churnkit 0.75.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (302) hide show
  1. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
  2. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
  3. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
  4. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
  5. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
  6. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
  7. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
  8. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
  9. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
  10. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
  11. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
  12. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
  13. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
  14. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
  15. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
  16. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
  17. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
  18. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
  19. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
  20. churnkit-0.75.0a1.dist-info/METADATA +229 -0
  21. churnkit-0.75.0a1.dist-info/RECORD +302 -0
  22. churnkit-0.75.0a1.dist-info/WHEEL +4 -0
  23. churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
  24. churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
  25. customer_retention/__init__.py +37 -0
  26. customer_retention/analysis/__init__.py +0 -0
  27. customer_retention/analysis/auto_explorer/__init__.py +62 -0
  28. customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
  29. customer_retention/analysis/auto_explorer/explorer.py +258 -0
  30. customer_retention/analysis/auto_explorer/findings.py +291 -0
  31. customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
  32. customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
  33. customer_retention/analysis/auto_explorer/recommendations.py +418 -0
  34. customer_retention/analysis/business/__init__.py +26 -0
  35. customer_retention/analysis/business/ab_test_designer.py +144 -0
  36. customer_retention/analysis/business/fairness_analyzer.py +166 -0
  37. customer_retention/analysis/business/intervention_matcher.py +121 -0
  38. customer_retention/analysis/business/report_generator.py +222 -0
  39. customer_retention/analysis/business/risk_profile.py +199 -0
  40. customer_retention/analysis/business/roi_analyzer.py +139 -0
  41. customer_retention/analysis/diagnostics/__init__.py +20 -0
  42. customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
  43. customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
  44. customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
  45. customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
  46. customer_retention/analysis/diagnostics/noise_tester.py +140 -0
  47. customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
  48. customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
  49. customer_retention/analysis/discovery/__init__.py +8 -0
  50. customer_retention/analysis/discovery/config_generator.py +49 -0
  51. customer_retention/analysis/discovery/discovery_flow.py +19 -0
  52. customer_retention/analysis/discovery/type_inferencer.py +147 -0
  53. customer_retention/analysis/interpretability/__init__.py +13 -0
  54. customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
  55. customer_retention/analysis/interpretability/counterfactual.py +175 -0
  56. customer_retention/analysis/interpretability/individual_explainer.py +141 -0
  57. customer_retention/analysis/interpretability/pdp_generator.py +103 -0
  58. customer_retention/analysis/interpretability/shap_explainer.py +106 -0
  59. customer_retention/analysis/jupyter_save_hook.py +28 -0
  60. customer_retention/analysis/notebook_html_exporter.py +136 -0
  61. customer_retention/analysis/notebook_progress.py +60 -0
  62. customer_retention/analysis/plotly_preprocessor.py +154 -0
  63. customer_retention/analysis/recommendations/__init__.py +54 -0
  64. customer_retention/analysis/recommendations/base.py +158 -0
  65. customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
  66. customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
  67. customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
  68. customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
  69. customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
  70. customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
  71. customer_retention/analysis/recommendations/datetime/extract.py +149 -0
  72. customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
  73. customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
  74. customer_retention/analysis/recommendations/pipeline.py +74 -0
  75. customer_retention/analysis/recommendations/registry.py +76 -0
  76. customer_retention/analysis/recommendations/selection/__init__.py +3 -0
  77. customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
  78. customer_retention/analysis/recommendations/transform/__init__.py +4 -0
