_mean", "scoring_mean", "max_absolute_diff", "mismatch_percentage"])
|
|
149
|
+
return pd.DataFrame([m.to_dict() for m in self.feature_mismatches])
|
|
150
|
+
|
|
151
|
+
def save(self, path: Union[str, Path]) -> None:
|
|
152
|
+
path = Path(path)
|
|
153
|
+
with open(path, "w") as f:
|
|
154
|
+
yaml.dump(self.to_dict(), f, default_flow_style=False)
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class ScoringPipelineValidator:
|
|
158
|
+
def __init__(
|
|
159
|
+
self, training_features: Union[pd.DataFrame, Path, str],
|
|
160
|
+
scoring_features: Union[pd.DataFrame, Path, str],
|
|
161
|
+
training_predictions: Optional[Union[pd.DataFrame, Path, str]] = None,
|
|
162
|
+
scoring_predictions: Optional[Union[pd.DataFrame, Path, str]] = None,
|
|
163
|
+
model: Optional[Any] = None, feature_columns: Optional[List[str]] = None,
|
|
164
|
+
entity_column: Optional[str] = None, target_column: Optional[str] = None,
|
|
165
|
+
config: Optional[ValidationConfig] = None,
|
|
166
|
+
):
|
|
167
|
+
self.training_features = self._load_dataframe(training_features)
|
|
168
|
+
self.scoring_features = self._load_dataframe(scoring_features)
|
|
169
|
+
self.training_predictions = self._load_dataframe(training_predictions) if training_predictions is not None else None
|
|
170
|
+
self.scoring_predictions = self._load_dataframe(scoring_predictions) if scoring_predictions is not None else None
|
|
171
|
+
self.model = model
|
|
172
|
+
self.feature_columns = feature_columns
|
|
173
|
+
self.entity_column = entity_column
|
|
174
|
+
self.target_column = target_column
|
|
175
|
+
self.config = config or ValidationConfig()
|
|
176
|
+
|
|
177
|
+
def _load_dataframe(self, data: Union[pd.DataFrame, Path, str]) -> pd.DataFrame:
|
|
178
|
+
if isinstance(data, pd.DataFrame):
|
|
179
|
+
return data
|
|
180
|
+
path = Path(data)
|
|
181
|
+
if path.is_dir() and (path / "_delta_log").is_dir():
|
|
182
|
+
from customer_retention.integrations.adapters.factory import get_delta
|
|
183
|
+
return get_delta(force_local=True).read(str(path))
|
|
184
|
+
if path.suffix == ".parquet":
|
|
185
|
+
return pd.read_parquet(path)
|
|
186
|
+
if path.suffix == ".csv":
|
|
187
|
+
return pd.read_csv(path)
|
|
188
|
+
raise ValueError(f"Unsupported file format: {path.suffix}")
|
|
189
|
+
|
|
190
|
+
def _get_comparable_columns(self) -> List[str]:
|
|
191
|
+
train_valid = set(get_valid_feature_columns(
|
|
192
|
+
self.training_features,
|
|
193
|
+
entity_column=self.entity_column,
|
|
194
|
+
target_column=self.target_column,
|
|
195
|
+
))
|
|
196
|
+
score_valid = set(get_valid_feature_columns(
|
|
197
|
+
self.scoring_features,
|
|
198
|
+
entity_column=self.entity_column,
|
|
199
|
+
target_column=self.target_column,
|
|
200
|
+
))
|
|
201
|
+
return sorted(train_valid & score_valid)
|
|
202
|
+
|
|
203
|
+
def _align_dataframes(self) -> tuple:
|
|
204
|
+
if self.entity_column and self.entity_column in self.training_features.columns:
|
|
205
|
+
train_entities = set(self.training_features[self.entity_column])
|
|
206
|
+
score_entities = set(self.scoring_features[self.entity_column])
|
|
207
|
+
common = train_entities & score_entities
|
|
208
|
+
missing = train_entities - score_entities
|
|
209
|
+
extra = score_entities - train_entities
|
|
210
|
+
train_aligned = self.training_features[self.training_features[self.entity_column].isin(common)].copy()
