churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,703 @@
|
|
|
1
|
+
"""TemporalFeatureEngineer - temporal feature engineering with lagged windows.
|
|
2
|
+
|
|
3
|
+
Generates features across 7 groups:
|
|
4
|
+
1. Lagged Windows - Sequential non-overlapping time windows
|
|
5
|
+
2. Velocity - Rate of change between windows
|
|
6
|
+
3. Acceleration - Change in velocity (momentum)
|
|
7
|
+
4. Lifecycle - Beginning/Middle/End of customer history
|
|
8
|
+
5. Recency - Days since last/first event, tenure
|
|
9
|
+
6. Regularity - Frequency and consistency patterns
|
|
10
|
+
7. Cohort Comparison - Customer vs cohort averages
|
|
11
|
+
|
|
12
|
+
Key Concepts:
|
|
13
|
+
Per-Customer Alignment: Each customer's features are computed relative to
|
|
14
|
+
their own reference point (e.g., churn date, last activity), making
|
|
15
|
+
historical churners comparable to current active customers.
|
|
16
|
+
|
|
17
|
+
Lagged Windows: Sequential non-overlapping windows (Lag0=most recent,
|
|
18
|
+
Lag1=previous period, etc.) enable velocity/acceleration computation.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
from dataclasses import dataclass, field
|
|
22
|
+
from datetime import datetime
|
|
23
|
+
from enum import Enum
|
|
24
|
+
from typing import Any, Dict, List, Optional
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
|
|
28
|
+
from customer_retention.core.compat import pd
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class ReferenceMode(Enum):
|
|
32
|
+
"""How to determine reference point for temporal alignment."""
|
|
33
|
+
PER_CUSTOMER = "per_customer" # Each customer has own reference date
|
|
34
|
+
GLOBAL_DATE = "global_date" # Single date for all customers
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class FeatureGroup(Enum):
|
|
38
|
+
"""Categories of temporal features."""
|
|
39
|
+
LAGGED_WINDOWS = "lagged_windows"
|
|
40
|
+
VELOCITY = "velocity"
|
|
41
|
+
ACCELERATION = "acceleration"
|
|
42
|
+
LIFECYCLE = "lifecycle"
|
|
43
|
+
RECENCY = "recency"
|
|
44
|
+
REGULARITY = "regularity"
|
|
45
|
+
COHORT_COMPARISON = "cohort_comparison"
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
@dataclass
|
|
49
|
+
class TemporalAggregationConfig:
|
|
50
|
+
"""Configuration for temporal feature engineering."""
|
|
51
|
+
|
|
52
|
+
# Reference point alignment
|
|
53
|
+
reference_mode: ReferenceMode = ReferenceMode.PER_CUSTOMER
|
|
54
|
+
global_reference_date: Optional[datetime] = None
|
|
55
|
+
|
|
56
|
+
# Lagged windows (Group 1)
|
|
57
|
+
lag_window_days: int = 30
|
|
58
|
+
num_lags: int = 4
|
|
59
|
+
lag_aggregations: List[str] = field(default_factory=lambda: ["sum", "mean", "count", "max"])
|
|
60
|
+
|
|
61
|
+
# Velocity/Acceleration (Groups 2-3)
|
|
62
|
+
compute_velocity: bool = True
|
|
63
|
+
compute_acceleration: bool = True
|
|
64
|
+
|
|
65
|
+
# Lifecycle windows (Group 4)
|
|
66
|
+
compute_lifecycle: bool = True
|
|
67
|
+
lifecycle_splits: List[float] = field(default_factory=lambda: [0.33, 0.33, 0.34])
|
|
68
|
+
min_history_days: int = 60
|
|
69
|
+
|
|
70
|
+
# Recency/Tenure (Group 5)
|
|
71
|
+
compute_recency: bool = True
|
|
72
|
+
|
|
73
|
+
# Frequency/Regularity (Group 6)
|
|
74
|
+
compute_regularity: bool = True
|
|
75
|
+
|
|
76
|
+
# Cohort Comparison (Group 7)
|
|
77
|
+
compute_cohort: bool = True
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
@dataclass
|
|
81
|
+
class FeatureGroupResult:
|
|
82
|
+
"""Result for a single feature group."""