  79. customer_retention/analysis/recommendations/transform/power.py +94 -0
  80. customer_retention/analysis/recommendations/transform/scale.py +112 -0
  81. customer_retention/analysis/visualization/__init__.py +15 -0
  82. customer_retention/analysis/visualization/chart_builder.py +2619 -0
  83. customer_retention/analysis/visualization/console.py +122 -0
  84. customer_retention/analysis/visualization/display.py +171 -0
  85. customer_retention/analysis/visualization/number_formatter.py +36 -0
  86. customer_retention/artifacts/__init__.py +3 -0
  87. customer_retention/artifacts/fit_artifact_registry.py +146 -0
  88. customer_retention/cli.py +93 -0
  89. customer_retention/core/__init__.py +0 -0
  90. customer_retention/core/compat/__init__.py +193 -0
  91. customer_retention/core/compat/detection.py +99 -0
  92. customer_retention/core/compat/ops.py +48 -0
  93. customer_retention/core/compat/pandas_backend.py +57 -0
  94. customer_retention/core/compat/spark_backend.py +75 -0
  95. customer_retention/core/components/__init__.py +11 -0
  96. customer_retention/core/components/base.py +79 -0
  97. customer_retention/core/components/components/__init__.py +13 -0
  98. customer_retention/core/components/components/deployer.py +26 -0
  99. customer_retention/core/components/components/explainer.py +26 -0
  100. customer_retention/core/components/components/feature_eng.py +33 -0
  101. customer_retention/core/components/components/ingester.py +34 -0
  102. customer_retention/core/components/components/profiler.py +34 -0
  103. customer_retention/core/components/components/trainer.py +38 -0
  104. customer_retention/core/components/components/transformer.py +36 -0
  105. customer_retention/core/components/components/validator.py +37 -0
  106. customer_retention/core/components/enums.py +33 -0
  107. customer_retention/core/components/orchestrator.py +94 -0
  108. customer_retention/core/components/registry.py +59 -0
  109. customer_retention/core/config/__init__.py +39 -0
  110. customer_retention/core/config/column_config.py +95 -0
  111. customer_retention/core/config/experiments.py +71 -0
  112. customer_retention/core/config/pipeline_config.py +117 -0
  113. customer_retention/core/config/source_config.py +83 -0
  114. customer_retention/core/utils/__init__.py +28 -0
  115. customer_retention/core/utils/leakage.py +85 -0
  116. customer_retention/core/utils/severity.py +53 -0
  117. customer_retention/core/utils/statistics.py +90 -0
  118. customer_retention/generators/__init__.py +0 -0
  119. customer_retention/generators/notebook_generator/__init__.py +167 -0
  120. customer_retention/generators/notebook_generator/base.py +55 -0
  121. customer_retention/generators/notebook_generator/cell_builder.py +49 -0
  122. customer_retention/generators/notebook_generator/config.py +47 -0
  123. customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
  124. customer_retention/generators/notebook_generator/local_generator.py +48 -0
  125. customer_retention/generators/notebook_generator/project_init.py +174 -0
  126. customer_retention/generators/notebook_generator/runner.py +150 -0
  127. customer_retention/generators/notebook_generator/script_generator.py +110 -0
  128. customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
  129. customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
  130. customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
  131. customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
  132. customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
  133. customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
  134. customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
  135. customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
  136. customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
  137. customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
  138. customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
  139. customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
  140. customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
  141. customer_retention/generators/orchestration/__init__.py +23 -0
  142. customer_retention/generators/orchestration/code_generator.py +196 -0
  143. customer_retention/generators/orchestration/context.py +147 -0
  144. customer_retention/generators/orchestration/data_materializer.py +188 -0
  145. customer_retention/generators/orchestration/databricks_exporter.py +411 -0
  146. customer_retention/generators/orchestration/doc_generator.py +311 -0
  147. customer_retention/generators/pipeline_generator/__init__.py +26 -0
  148. customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
  149. customer_retention/generators/pipeline_generator/generator.py +142 -0
  150. customer_retention/generators/pipeline_generator/models.py +166 -0
  151. customer_retention/generators/pipeline_generator/renderer.py +2125 -0
  152. customer_retention/generators/spec_generator/__init__.py +37 -0
  153. customer_retention/generators/spec_generator/databricks_generator.py +433 -0
  154. customer_retention/generators/spec_generator/generic_generator.py +373 -0