|
|
211
|
+
score_aligned = self.scoring_features[self.scoring_features[self.entity_column].isin(common)].copy()
|
|
212
|
+
train_aligned = train_aligned.sort_values(self.entity_column).reset_index(drop=True)
|
|
213
|
+
score_aligned = score_aligned.sort_values(self.entity_column).reset_index(drop=True)
|
|
214
|
+
return train_aligned, score_aligned, len(missing), len(extra)
|
|
215
|
+
return self.training_features, self.scoring_features, 0, 0
|
|
216
|
+
|
|
217
|
+
def _classify_severity(self, mismatch_pct: float, max_diff: float = 0.0, mean_val: float = 1.0) -> MismatchSeverity:
|
|
218
|
+
thresholds = self.config.severity_thresholds
|
|
219
|
+
rel_diff = max_diff / abs(mean_val) if mean_val != 0 else max_diff
|
|
220
|
+
if rel_diff >= thresholds["critical"]:
|
|
221
|
+
return MismatchSeverity.CRITICAL
|
|
222
|
+
elif rel_diff >= thresholds["high"]:
|
|
223
|
+
return MismatchSeverity.HIGH
|
|
224
|
+
elif rel_diff >= thresholds["medium"]:
|
|
225
|
+
return MismatchSeverity.MEDIUM
|
|
226
|
+
return MismatchSeverity.LOW
|
|
227
|
+
|
|
228
|
+
def _compare_numeric_column(self, train_col: pd.Series, score_col: pd.Series, col_name: str) -> Optional[FeatureMismatch]:
|
|
229
|
+
train_vals, score_vals = train_col.values.astype(float), score_col.values.astype(float)
|
|
230
|
+
|
|
231
|
+
if len(train_vals) != len(score_vals):
|
|
232
|
+
return self._compare_numeric_statistical(col_name, train_vals, score_vals)
|
|
233
|
+
|
|
234
|
+
train_nan_mask, score_nan_mask = np.isnan(train_vals), np.isnan(score_vals)
|
|
235
|
+
|
|
236
|
+
if not np.array_equal(train_nan_mask, score_nan_mask):
|
|
237
|
+
return self._create_nan_mismatch(col_name, train_vals, score_vals, train_nan_mask, score_nan_mask)
|
|
238
|
+
|
|
239
|
+
valid_mask = ~train_nan_mask
|
|
240
|
+
if not valid_mask.any():
|
|
241
|
+
return None
|
|
242
|
+
|
|
243
|
+
train_valid, score_valid = train_vals[valid_mask], score_vals[valid_mask]
|
|
244
|
+
abs_diff = np.abs(train_valid - score_valid)
|
|
245
|
+
max_diff = float(np.max(abs_diff))
|
|
246
|
+
|
|
247
|
+
if self._is_within_tolerance(max_diff, train_valid):
|
|
248
|
+
return None
|
|
249
|
+
|
|
250
|
+
mismatch_pct = np.sum(abs_diff > self.config.absolute_tolerance) / len(train_valid) * 100
|
|
251
|
+
train_mean = float(np.mean(train_valid))
|
|
252
|
+
return FeatureMismatch(
|
|
253
|
+
feature_name=col_name, severity=self._classify_severity(mismatch_pct, max_diff, train_mean),
|
|
254
|
+
training_mean=train_mean, scoring_mean=float(np.mean(score_valid)),
|
|
255
|
+
max_absolute_diff=max_diff, mismatch_percentage=mismatch_pct,
|
|
256
|
+
training_std=float(np.std(train_valid)) if len(train_valid) > 1 else None,
|
|
257
|
+
scoring_std=float(np.std(score_valid)) if len(score_valid) > 1 else None)
|
|
258
|
+
|
|
259
|
+
def _compare_numeric_statistical(self, col_name: str, train_vals, score_vals) -> Optional[FeatureMismatch]:
|
|
260
|
+
train_nan_rate = np.isnan(train_vals).mean()
|
|
261
|
+
score_nan_rate = np.isnan(score_vals).mean()
|
|
262
|
+
nan_rate_diff = abs(train_nan_rate - score_nan_rate)
|
|
263
|
+
train_mean, score_mean = float(np.nanmean(train_vals)), float(np.nanmean(score_vals))
|
|
264
|
+
mean_diff = abs(train_mean - score_mean)
|
|
265
|
+
train_std, score_std = float(np.nanstd(train_vals)), float(np.nanstd(score_vals))
|
|
266
|
+
pooled_std = max(train_std, score_std, 1e-10)