|
|
83
|
+
group: FeatureGroup
|
|
84
|
+
features: List[str]
|
|
85
|
+
rationale: str
|
|
86
|
+
enabled: bool = True
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
@dataclass
|
|
90
|
+
class TemporalFeatureResult:
|
|
91
|
+
"""Result from temporal feature computation."""
|
|
92
|
+
features_df: pd.DataFrame
|
|
93
|
+
feature_groups: List[FeatureGroupResult]
|
|
94
|
+
config: TemporalAggregationConfig
|
|
95
|
+
entity_col: str
|
|
96
|
+
value_cols: List[str]
|
|
97
|
+
|
|
98
|
+
def get_catalog(self) -> str:
|
|
99
|
+
"""Generate formatted feature catalog with rationale."""
|
|
100
|
+
lines = []
|
|
101
|
+
lines.append("=" * 80)
|
|
102
|
+
lines.append("TEMPORAL FEATURE CATALOG")
|
|
103
|
+
lines.append("=" * 80)
|
|
104
|
+
|
|
105
|
+
for group_result in self.feature_groups:
|
|
106
|
+
if not group_result.enabled:
|
|
107
|
+
continue
|
|
108
|
+
|
|
109
|
+
lines.append("")
|
|
110
|
+
lines.append(f"GROUP: {group_result.group.value.upper()} ({len(group_result.features)} features)")
|
|
111
|
+
lines.append(f"Rationale: {group_result.rationale}")
|
|
112
|
+
lines.append("-" * 60)
|
|
113
|
+
|
|
114
|
+
for feat in group_result.features[:10]:
|
|
115
|
+
lines.append(f" - {feat}")
|
|
116
|
+
if len(group_result.features) > 10:
|
|
117
|
+
lines.append(f" ... and {len(group_result.features) - 10} more")
|
|
118
|
+
|
|
119
|
+
lines.append("")
|
|
120
|
+
lines.append("=" * 80)
|
|
121
|
+
return "\n".join(lines)
|
|
122
|
+
|
|
123
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
124
|
+
return {
|
|
125
|
+
"n_features": len(self.features_df.columns) - 1, # Exclude entity col
|
|
126
|
+
"n_entities": len(self.features_df),
|
|
127
|
+
"feature_groups": [
|
|
128
|
+
{"group": g.group.value, "n_features": len(g.features), "enabled": g.enabled}
|
|
129
|
+
for g in self.feature_groups
|
|
130
|
+
],
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
class TemporalFeatureEngineer:
|
|
135
|
+
"""Engineers temporal features from event data with per-customer alignment.