  155. customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
  156. customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
  157. customer_retention/integrations/__init__.py +0 -0
  158. customer_retention/integrations/adapters/__init__.py +13 -0
  159. customer_retention/integrations/adapters/base.py +10 -0
  160. customer_retention/integrations/adapters/factory.py +25 -0
  161. customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
  162. customer_retention/integrations/adapters/feature_store/base.py +57 -0
  163. customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
  164. customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
  165. customer_retention/integrations/adapters/feature_store/local.py +75 -0
  166. customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
  167. customer_retention/integrations/adapters/mlflow/base.py +32 -0
  168. customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
  169. customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
  170. customer_retention/integrations/adapters/mlflow/local.py +50 -0
  171. customer_retention/integrations/adapters/storage/__init__.py +5 -0
  172. customer_retention/integrations/adapters/storage/base.py +33 -0
  173. customer_retention/integrations/adapters/storage/databricks.py +76 -0
  174. customer_retention/integrations/adapters/storage/local.py +59 -0
  175. customer_retention/integrations/feature_store/__init__.py +47 -0
  176. customer_retention/integrations/feature_store/definitions.py +215 -0
  177. customer_retention/integrations/feature_store/manager.py +744 -0
  178. customer_retention/integrations/feature_store/registry.py +412 -0
  179. customer_retention/integrations/iteration/__init__.py +28 -0
  180. customer_retention/integrations/iteration/context.py +212 -0
  181. customer_retention/integrations/iteration/feedback_collector.py +184 -0
  182. customer_retention/integrations/iteration/orchestrator.py +168 -0
  183. customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
  184. customer_retention/integrations/iteration/signals.py +212 -0
  185. customer_retention/integrations/llm_context/__init__.py +4 -0
  186. customer_retention/integrations/llm_context/context_builder.py +201 -0
  187. customer_retention/integrations/llm_context/prompts.py +100 -0
  188. customer_retention/integrations/streaming/__init__.py +103 -0
  189. customer_retention/integrations/streaming/batch_integration.py +149 -0
  190. customer_retention/integrations/streaming/early_warning_model.py +227 -0
  191. customer_retention/integrations/streaming/event_schema.py +214 -0
  192. customer_retention/integrations/streaming/online_store_writer.py +249 -0
  193. customer_retention/integrations/streaming/realtime_scorer.py +261 -0
  194. customer_retention/integrations/streaming/trigger_engine.py +293 -0
  195. customer_retention/integrations/streaming/window_aggregator.py +393 -0
  196. customer_retention/stages/__init__.py +0 -0
  197. customer_retention/stages/cleaning/__init__.py +9 -0
  198. customer_retention/stages/cleaning/base.py +28 -0
  199. customer_retention/stages/cleaning/missing_handler.py +160 -0
  200. customer_retention/stages/cleaning/outlier_handler.py +204 -0
  201. customer_retention/stages/deployment/__init__.py +28 -0
  202. customer_retention/stages/deployment/batch_scorer.py +106 -0
  203. customer_retention/stages/deployment/champion_challenger.py +299 -0
  204. customer_retention/stages/deployment/model_registry.py +182 -0
  205. customer_retention/stages/deployment/retraining_trigger.py +245 -0
  206. customer_retention/stages/features/__init__.py +73 -0
  207. customer_retention/stages/features/behavioral_features.py +266 -0
  208. customer_retention/stages/features/customer_segmentation.py +505 -0
  209. customer_retention/stages/features/feature_definitions.py +265 -0
  210. customer_retention/stages/features/feature_engineer.py +551 -0
  211. customer_retention/stages/features/feature_manifest.py +340 -0
  212. customer_retention/stages/features/feature_selector.py +239 -0
  213. customer_retention/stages/features/interaction_features.py +160 -0
  214. customer_retention/stages/features/temporal_features.py +243 -0
  215. customer_retention/stages/ingestion/__init__.py +9 -0
  216. customer_retention/stages/ingestion/load_result.py +32 -0
  217. customer_retention/stages/ingestion/loaders.py +195 -0
  218. customer_retention/stages/ingestion/source_registry.py +130 -0
  219. customer_retention/stages/modeling/__init__.py +31 -0
  220. customer_retention/stages/modeling/baseline_trainer.py +139 -0
  221. customer_retention/stages/modeling/cross_validator.py +125 -0
  222. customer_retention/stages/modeling/data_splitter.py +205 -0
  223. customer_retention/stages/modeling/feature_scaler.py +99 -0
  224. customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
  225. customer_retention/stages/modeling/imbalance_handler.py +282 -0
  226. customer_retention/stages/modeling/mlflow_logger.py +95 -0
  227. customer_retention/stages/modeling/model_comparator.py +149 -0