|
|
267
|
+
normalized_diff = mean_diff / pooled_std
|
|
268
|
+
if normalized_diff < 1.0 and nan_rate_diff < 0.1:
|
|
269
|
+
return None
|
|
270
|
+
mismatch_pct = max(nan_rate_diff * 100, normalized_diff * 100)
|
|
271
|
+
return FeatureMismatch(
|
|
272
|
+
feature_name=col_name, severity=self._classify_severity(mismatch_pct, mean_diff, train_mean),
|
|
273
|
+
training_mean=train_mean, scoring_mean=score_mean,
|
|
274
|
+
max_absolute_diff=mean_diff, mismatch_percentage=mismatch_pct,
|
|
275
|
+
training_std=train_std if len(train_vals) > 1 else None,
|
|
276
|
+
scoring_std=score_std if len(score_vals) > 1 else None)
|
|
277
|
+
|
|
278
|
+
def _compare_categorical_statistical(self, col_name: str, train_vals, score_vals) -> Optional[FeatureMismatch]:
|
|
279
|
+
train_dist = pd.Series(train_vals).value_counts(normalize=True)
|
|
280
|
+
score_dist = pd.Series(score_vals).value_counts(normalize=True)
|
|
281
|
+
all_values = set(train_dist.index) | set(score_dist.index)
|
|
282
|
+
max_diff = max(abs(train_dist.get(v, 0) - score_dist.get(v, 0)) for v in all_values)
|
|
283
|
+
if max_diff <= 0.15:
|
|
284
|
+
return None
|
|
285
|
+
mismatch_pct = max_diff * 100
|
|
286
|
+
return FeatureMismatch(
|
|
287
|
+
feature_name=col_name, severity=self._classify_severity(mismatch_pct),
|
|
288
|
+
training_mean=0.0, scoring_mean=0.0,
|
|
289
|
+
max_absolute_diff=max_diff, mismatch_percentage=mismatch_pct)
|
|
290
|
+
|
|
291
|
+
def _create_nan_mismatch(self, col_name: str, train_vals, score_vals, train_nan, score_nan) -> FeatureMismatch:
|
|
292
|
+
nan_diff_count = np.sum(train_nan != score_nan)
|
|
293
|
+
mismatch_pct = nan_diff_count / len(train_vals) * 100 if len(train_vals) > 0 else 0
|
|
294
|
+
return FeatureMismatch(
|
|
295
|
+
feature_name=col_name, severity=self._classify_severity(mismatch_pct),
|
|
296
|
+
training_mean=float(np.nanmean(train_vals)), scoring_mean=float(np.nanmean(score_vals)),
|
|
297
|
+
max_absolute_diff=float("inf"), mismatch_percentage=mismatch_pct)
|
|
298
|
+
|
|
299
|
+
def _is_within_tolerance(self, max_diff: float, train_valid: np.ndarray) -> bool:
|
|
300
|
+
if max_diff <= self.config.absolute_tolerance:
|
|
301
|
+
return True
|
|
302
|
+
train_max = np.max(np.abs(train_valid)) if len(train_valid) > 0 else 1.0
|
|
303
|
+
return train_max > 0 and max_diff / train_max <= self.config.relative_tolerance
|
|
304
|
+
|
|
305
|
+
def _compare_categorical_column(self, train_col: pd.Series, score_col: pd.Series, col_name: str) -> Optional[FeatureMismatch]:
|
|
306
|
+
train_vals = train_col.astype(str).values
|
|
307
|
+
score_vals = score_col.astype(str).values
|
|
308
|
+
if len(train_vals) != len(score_vals):
|
|
309
|
+
return self._compare_categorical_statistical(col_name, train_vals, score_vals)
|
|
310
|
+
mismatches = train_vals != score_vals
|
|
311
|
+
mismatch_count = np.sum(mismatches)
|
|
312
|
+
if mismatch_count == 0:
|
|
313
|
+
return None
|
|
314
|
+
mismatch_pct = mismatch_count / len(train_vals) * 100 if len(train_vals) > 0 else 0
|
|
315
|
+
return FeatureMismatch(
|
|
316
|
+
feature_name=col_name,
|
|
317
|
+
severity=self._classify_severity(mismatch_pct),
|
|
318
|
+
training_mean=0.0,
|
|
319
|
+
scoring_mean=0.0,
|
|
320
|
+
max_absolute_diff=float(mismatch_count),
|
|
321
|
+
mismatch_percentage=mismatch_pct,
|
|
322
|
+
)
|
|
323
|
+
|
|
324
|
+