|
|
136
|
+
|
|
137
|
+
Supports 7 feature groups:
|
|
138
|
+
1. Lagged Windows - lag{N}_{metric}_{agg}
|
|
139
|
+
2. Velocity - {metric}_velocity, {metric}_velocity_pct
|
|
140
|
+
3. Acceleration - {metric}_acceleration, {metric}_momentum
|
|
141
|
+
4. Lifecycle - {metric}_beginning, {metric}_middle, {metric}_end, {metric}_trend_ratio
|
|
142
|
+
5. Recency - days_since_last_event, days_since_first_event, active_span_days
|
|
143
|
+
6. Regularity - event_frequency, inter_event_gap_mean, regularity_score
|
|
144
|
+
7. Cohort - {metric}_vs_cohort_mean, {metric}_vs_cohort_pct
|
|
145
|
+
"""
|
|
146
|
+
|
|
147
|
+
RATIONALES = {
|
|
148
|
+
FeatureGroup.LAGGED_WINDOWS: "Capture behavior at sequential time horizons to enable trend detection",
|
|
149
|
+
FeatureGroup.VELOCITY: "Rate of change is the #1 churn predictor - declining engagement signals risk",
|
|
150
|
+
FeatureGroup.ACCELERATION: "Is the decline accelerating or stabilizing? Indicates intervention urgency",
|
|
151
|
+
FeatureGroup.LIFECYCLE: "Customer lifecycle patterns reveal engagement trajectory over full history",
|
|
152
|
+
FeatureGroup.RECENCY: "How recently active and tenure are fundamental churn signals",
|
|
153
|
+
FeatureGroup.REGULARITY: "Consistent patterns indicate habit formation; irregular patterns suggest weak retention",
|
|
154
|
+
FeatureGroup.COHORT_COMPARISON: "Compare customer to peers - is their behavior normal or anomalous?",
|
|
155
|
+
}
|
|
156
|
+
|
|
157
|
+
def __init__(self, config: Optional[TemporalAggregationConfig] = None):
|
|
158
|
+
self.config = config or TemporalAggregationConfig()
|
|
159
|
+
|
|
160
|
+
def compute(
|
|
161
|
+
self,
|
|
162
|
+
events_df: pd.DataFrame,
|
|
163
|
+
entity_col: str,
|
|
164
|
+
time_col: str,
|
|
165
|
+
value_cols: List[str],
|
|
166
|
+
reference_dates: Optional[pd.DataFrame] = None,
|
|
167
|
+
reference_col: Optional[str] = None,
|
|
168
|
+
) -> TemporalFeatureResult:
|
|
169
|
+
"""Compute temporal features for all entities.
|
|
170
|
+
|
|
171
|
+
Args:
|
|
172
|
+
events_df: Event-level data with timestamps
|
|
173
|
+
entity_col: Column identifying entities (e.g., customer_id)
|
|
174
|
+
time_col: Column with event timestamps
|
|
175
|
+
value_cols: Columns to aggregate (e.g., amount, quantity)
|
|
176
|
+
reference_dates: DataFrame with entity and reference date columns
|
|
177
|
+
reference_col: Column name for reference date in reference_dates
|
|
178
|
+
|
|
179
|
+
Returns:
|
|
180
|
+
TemporalFeatureResult with features DataFrame and metadata
|
|
181
|
+
"""
|
|
182
|
+
events_df = events_df.copy()
|
|
183
|
+
events_df[time_col] = pd.to_datetime(events_df[time_col])
|
|
184
|
+
|
|
185
|
+
# Determine reference dates per entity
|
|
186
|
+
ref_dates = self._get_reference_dates(
|
|
187
|
+
events_df, entity_col, time_col, reference_dates, reference_col
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
# Compute each feature group
|
|
191
|
+
all_features = []
|
|
192
|
+
feature_groups = []
|
|
193
|
+
|
|
194
|
+