  228. customer_retention/stages/modeling/model_evaluator.py +138 -0
  229. customer_retention/stages/modeling/threshold_optimizer.py +131 -0
  230. customer_retention/stages/monitoring/__init__.py +37 -0
  231. customer_retention/stages/monitoring/alert_manager.py +328 -0
  232. customer_retention/stages/monitoring/drift_detector.py +201 -0
  233. customer_retention/stages/monitoring/performance_monitor.py +242 -0
  234. customer_retention/stages/preprocessing/__init__.py +5 -0
  235. customer_retention/stages/preprocessing/transformer_manager.py +284 -0
  236. customer_retention/stages/profiling/__init__.py +256 -0
  237. customer_retention/stages/profiling/categorical_distribution.py +269 -0
  238. customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
  239. customer_retention/stages/profiling/column_profiler.py +527 -0
  240. customer_retention/stages/profiling/distribution_analysis.py +483 -0
  241. customer_retention/stages/profiling/drift_detector.py +310 -0
  242. customer_retention/stages/profiling/feature_capacity.py +507 -0
  243. customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
  244. customer_retention/stages/profiling/profile_result.py +212 -0
  245. customer_retention/stages/profiling/quality_checks.py +1632 -0
  246. customer_retention/stages/profiling/relationship_detector.py +256 -0
  247. customer_retention/stages/profiling/relationship_recommender.py +454 -0
  248. customer_retention/stages/profiling/report_generator.py +520 -0
  249. customer_retention/stages/profiling/scd_analyzer.py +151 -0
  250. customer_retention/stages/profiling/segment_analyzer.py +632 -0
  251. customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
  252. customer_retention/stages/profiling/target_level_analyzer.py +217 -0
  253. customer_retention/stages/profiling/temporal_analyzer.py +388 -0
  254. customer_retention/stages/profiling/temporal_coverage.py +488 -0
  255. customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
  256. customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
  257. customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
  258. customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
  259. customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
  260. customer_retention/stages/profiling/text_embedder.py +87 -0
  261. customer_retention/stages/profiling/text_processor.py +115 -0
  262. customer_retention/stages/profiling/text_reducer.py +60 -0
  263. customer_retention/stages/profiling/time_series_profiler.py +303 -0
  264. customer_retention/stages/profiling/time_window_aggregator.py +376 -0
  265. customer_retention/stages/profiling/type_detector.py +382 -0
  266. customer_retention/stages/profiling/window_recommendation.py +288 -0
  267. customer_retention/stages/temporal/__init__.py +166 -0
  268. customer_retention/stages/temporal/access_guard.py +180 -0
  269. customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
  270. customer_retention/stages/temporal/data_preparer.py +178 -0
  271. customer_retention/stages/temporal/point_in_time_join.py +134 -0
  272. customer_retention/stages/temporal/point_in_time_registry.py +148 -0
  273. customer_retention/stages/temporal/scenario_detector.py +163 -0
  274. customer_retention/stages/temporal/snapshot_manager.py +259 -0
  275. customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
  276. customer_retention/stages/temporal/timestamp_discovery.py +531 -0
  277. customer_retention/stages/temporal/timestamp_manager.py +255 -0
  278. customer_retention/stages/transformation/__init__.py +13 -0
  279. customer_retention/stages/transformation/binary_handler.py +85 -0
  280. customer_retention/stages/transformation/categorical_encoder.py +245 -0
  281. customer_retention/stages/transformation/datetime_transformer.py +97 -0
  282. customer_retention/stages/transformation/numeric_transformer.py +181 -0
  283. customer_retention/stages/transformation/pipeline.py +257 -0
  284. customer_retention/stages/validation/__init__.py +60 -0
  285. customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
  286. customer_retention/stages/validation/business_sense_gate.py +173 -0
  287. customer_retention/stages/validation/data_quality_gate.py +235 -0
  288. customer_retention/stages/validation/data_validators.py +511 -0
  289. customer_retention/stages/validation/feature_quality_gate.py +183 -0
  290. customer_retention/stages/validation/gates.py +117 -0
  291. customer_retention/stages/validation/leakage_gate.py +352 -0
  292. customer_retention/stages/validation/model_validity_gate.py +213 -0
  293. customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
  294. customer_retention/stages/validation/quality_scorer.py +544 -0
  295. customer_retention/stages/validation/rule_generator.py +57 -0
  296. customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
  297. customer_retention/stages/validation/timeseries_detector.py +769 -0
  298. customer_retention/transforms/__init__.py +47 -0
  299. customer_retention/transforms/artifact_store.py +50 -0
  300. customer_retention/transforms/executor.py +157 -0
  301. customer_retention/transforms/fitted.py +92 -0