def validate_features(self) -> ValidationReport:
|
|
325
|
+
train_aligned, score_aligned, missing_count, extra_count = self._align_dataframes()
|
|
326
|
+
if len(train_aligned) == 0:
|
|
327
|
+
return ValidationReport(
|
|
328
|
+
passed=True,
|
|
329
|
+
features_validated=True,
|
|
330
|
+
total_entities_compared=0,
|
|
331
|
+
missing_entities_count=missing_count,
|
|
332
|
+
extra_entities_count=extra_count,
|
|
333
|
+
)
|
|
334
|
+
comparable_cols = self._get_comparable_columns()
|
|
335
|
+
feature_mismatches = []
|
|
336
|
+
for col in comparable_cols:
|
|
337
|
+
if col not in train_aligned.columns or col not in score_aligned.columns:
|
|
338
|
+
continue
|
|
339
|
+
train_col = train_aligned[col]
|
|
340
|
+
score_col = score_aligned[col]
|
|
341
|
+
if pd.api.types.is_numeric_dtype(train_col):
|
|
342
|
+
mismatch = self._compare_numeric_column(train_col, score_col, col)
|
|
343
|
+
else:
|
|
344
|
+
mismatch = self._compare_categorical_column(train_col, score_col, col)
|
|
345
|
+
if mismatch:
|
|
346
|
+
feature_mismatches.append(mismatch)
|
|
347
|
+
return ValidationReport(
|
|
348
|
+
feature_mismatches=feature_mismatches,
|
|
349
|
+
features_validated=True,
|
|
350
|
+
total_entities_compared=len(train_aligned),
|
|
351
|
+
missing_entities_count=missing_count,
|
|
352
|
+
extra_entities_count=extra_count,
|
|
353
|
+
)
|
|
354
|
+
|
|
355
|
+
def validate_predictions(self) -> ValidationReport:
|
|
356
|
+
if self.training_predictions is None or self.scoring_predictions is None:
|
|
357
|
+
return ValidationReport(passed=True, predictions_validated=False)
|
|
358
|
+
|
|
359
|
+
train_preds, score_preds = self._sort_predictions_by_entity(
|
|
360
|
+
self.training_predictions, self.scoring_predictions)
|
|
361
|
+
|
|
362
|
+
pred_col = "y_pred" if "y_pred" in train_preds.columns else "prediction"
|
|
363
|
+
if pred_col not in train_preds.columns:
|
|
364
|
+
return ValidationReport(passed=True, predictions_validated=False)
|
|
365
|
+
|
|
366
|
+
proba_col = "y_proba" if "y_proba" in train_preds.columns else "probability"
|
|
367
|
+
prediction_mismatches = self._collect_prediction_mismatches(
|
|
368
|
+
train_preds, score_preds, pred_col, proba_col)
|
|
369
|
+
|
|
370
|
+
return ValidationReport(
|
|
371
|
+
prediction_mismatches=prediction_mismatches, predictions_validated=True,
|
|
372
|
+
total_entities_compared=len(train_preds))
|
|
373
|
+
|
|
374
|
+
def _sort_predictions_by_entity(self, train_preds: pd.DataFrame, score_preds: pd.DataFrame) -> tuple:
|
|
375
|
+
if self.entity_column and self.entity_column in train_preds.columns:
|
|
376
|
+
train_preds = train_preds.sort_values(self.entity_column).reset_index(drop=True)
|
|
377
|
+
score_preds = score_preds.sort_values(self.entity_column).reset_index(drop=True)
|
|
378
|
+
return train_preds, score_preds
|
|
379
|
+
|
|
380
|
+
def _collect_prediction_mismatches(
|
|
381
|
+
self, train_df: pd.DataFrame, score_df: pd.DataFrame, pred_col: str, proba_col: str,
|
|
382
|
+
train_preds: Optional[np.ndarray] = None, score_preds: Optional[np.ndarray] = None,
|
|
383
|
+
train_proba: Optional[np.ndarray] = None, score_proba: Optional[np.ndarray] = None,
|
|
384
|
+
) -> List[PredictionMismatch]:
|
|
385
|
+
if train_preds is None:
|
|
386
|
+
train_preds = train_df[pred_col].values
|
|
387
|
+
if score_preds is None:
|
|
388
|
+
score_preds = score_df[pred_col].values
|
|