# Group 1: Lagged Windows
|
|
195
|
+
lag_features, lag_group = self._compute_lagged_windows(
|
|
196
|
+
events_df, entity_col, time_col, value_cols, ref_dates
|
|
197
|
+
)
|
|
198
|
+
all_features.append(lag_features)
|
|
199
|
+
feature_groups.append(lag_group)
|
|
200
|
+
|
|
201
|
+
# Group 2: Velocity
|
|
202
|
+
if self.config.compute_velocity:
|
|
203
|
+
velocity_features, velocity_group = self._compute_velocity(
|
|
204
|
+
lag_features, value_cols
|
|
205
|
+
)
|
|
206
|
+
all_features.append(velocity_features.drop(columns=[entity_col]))
|
|
207
|
+
feature_groups.append(velocity_group)
|
|
208
|
+
else:
|
|
209
|
+
feature_groups.append(FeatureGroupResult(
|
|
210
|
+
group=FeatureGroup.VELOCITY, features=[],
|
|
211
|
+
rationale=self.RATIONALES[FeatureGroup.VELOCITY], enabled=False
|
|
212
|
+
))
|
|
213
|
+
|
|
214
|
+
# Group 3: Acceleration
|
|
215
|
+
if self.config.compute_acceleration and self.config.compute_velocity:
|
|
216
|
+
accel_features, accel_group = self._compute_acceleration(
|
|
217
|
+
all_features[1] if len(all_features) > 1 else lag_features,
|
|
218
|
+
lag_features, value_cols, entity_col
|
|
219
|
+
)
|
|
220
|
+
all_features.append(accel_features.drop(columns=[entity_col], errors='ignore'))
|
|
221
|
+
feature_groups.append(accel_group)
|
|
222
|
+
else:
|
|
223
|
+
feature_groups.append(FeatureGroupResult(
|
|
224
|
+
group=FeatureGroup.ACCELERATION, features=[],
|
|
225
|
+
rationale=self.RATIONALES[FeatureGroup.ACCELERATION], enabled=False
|
|
226
|
+
))
|
|
227
|
+
|
|
228
|
+
# Group 4: Lifecycle
|
|
229
|
+
if self.config.compute_lifecycle:
|
|
230
|
+
lifecycle_features, lifecycle_group = self._compute_lifecycle(
|
|
231
|
+
events_df, entity_col, time_col, value_cols, ref_dates
|
|
232
|
+
)
|
|
233
|
+
all_features.append(lifecycle_features.drop(columns=[entity_col]))
|
|
234
|
+
feature_groups.append(lifecycle_group)
|
|
235
|
+
else:
|
|
236
|
+
feature_groups.append(FeatureGroupResult(
|
|
237
|
+
group=FeatureGroup.LIFECYCLE, features=[],
|
|
238
|
+
rationale=self.RATIONALES[FeatureGroup.LIFECYCLE], enabled=False
|
|
239
|
+
))
|
|
240
|
+
|
|
241
|
+
# Group 5: Recency
|
|
242
|
+
if self.config.compute_recency:
|
|
243
|
+
recency_features, recency_group = self._compute_recency(
|
|
244
|
+
events_df, entity_col, time_col, ref_dates
|
|
245
|
+
)
|
|
246
|
+
all_features.append(recency_features.drop(columns=[entity_col]))
|
|
247
|
+
feature_groups.append(recency_group)
|
|
248
|
+
else:
|
|
249
|
+
feature_groups.append(FeatureGroupResult(
|
|
250
|
+
group=FeatureGroup.RECENCY, features=[],
|
|
251
|
+
rationale=self.RATIONALES[FeatureGroup.RECENCY], enabled=False
|
|
252
|
+
))
|
|
253
|
+
|
|
254
|
+
# Group 6: Regularity
|
|
255
|
+
if self.config.compute_regularity:
|
|
256
|
+
regularity_features, regularity_group = self._compute_regularity(
|
|
257
|
+
events_df, entity_col, time_col, ref_dates
|
|
258
|
+
)
|
|
259
|
+
all_features.append(regularity_features.drop(columns=[entity_col]))
|
|
260
|
+
feature_groups.append(regularity_group)