  302. customer_retention/transforms/ops.py +148 -0
@@ -0,0 +1,446 @@
1
+ from dataclasses import dataclass, field
2
+ from enum import IntEnum
3
+ from pathlib import Path
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ import yaml
9
+
10
+ from customer_retention.core.utils.leakage import get_valid_feature_columns
11
+
12
+
13
+ class MismatchSeverity(IntEnum):
14
+ LOW = 1
15
+ MEDIUM = 2
16
+ HIGH = 3
17
+ CRITICAL = 4
18
+
19
+
20
+ @dataclass
21
+ class FeatureMismatch:
22
+ feature_name: str
23
+ severity: MismatchSeverity
24
+ training_mean: float
25
+ scoring_mean: float
26
+ max_absolute_diff: float
27
+ mismatch_percentage: float
28
+ training_std: Optional[float] = None
29
+ scoring_std: Optional[float] = None
30
+ sample_differences: Optional[List[Dict[str, Any]]] = None
31
+
32
+ def to_dict(self) -> dict:
33
+ return {
34
+ "feature_name": self.feature_name,
35
+ "severity": self.severity.name,
36
+ "training_mean": self.training_mean,
37
+ "scoring_mean": self.scoring_mean,
38
+ "max_absolute_diff": self.max_absolute_diff,
39
+ "mismatch_percentage": self.mismatch_percentage,
40
+ "training_std": self.training_std,
41
+ "scoring_std": self.scoring_std,
42
+ }
43
+
44
+
45
+ @dataclass
46
+ class PredictionMismatch:
47
+ entity_id: str
48
+ training_prediction: int
49
+ scoring_prediction: int
50
+ training_proba: Optional[float] = None
51
+ scoring_proba: Optional[float] = None
52
+
53
+ def to_dict(self) -> dict:
54
+ return {
55
+ "entity_id": self.entity_id,
56
+ "training_prediction": self.training_prediction,
57
+ "scoring_prediction": self.scoring_prediction,
58
+ "training_proba": self.training_proba,
59
+ "scoring_proba": self.scoring_proba,
60
+ }
61
+
62
+
63
+ @dataclass
64
+ class ValidationConfig:
65
+ absolute_tolerance: float = 1e-6
66
+ relative_tolerance: float = 1e-5
67
+ prediction_threshold: float = 0.5
68
+ max_sample_differences: int = 10
69
+ severity_thresholds: Dict[str, float] = field(default_factory=lambda: {
70
+ "low": 0.01,
71
+ "medium": 0.05,
72
+ "high": 0.10,
73
+ "critical": 0.25,
74
+ })
75
+
76
+
77
+ @dataclass
78
+ class ValidationReport:
79
+ passed: bool = True
80
+ feature_mismatches: List[FeatureMismatch] = field(default_factory=list)
81
+ prediction_mismatches: List[PredictionMismatch] = field(default_factory=list)
82
+ features_validated: bool = False
83
+ predictions_validated: bool = False
84
+ missing_entities_count: int = 0
85
+ extra_entities_count: int = 0
86
+ total_entities_compared: int = 0
87
+ validation_timestamp: Optional[str] = None
88
+
89
+ def __post_init__(self):
90
+ if self.feature_mismatches or self.prediction_mismatches:
91
+ self.passed = False
92
+ if self.missing_entities_count > 0:
93
+ self.passed = False
94
+
95
+ def summary(self) -> dict:
96
+ high_severity = sum(1 for m in self.feature_mismatches if m.severity >= MismatchSeverity.HIGH)
97
+ return {
98
+ "passed": self.passed,
99
+ "total_feature_mismatches": len(self.feature_mismatches),
100
+ "total_prediction_mismatches": len(self.prediction_mismatches),
101
+ "high_severity_features": high_severity,
102
+ "missing_entities": self.missing_entities_count,
103
+ "extra_entities": self.extra_entities_count,
104
+ "total_compared": self.total_entities_compared,
105
+ }
106
+
107
+ def to_dict(self) -> dict:
108
+ return {
109
+ "passed": self.passed,
110
+ "feature_mismatches": [m.to_dict() for m in self.feature_mismatches],
111
+ "prediction_mismatches": [m.to_dict() for m in self.prediction_mismatches],
112
+ "features_validated": self.features_validated,
113
+ "predictions_validated": self.predictions_validated,
114
+ "missing_entities_count": self.missing_entities_count,
115
+ "extra_entities_count": self.extra_entities_count,
116
+ "total_entities_compared": self.total_entities_compared,
117
+ "summary": self.summary(),
118
+ }
119
+
120
+ def to_text(self) -> str:
121
+ lines = ["=" * 60, "SCORING PIPELINE VALIDATION REPORT", "=" * 60]
122
+ lines.append(f"Status: {'PASSED' if self.passed else 'FAILED'}")
123
+ lines.append(f"Entities compared: {self.total_entities_compared}")
124
+ if self.missing_entities_count:
125
+ lines.append(f"Missing entities: {self.missing_entities_count}")
126
+ if self.extra_entities_count:
127
+ lines.append(f"Extra entities: {self.extra_entities_count}")
128
+ if self.feature_mismatches:
129
+ lines.append("\nFEATURE MISMATCHES:")
130
+ lines.append("-" * 40)
131
+ for m in self.feature_mismatches:
132
+ lines.append(f" {m.feature_name} [{m.severity.name}]:")
133
+ lines.append(f" Training mean: {m.training_mean:.6f}")
134
+ lines.append(f" Scoring mean: {m.scoring_mean:.6f}")
135
+ lines.append(f" Max diff: {m.max_absolute_diff:.6f}")
136
+ lines.append(f" Mismatch %: {m.mismatch_percentage:.2f}%")
137
+ if self.prediction_mismatches:
138
+ lines.append("\nPREDICTION MISMATCHES:")
139
+ lines.append("-" * 40)
140
+ for m in self.prediction_mismatches[:10]:
141
+ lines.append(f" {m.entity_id}: train={m.training_prediction} vs score={m.scoring_prediction}")
142
+ if len(self.prediction_mismatches) > 10:
143
+ lines.append(f" ... and {len(self.prediction_mismatches) - 10} more")