389
|
+
|
|
390
|
+
mismatches = []
|
|
391
|
+
for idx in np.where(train_preds != score_preds)[0]:
|
|
392
|
+
entity_id = str(train_df[self.entity_column].iloc[idx]) if self.entity_column else str(idx)
|
|
393
|
+
t_proba = float(train_proba[idx]) if train_proba is not None else (
|
|
394
|
+
float(train_df[proba_col].iloc[idx]) if proba_col in train_df.columns else None)
|
|
395
|
+
s_proba = float(score_proba[idx]) if score_proba is not None else (
|
|
396
|
+
float(score_df[proba_col].iloc[idx]) if proba_col in score_df.columns else None)
|
|
397
|
+
mismatches.append(PredictionMismatch(
|
|
398
|
+
entity_id=entity_id, training_prediction=int(train_preds[idx]),
|
|
399
|
+
scoring_prediction=int(score_preds[idx]), training_proba=t_proba, scoring_proba=s_proba))
|
|
400
|
+
return mismatches
|
|
401
|
+
|
|
402
|
+
def validate(self) -> ValidationReport:
|
|
403
|
+
feature_report = self.validate_features()
|
|
404
|
+
if not feature_report.passed:
|
|
405
|
+
return feature_report
|
|
406
|
+
if self.training_predictions is not None and self.scoring_predictions is not None:
|
|
407
|
+
pred_report = self.validate_predictions()
|
|
408
|
+
return ValidationReport(
|
|
409
|
+
passed=feature_report.passed and pred_report.passed,
|
|
410
|
+
feature_mismatches=feature_report.feature_mismatches,
|
|
411
|
+
prediction_mismatches=pred_report.prediction_mismatches,
|
|
412
|
+
features_validated=True,
|
|
413
|
+
predictions_validated=True,
|
|
414
|
+
missing_entities_count=feature_report.missing_entities_count,
|
|
415
|
+
extra_entities_count=feature_report.extra_entities_count,
|
|
416
|
+
total_entities_compared=feature_report.total_entities_compared,
|
|
417
|
+
)
|
|
418
|
+
return feature_report
|
|
419
|
+
|
|
420
|
+
def validate_with_model(self) -> ValidationReport:
|
|
421
|
+
feature_report = self.validate_features()
|
|
422
|
+
if self.model is None or self.feature_columns is None:
|
|
423
|
+
return feature_report
|
|
424
|
+
|
|
425
|
+
train_aligned, score_aligned, _, _ = self._align_dataframes()
|
|
426
|
+
if len(train_aligned) == 0:
|
|
427
|
+
return feature_report
|
|
428
|
+
|
|
429
|
+
X_train, X_score = train_aligned[self.feature_columns].values, score_aligned[self.feature_columns].values
|
|
430
|
+
train_preds, score_preds = self.model.predict(X_train), self.model.predict(X_score)
|
|
431
|
+
train_proba = self.model.predict_proba(X_train)[:, 1] if hasattr(self.model, "predict_proba") else None
|
|
432
|
+
score_proba = self.model.predict_proba(X_score)[:, 1] if hasattr(self.model, "predict_proba") else None
|
|
433
|
+
|
|
434
|
+
prediction_mismatches = self._collect_prediction_mismatches(
|
|
435
|
+
train_aligned, score_aligned, pred_col="", proba_col="",
|
|
436
|
+
train_preds=train_preds, score_preds=score_preds,
|
|
437
|
+
train_proba=train_proba, score_proba=score_proba)
|
|
438
|
+
|
|
439
|
+
return ValidationReport(
|
|
440
|
+
passed=feature_report.passed and len(prediction_mismatches) == 0,
|
|
441
|
+
feature_mismatches=feature_report.feature_mismatches,
|
|
442
|
+
prediction_mismatches=prediction_mismatches,
|
|
443
|
+
features_validated=True, predictions_validated=True,
|
|
444
|
+
missing_entities_count=feature_report.missing_entities_count,
|
|
445
|
+
extra_entities_count=feature_report.extra_entities_count,
|
|
446
|
+
total_entities_compared=feature_report.total_entities_compared)
|