|
|
261
|
+
else:
|
|
262
|
+
feature_groups.append(FeatureGroupResult(
|
|
263
|
+
group=FeatureGroup.REGULARITY, features=[],
|
|
264
|
+
rationale=self.RATIONALES[FeatureGroup.REGULARITY], enabled=False
|
|
265
|
+
))
|
|
266
|
+
|
|
267
|
+
# Group 7: Cohort Comparison
|
|
268
|
+
if self.config.compute_cohort:
|
|
269
|
+
cohort_features, cohort_group = self._compute_cohort_comparison(
|
|
270
|
+
lag_features, value_cols, entity_col
|
|
271
|
+
)
|
|
272
|
+
all_features.append(cohort_features.drop(columns=[entity_col]))
|
|
273
|
+
feature_groups.append(cohort_group)
|
|
274
|
+
else:
|
|
275
|
+
feature_groups.append(FeatureGroupResult(
|
|
276
|
+
group=FeatureGroup.COHORT_COMPARISON, features=[],
|
|
277
|
+
rationale=self.RATIONALES[FeatureGroup.COHORT_COMPARISON], enabled=False
|
|
278
|
+
))
|
|
279
|
+
|
|
280
|
+
# Merge all features
|
|
281
|
+
result_df = all_features[0]
|
|
282
|
+
for df in all_features[1:]:
|
|
283
|
+
if entity_col in df.columns:
|
|
284
|
+
result_df = result_df.merge(df, on=entity_col, how="left")
|
|
285
|
+
else:
|
|
286
|
+
result_df = pd.concat([result_df.reset_index(drop=True),
|
|
287
|
+
df.reset_index(drop=True)], axis=1)
|
|
288
|
+
|
|
289
|
+
return TemporalFeatureResult(
|
|
290
|
+
features_df=result_df,
|
|
291
|
+
feature_groups=feature_groups,
|
|
292
|
+
config=self.config,
|
|
293
|
+
entity_col=entity_col,
|
|
294
|
+
value_cols=value_cols,
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
def _get_reference_dates(
|
|
298
|
+
self,
|
|
299
|
+
events_df: pd.DataFrame,
|
|
300
|
+
entity_col: str,
|
|
301
|
+
time_col: str,
|
|
302
|
+
reference_dates: Optional[pd.DataFrame],
|
|
303
|
+
reference_col: Optional[str],
|
|
304
|
+
) -> pd.DataFrame:
|
|
305
|
+
"""Determine reference date for each entity."""
|
|
306
|
+
entities = events_df[entity_col].unique()
|
|
307
|
+
|
|
308
|
+
if self.config.reference_mode == ReferenceMode.GLOBAL_DATE:
|
|
309
|
+
ref_date = self.config.global_reference_date or datetime.now()
|
|
310
|
+
return pd.DataFrame({
|
|
311
|
+
entity_col: entities,
|
|
312
|
+
"reference_date": ref_date,
|
|
313
|
+
})
|
|
314
|
+
|
|
315
|
+
if reference_dates is not None and reference_col is not None:
|
|
316
|
+
ref_df = reference_dates[[entity_col, reference_col]].copy()
|
|
317
|
+
ref_df.columns = [entity_col, "reference_date"]
|
|
318
|
+
ref_df["reference_date"] = pd.to_datetime(ref_df["reference_date"])
|
|
319
|
+
return ref_df
|
|
320
|
+
|
|
321
|
+
# Default: Use last event date per entity
|
|
322
|
+
ref_df = events_df.groupby(entity_col)[time_col].max().reset_index()
|
|
323
|
+
ref_df.columns = [entity_col, "reference_date"]
|
|
324
|
+
return ref_df
|
|
325
|
+
|
|
326
|
+
def _compute_lagged_windows(
|
|
327
|
+
self,
|
|
328
|
+
events_df: pd.DataFrame,
|
|
329
|
+
entity_col: str,
|
|
330
|
+
time_col: str,
|
|
331
|
+
value_cols: List[str],
|
|
332
|
+
ref_dates: pd.DataFrame,
|
|
333
|
+
) -> tuple:
|
|
334
|
+
"""Compute lagged window aggregations (Group 1)."""