144
+ return "\n".join(lines)
145
+
146
+ def to_dataframe(self) -> pd.DataFrame:
147
+ if not self.feature_mismatches:
148
+ return pd.DataFrame(columns=["feature_name", "severity", "training_mean", "scoring_mean", "max_absolute_diff", "mismatch_percentage"])
149
+ return pd.DataFrame([m.to_dict() for m in self.feature_mismatches])
150
+
151
+ def save(self, path: Union[str, Path]) -> None:
152
+ path = Path(path)
153
+ with open(path, "w") as f:
154
+ yaml.dump(self.to_dict(), f, default_flow_style=False)
155
+
156
+
157
+ class ScoringPipelineValidator:
158
+ def __init__(
159
+ self, training_features: Union[pd.DataFrame, Path, str],
160
+ scoring_features: Union[pd.DataFrame, Path, str],
161
+ training_predictions: Optional[Union[pd.DataFrame, Path, str]] = None,
162
+ scoring_predictions: Optional[Union[pd.DataFrame, Path, str]] = None,
163
+ model: Optional[Any] = None, feature_columns: Optional[List[str]] = None,
164
+ entity_column: Optional[str] = None, target_column: Optional[str] = None,
165
+ config: Optional[ValidationConfig] = None,
166
+ ):
167
+ self.training_features = self._load_dataframe(training_features)
168
+ self.scoring_features = self._load_dataframe(scoring_features)
169
+ self.training_predictions = self._load_dataframe(training_predictions) if training_predictions is not None else None
170
+ self.scoring_predictions = self._load_dataframe(scoring_predictions) if scoring_predictions is not None else None
171
+ self.model = model
172
+ self.feature_columns = feature_columns
173
+ self.entity_column = entity_column
174
+ self.target_column = target_column
175
+ self.config = config or ValidationConfig()
176
+
177
+ def _load_dataframe(self, data: Union[pd.DataFrame, Path, str]) -> pd.DataFrame:
178
+ if isinstance(data, pd.DataFrame):
179
+ return data
180
+ path = Path(data)
181
+ if path.is_dir() and (path / "_delta_log").is_dir():
182
+ from customer_retention.integrations.adapters.factory import get_delta
183
+ return get_delta(force_local=True).read(str(path))
184
+ if path.suffix == ".parquet":
185
+ return pd.read_parquet(path)
186
+ if path.suffix == ".csv":
187
+ return pd.read_csv(path)
188
+ raise ValueError(f"Unsupported file format: {path.suffix}")
189
+
190
+ def _get_comparable_columns(self) -> List[str]:
191
+ train_valid = set(get_valid_feature_columns(
192
+ self.training_features,
193
+ entity_column=self.entity_column,
194
+ target_column=self.target_column,
195
+ ))
196
+ score_valid = set(get_valid_feature_columns(
197
+ self.scoring_features,
198
+ entity_column=self.entity_column,
199
+ target_column=self.target_column,
200
+ ))
201
+ return sorted(train_valid & score_valid)
202
+
203
+ def _align_dataframes(self) -> tuple:
204
+ if self.entity_column and self.entity_column in self.training_features.columns:
205
+ train_entities = set(self.training_features[self.entity_column])
206
+ score_entities = set(self.scoring_features[self.entity_column])
207
+ common = train_entities & score_entities
208
+ missing = train_entities - score_entities
209
+ extra = score_entities - train_entities
210
+ train_aligned = self.training_features[self.training_features[self.entity_column].isin(common)].copy()
211
+ score_aligned = self.scoring_features[self.scoring_features[self.entity_column].isin(common)].copy()
212
+ train_aligned = train_aligned.sort_values(self.entity_column).reset_index(drop=True)
213
+ score_aligned = score_aligned.sort_values(self.entity_column).reset_index(drop=True)
214
+ return train_aligned, score_aligned, len(missing), len(extra)
215
+ return self.training_features, self.scoring_features, 0, 0
216
+
217
+ def _classify_severity(self, mismatch_pct: float, max_diff: float = 0.0, mean_val: float = 1.0) -> MismatchSeverity:
218
+ thresholds = self.config.severity_thresholds
219
+ rel_diff = max_diff / abs(mean_val) if mean_val != 0 else max_diff
220
+ if rel_diff >= thresholds["critical"]:
221
+ return MismatchSeverity.CRITICAL
222
+ elif rel_diff >= thresholds["high"]:
223
+ return MismatchSeverity.HIGH
224
+ elif rel_diff >= thresholds["medium"]:
225
+ return MismatchSeverity.MEDIUM
226
+ return MismatchSeverity.LOW
227
+
228
+ def _compare_numeric_column(self, train_col: pd.Series, score_col: pd.Series, col_name: str) -> Optional[FeatureMismatch]:
229
+ train_vals, score_vals = train_col.values.astype(float), score_col.values.astype(float)
230
+
231
+ if len(train_vals) != len(score_vals):
232
+ return self._compare_numeric_statistical(col_name, train_vals, score_vals)
233
+
234
+ train_nan_mask, score_nan_mask = np.isnan(train_vals), np.isnan(score_vals)
235
+
236
+ if not np.array_equal(train_nan_mask, score_nan_mask):
237
+ return self._create_nan_mismatch(col_name, train_vals, score_vals, train_nan_mask, score_nan_mask)
238
+
239
+ valid_mask = ~train_nan_mask
240
+ if not valid_mask.any():
241
+ return None
242
+
243
+ train_valid, score_valid = train_vals[valid_mask], score_vals[valid_mask]
244
+ abs_diff = np.abs(train_valid - score_valid)
245
+ max_diff = float(np.max(abs_diff))
246
+
247
+ if self._is_within_tolerance(max_diff, train_valid):
248
+ return None
249
+
250
+ mismatch_pct = np.sum(abs_diff > self.config.absolute_tolerance) / len(train_valid) * 100
251
+ train_mean = float(np.mean(train_valid))
252
+ return FeatureMismatch(
253
+ feature_name=col_name, severity=self._classify_severity(mismatch_pct, max_diff, train_mean),
254
+ training_mean=train_mean, scoring_mean=float(np.mean(score_valid)),
255
+ max_absolute_diff=max_diff, mismatch_percentage=mismatch_pct,
256
+ training_std=float(np.std(train_valid)) if len(train_valid) > 1 else None,
257
+ scoring_std=float(np.std(score_valid)) if len(score_valid) > 1 else None)
258
+
259
+ def _compare_numeric_statistical(self, col_name: str, train_vals, score_vals) -> Optional[FeatureMismatch]:
260
+ train_nan_rate = np.isnan(train_vals).mean()
261
+ score_nan_rate = np.isnan(score_vals).mean()
262
+ nan_rate_diff = abs(train_nan_rate - score_nan_rate)
263
+ train_mean, score_mean = float(np.nanmean(train_vals)), float(np.nanmean(score_vals))
264
+ mean_diff = abs(train_mean - score_mean)
265
+ train_std, score_std = float(np.nanstd(train_vals)), float(np.nanstd(score_vals))
266
+ pooled_std = max(train_std, score_std, 1e-10)
267
+ normalized_diff = mean_diff / pooled_std
268
+ if normalized_diff < 1.0 and nan_rate_diff < 0.1:
269
+ return None
270
+ mismatch_pct = max(nan_rate_diff * 100, normalized_diff * 100)
271
+ return FeatureMismatch(
272
+ feature_name=col_name, severity=self._classify_severity(mismatch_pct, mean_diff, train_mean),
273
+ training_mean=train_mean, scoring_mean=score_mean,
274
+ max_absolute_diff=mean_diff, mismatch_percentage=mismatch_pct,
275
+ training_std=train_std if len(train_vals) > 1 else None,
276
+ scoring_std=score_std if len(score_vals) > 1 else None)
277
+
278
+ def _compare_categorical_statistical(self, col_name: str, train_vals, score_vals) -> Optional[FeatureMismatch]:
279
+ train_dist = pd.Series(train_vals).value_counts(normalize=True)
280
+ score_dist = pd.Series(score_vals).value_counts(normalize=True)
281
+ all_values = set(train_dist.index) | set(score_dist.index)
282
+ max_diff = max(abs(train_dist.get(v, 0) - score_dist.get(v, 0)) for v in all_values)
283
+ if max_diff <= 0.15:
284
+ return None
285
+ mismatch_pct = max_diff * 100
286
+ return FeatureMismatch(
287
+ feature_name=col_name, severity=self._classify_severity(mismatch_pct),
288
+ training_mean=0.0, scoring_mean=0.0,
289
+ max_absolute_diff=max_diff, mismatch_percentage=mismatch_pct)
290
+
291
+ def _create_nan_mismatch(self, col_name: str, train_vals, score_vals, train_nan, score_nan) -> FeatureMismatch:
292
+ nan_diff_count = np.sum(train_nan != score_nan)
293
+ mismatch_pct = nan_diff_count / len(train_vals) * 100 if len(train_vals) > 0 else 0
294
+ return FeatureMismatch(
295
+ feature_name=col_name, severity=self._classify_severity(mismatch_pct),
296
+ training_mean=float(np.nanmean(train_vals)), scoring_mean=float(np.nanmean(score_vals)),
297
+ max_absolute_diff=float("inf"), mismatch_percentage=mismatch_pct)
298
+
299
+ def _is_within_tolerance(self, max_diff: float, train_valid: np.ndarray) -> bool:
300
+ if max_diff <= self.config.absolute_tolerance:
301
+ return True
302
+ train_max = np.max(np.abs(train_valid)) if len(train_valid) > 0 else 1.0
303
+ return train_max > 0 and max_diff / train_max <= self.config.relative_tolerance
304
+
305
+ def _compare_categorical_column(self, train_col: pd.Series, score_col: pd.Series, col_name: str) -> Optional[FeatureMismatch]:
306
+ train_vals = train_col.astype(str).values
307
+ score_vals = score_col.astype(str).values
308
+ if len(train_vals) != len(score_vals):
309
+ return self._compare_categorical_statistical(col_name, train_vals, score_vals)
310
+ mismatches = train_vals != score_vals
311
+ mismatch_count = np.sum(mismatches)
312
+ if mismatch_count == 0:
313
+ return None
314
+ mismatch_pct = mismatch_count / len(train_vals) * 100 if len(train_vals) > 0 else 0
315
+ return FeatureMismatch(
316
+ feature_name=col_name,
317
+ severity=self._classify_severity(mismatch_pct),
318
+ training_mean=0.0,
319
+ scoring_mean=0.0,
320
+ max_absolute_diff=float(mismatch_count),
321
+ mismatch_percentage=mismatch_pct,
322
+ )
323
+
324
+ def validate_features(self) -> ValidationReport:
325
+ train_aligned, score_aligned, missing_count, extra_count = self._align_dataframes()
326
+ if len(train_aligned) == 0:
327
+ return ValidationReport(
328
+ passed=True,
329
+ features_validated=True,
330
+ total_entities_compared=0,
331
+ missing_entities_count=missing_count,
332
+ extra_entities_count=extra_count,
333
+ )
334
+ comparable_cols = self._get_comparable_columns()
335
+ feature_mismatches = []
336
+ for col in comparable_cols:
337
+ if col not in train_aligned.columns or col not in score_aligned.columns:
338
+ continue
339
+ train_col = train_aligned[col]
340
+ score_col = score_aligned[col]
341
+ if pd.api.types.is_numeric_dtype(train_col):
342
+ mismatch = self._compare_numeric_column(train_col, score_col, col)
343
+ else:
344
+ mismatch = self._compare_categorical_column(train_col, score_col, col)
345
+ if mismatch:
346
+ feature_mismatches.append(mismatch)