|
|
335
|
+
window_days = self.config.lag_window_days
|
|
336
|
+
num_lags = self.config.num_lags
|
|
337
|
+
|
|
338
|
+
# Merge reference dates
|
|
339
|
+
df = events_df.merge(ref_dates, on=entity_col)
|
|
340
|
+
|
|
341
|
+
# Calculate days before reference for each event
|
|
342
|
+
df["days_before_ref"] = (df["reference_date"] - df[time_col]).dt.days
|
|
343
|
+
|
|
344
|
+
# Initialize result with entities
|
|
345
|
+
result = ref_dates[[entity_col]].copy()
|
|
346
|
+
feature_names = []
|
|
347
|
+
|
|
348
|
+
for lag in range(num_lags):
|
|
349
|
+
start_days = lag * window_days
|
|
350
|
+
end_days = (lag + 1) * window_days
|
|
351
|
+
|
|
352
|
+
# Filter events in this lag window
|
|
353
|
+
lag_mask = (df["days_before_ref"] >= start_days) & (df["days_before_ref"] < end_days)
|
|
354
|
+
lag_df = df[lag_mask]
|
|
355
|
+
|
|
356
|
+
for col in value_cols:
|
|
357
|
+
for agg in self.config.lag_aggregations:
|
|
358
|
+
feat_name = f"lag{lag}_{col}_{agg}"
|
|
359
|
+
feature_names.append(feat_name)
|
|
360
|
+
|
|
361
|
+
if agg == "count":
|
|
362
|
+
agg_result = lag_df.groupby(entity_col)[col].count().reset_index()
|
|
363
|
+
agg_result.columns = [entity_col, feat_name]
|
|
364
|
+
# Fill missing with 0 for counts
|
|
365
|
+
result = result.merge(agg_result, on=entity_col, how="left")
|
|
366
|
+
result[feat_name] = result[feat_name].fillna(0).astype(int)
|
|
367
|
+
else:
|
|
368
|
+
agg_func = {"sum": "sum", "mean": "mean", "max": "max", "min": "min"}.get(agg, agg)
|
|
369
|
+
agg_result = lag_df.groupby(entity_col)[col].agg(agg_func).reset_index()
|
|
370
|
+
agg_result.columns = [entity_col, feat_name]
|
|
371
|
+
result = result.merge(agg_result, on=entity_col, how="left")
|
|
372
|
+
# Leave as NaN for non-count aggregations
|
|
373
|
+
|
|
374
|
+
group_result = FeatureGroupResult(
|
|
375
|
+
group=FeatureGroup.LAGGED_WINDOWS,
|
|
376
|
+
features=feature_names,
|
|
377
|
+
rationale=self.RATIONALES[FeatureGroup.LAGGED_WINDOWS],
|
|
378
|
+
)
|
|
379
|
+
|
|
380
|
+
return result, group_result
|
|
381
|
+
|
|
382
|
+
def _compute_velocity(
|
|
383
|
+
self,
|
|
384
|
+
lag_features: pd.DataFrame,
|
|
385
|
+
value_cols: List[str],
|
|
386
|
+
) -> tuple:
|
|
387
|
+
"""Compute velocity features (Group 2)."""
|
|
388
|
+
entity_col = lag_features.columns[0]
|
|
389
|
+
result = lag_features[[entity_col]].copy()
|
|
390
|
+
feature_names = []
|
|
391
|
+
window_days = self.config.lag_window_days
|
|
392
|
+
|
|
393
|
+
for col in value_cols:
|
|
394
|
+
lag0_col = f"lag0_{col}_sum"
|
|
395
|
+
lag1_col = f"lag1_{col}_sum"
|
|
396
|
+
|
|
397
|
+
if lag0_col in lag_features.columns and lag1_col in lag_features.columns:
|
|
398
|
+
# Velocity = (Lag0 - Lag1) / window_days
|
|
399
|
+
velocity_name = f"{col}_velocity"
|
|
400
|
+
result[velocity_name] = (
|
|
401
|
+
lag_features[lag0_col] - lag_features[lag1_col]
|
|
402
|
+
) / window_days
|
|
403
|
+
feature_names.append(velocity_name)
|
|
404
|
+
|
|
405
|
+
# Velocity percentage = (Lag0 - Lag1) / Lag1
|
|
406
|
+
velocity_pct_name = f"{col}_velocity_pct"
|
|
407
|
+
result[velocity_pct_name] = np.where(
|
|
408
|
+
lag_features[lag1_col] != 0,
|
|
409
|
+
(lag_features[lag0_col] - lag_features[lag1_col]) / lag_features[lag1_col],
|
|
410
|
+
np.nan
|
|
411
|
+
)
|
|
412
|
+
feature_names.append(velocity_pct_name)
|
|
413
|
+
|
|
414
|
+
group_result = FeatureGroupResult(
|
|
415
|
+
group=FeatureGroup.VELOCITY,
|
|
416
|
+
features=feature_names,
|
|
417
|
+
rationale=self.RATIONALES[FeatureGroup.VELOCITY],
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
return result, group_result
|
|
421
|
+
|
|
422
|
+
def _compute_acceleration(
|
|
423
|
+
self,
|
|
424
|
+
velocity_features: pd.DataFrame,
|
|
425
|
+
lag_features: pd.DataFrame,
|
|
426
|
+
value_cols: List[str],
|
|
427
|
+
entity_col: str,
|
|
428
|
+
) -> tuple:
|
|
429
|
+
"""Compute acceleration and momentum features (Group 3)."""
|
|
430
|
+
result = lag_features[[entity_col]].copy()
|
|
431
|
+
feature_names = []
|
|
432
|
+
window_days = self.config.lag_window_days
|
|
433
|
+
|
|
434
|
+
for col in value_cols:
|
|
435
|
+
velocity_col = f"{col}_velocity"
|
|
436
|
+
lag0_col = f"lag0_{col}_sum"
|
|
437
|
+
lag1_col = f"lag1_{col}_sum"
|
|
438
|
+
lag2_col = f"lag2_{col}_sum"
|
|
439
|
+
|
|
440
|
+
# Acceleration = change in velocity
|
|
441
|
+
if lag1_col in lag_features.columns and lag2_col in lag_features.columns:
|
|
442
|
+
velocity_01 = (lag_features[lag0_col] - lag_features[lag1_col]) / window_days
|
|
443
|
+
velocity_12 = (lag_features[lag1_col] - lag_features[lag2_col]) / window_days
|
|
444
|
+
accel_name = f"{col}_acceleration"
|
|
445
|
+
result[accel_name] = velocity_01 - velocity_12
|
|
446
|
+
feature_names.append(accel_name)
|
|
447
|
+
|
|
448
|
+
# Momentum = Lag0 × Velocity
|
|
449
|
+
if velocity_col in velocity_features.columns and lag0_col in lag_features.columns:
|
|
450
|
+
momentum_name = f"{col}_momentum"
|
|
451
|
+
result[momentum_name] = lag_features[lag0_col] * velocity_features[velocity_col]
|
|
452
|
+
feature_names.append(momentum_name)
|
|
453
|
+
|
|
454
|
+
group_result = FeatureGroupResult(
|
|
455
|
+
group=FeatureGroup.ACCELERATION,
|
|
456
|
+
features=feature_names,
|
|
457
|
+
rationale=self.RATIONALES[FeatureGroup.ACCELERATION],
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
return result, group_result
|
|
461
|
+
|
|
462
|
+
def _compute_lifecycle(
|
|
463
|
+
self,
|
|
464
|
+
events_df: pd.DataFrame,
|
|
465
|
+
entity_col: str,
|
|
466
|
+
time_col: str,
|
|
467
|
+
value_cols: List[str],
|
|
468
|
+
ref_dates: pd.DataFrame,
|
|
469
|
+
) -> tuple:
|
|
470
|
+
"""Compute lifecycle features (Group 4): Beginning/Middle/End."""