347
+ return ValidationReport(
348
+ feature_mismatches=feature_mismatches,
349
+ features_validated=True,
350
+ total_entities_compared=len(train_aligned),
351
+ missing_entities_count=missing_count,
352
+ extra_entities_count=extra_count,
353
+ )
354
+
355
+ def validate_predictions(self) -> ValidationReport:
356
+ if self.training_predictions is None or self.scoring_predictions is None:
357
+ return ValidationReport(passed=True, predictions_validated=False)
358
+
359
+ train_preds, score_preds = self._sort_predictions_by_entity(
360
+ self.training_predictions, self.scoring_predictions)
361
+
362
+ pred_col = "y_pred" if "y_pred" in train_preds.columns else "prediction"
363
+ if pred_col not in train_preds.columns:
364
+ return ValidationReport(passed=True, predictions_validated=False)
365
+
366
+ proba_col = "y_proba" if "y_proba" in train_preds.columns else "probability"
367
+ prediction_mismatches = self._collect_prediction_mismatches(
368
+ train_preds, score_preds, pred_col, proba_col)
369
+
370
+ return ValidationReport(
371
+ prediction_mismatches=prediction_mismatches, predictions_validated=True,
372
+ total_entities_compared=len(train_preds))
373
+
374
+ def _sort_predictions_by_entity(self, train_preds: pd.DataFrame, score_preds: pd.DataFrame) -> tuple:
375
+ if self.entity_column and self.entity_column in train_preds.columns:
376
+ train_preds = train_preds.sort_values(self.entity_column).reset_index(drop=True)
377
+ score_preds = score_preds.sort_values(self.entity_column).reset_index(drop=True)
378
+ return train_preds, score_preds
379
+
380
+ def _collect_prediction_mismatches(
381
+ self, train_df: pd.DataFrame, score_df: pd.DataFrame, pred_col: str, proba_col: str,
382
+ train_preds: Optional[np.ndarray] = None, score_preds: Optional[np.ndarray] = None,
383
+ train_proba: Optional[np.ndarray] = None, score_proba: Optional[np.ndarray] = None,
384
+ ) -> List[PredictionMismatch]:
385
+ if train_preds is None:
386
+ train_preds = train_df[pred_col].values
387
+ if score_preds is None:
388
+ score_preds = score_df[pred_col].values
389
+
390
+ mismatches = []
391
+ for idx in np.where(train_preds != score_preds)[0]:
392
+ entity_id = str(train_df[self.entity_column].iloc[idx]) if self.entity_column else str(idx)
393
+ t_proba = float(train_proba[idx]) if train_proba is not None else (
394
+ float(train_df[proba_col].iloc[idx]) if proba_col in train_df.columns else None)
395
+ s_proba = float(score_proba[idx]) if score_proba is not None else (
396
+ float(score_df[proba_col].iloc[idx]) if proba_col in score_df.columns else None)
397
+ mismatches.append(PredictionMismatch(
398
+ entity_id=entity_id, training_prediction=int(train_preds[idx]),
399
+ scoring_prediction=int(score_preds[idx]), training_proba=t_proba, scoring_proba=s_proba))
400
+ return mismatches
401
+
402
+ def validate(self) -> ValidationReport:
403
+ feature_report = self.validate_features()
404
+ if not feature_report.passed:
405
+ return feature_report
406
+ if self.training_predictions is not None and self.scoring_predictions is not None:
407
+ pred_report = self.validate_predictions()
408
+ return ValidationReport(
409
+ passed=feature_report.passed and pred_report.passed,
410
+ feature_mismatches=feature_report.feature_mismatches,
411
+ prediction_mismatches=pred_report.prediction_mismatches,
412
+ features_validated=True,
413
+ predictions_validated=True,
414
+ missing_entities_count=feature_report.missing_entities_count,
415
+ extra_entities_count=feature_report.extra_entities_count,
416
+ total_entities_compared=feature_report.total_entities_compared,
417
+ )
418
+ return feature_report
419
+
420
+ def validate_with_model(self) -> ValidationReport:
421
+ feature_report = self.validate_features()
422
+ if self.model is None or self.feature_columns is None:
423
+ return feature_report
424
+
425
+ train_aligned, score_aligned, _, _ = self._align_dataframes()
426
+ if len(train_aligned) == 0:
427
+ return feature_report
428
+
429
+ X_train, X_score = train_aligned[self.feature_columns].values, score_aligned[self.feature_columns].values
430
+ train_preds, score_preds = self.model.predict(X_train), self.model.predict(X_score)
431
+ train_proba = self.model.predict_proba(X_train)[:, 1] if hasattr(self.model, "predict_proba") else None
432
+ score_proba = self.model.predict_proba(X_score)[:, 1] if hasattr(self.model, "predict_proba") else None
433
+
434
+ prediction_mismatches = self._collect_prediction_mismatches(
435
+ train_aligned, score_aligned, pred_col="", proba_col="",
436
+ train_preds=train_preds, score_preds=score_preds,
437
+ train_proba=train_proba, score_proba=score_proba)
438
+
439
+ return ValidationReport(
440
+ passed=feature_report.passed and len(prediction_mismatches) == 0,
441
+ feature_mismatches=feature_report.feature_mismatches,
442
+ prediction_mismatches=prediction_mismatches,
443
+ features_validated=True, predictions_validated=True,
444
+ missing_entities_count=feature_report.missing_entities_count,
445
+ extra_entities_count=feature_report.extra_entities_count,
446
+ total_entities_compared=feature_report.total_entities_compared)