|
|
471
|
+
result = ref_dates[[entity_col]].copy()
|
|
472
|
+
feature_names = []
|
|
473
|
+
min_days = self.config.min_history_days
|
|
474
|
+
splits = self.config.lifecycle_splits
|
|
475
|
+
|
|
476
|
+
# Get history span per entity
|
|
477
|
+
history_stats = events_df.groupby(entity_col).agg({
|
|
478
|
+
time_col: ["min", "max"]
|
|
479
|
+
}).reset_index()
|
|
480
|
+
history_stats.columns = [entity_col, "first_event", "last_event"]
|
|
481
|
+
history_stats["history_days"] = (
|
|
482
|
+
history_stats["last_event"] - history_stats["first_event"]
|
|
483
|
+
).dt.days
|
|
484
|
+
|
|
485
|
+
df = events_df.merge(history_stats, on=entity_col)
|
|
486
|
+
|
|
487
|
+
for col in value_cols:
|
|
488
|
+
# Initialize columns
|
|
489
|
+
result[f"{col}_beginning"] = np.nan
|
|
490
|
+
result[f"{col}_middle"] = np.nan
|
|
491
|
+
result[f"{col}_end"] = np.nan
|
|
492
|
+
result[f"{col}_trend_ratio"] = np.nan
|
|
493
|
+
|
|
494
|
+
feature_names.extend([
|
|
495
|
+
f"{col}_beginning", f"{col}_middle", f"{col}_end", f"{col}_trend_ratio"
|
|
496
|
+
])
|
|
497
|
+
|
|
498
|
+
# Process each entity
|
|
499
|
+
for entity in result[entity_col].unique():
|
|
500
|
+
entity_df = df[df[entity_col] == entity]
|
|
501
|
+
if len(entity_df) == 0:
|
|
502
|
+
continue
|
|
503
|
+
|
|
504
|
+
history_days = entity_df["history_days"].iloc[0]
|
|
505
|
+
|
|
506
|
+
# Skip if insufficient history
|
|
507
|
+
if history_days < min_days:
|
|
508
|
+
continue
|
|
509
|
+
|
|
510
|
+
first_event = entity_df["first_event"].iloc[0]
|
|
511
|
+
entity_df["last_event"].iloc[0]
|
|
512
|
+
|
|
513
|
+
# Calculate split boundaries
|
|
514
|
+
split1 = first_event + pd.Timedelta(days=history_days * splits[0])
|
|
515
|
+
split2 = first_event + pd.Timedelta(days=history_days * (splits[0] + splits[1]))
|
|
516
|
+
|
|
517
|
+
for col in value_cols:
|
|
518
|
+
beginning_val = entity_df[entity_df[time_col] < split1][col].sum()
|
|
519
|
+
middle_val = entity_df[(entity_df[time_col] >= split1) &
|
|
520
|
+
(entity_df[time_col] < split2)][col].sum()
|
|
521
|
+
end_val = entity_df[entity_df[time_col] >= split2][col].sum()
|
|
522
|
+
|
|
523
|
+
mask = result[entity_col] == entity
|
|
524
|
+
result.loc[mask, f"{col}_beginning"] = beginning_val
|
|
525
|
+
result.loc[mask, f"{col}_middle"] = middle_val
|
|
526
|
+
result.loc[mask, f"{col}_end"] = end_val
|
|
527
|
+
|
|
528
|
+
if beginning_val > 0:
|
|
529
|
+
result.loc[mask, f"{col}_trend_ratio"] = end_val / beginning_val
|
|
530
|
+
|
|
531
|
+
group_result = FeatureGroupResult(
|
|
532
|
+
group=FeatureGroup.LIFECYCLE,
|
|
533
|
+
features=feature_names,
|
|
534
|
+
rationale=self.RATIONALES[FeatureGroup.LIFECYCLE],
|
|
535
|
+
)
|
|
536
|
+
|
|
537
|
+
return result, group_result
|
|
538
|
+
|
|
539
|
+
def _compute_recency(
|
|
540
|
+
self,
|
|
541
|
+
events_df: pd.DataFrame,
|
|
542
|
+
entity_col: str,
|
|
543
|
+
time_col: str,
|
|
544
|
+
ref_dates: pd.DataFrame,
|
|
545
|
+
) -> tuple:
|
|
546
|
+
"""Compute recency and tenure features (Group 5)."""
|
|
547
|
+
result = ref_dates[[entity_col]].copy()
|
|
548
|
+
|
|
549
|
+
# Get first and last event per entity
|
|
550
|
+
event_stats = events_df.groupby(entity_col).agg({
|
|
551
|
+
time_col: ["min", "max", "count"]
|
|
552
|
+
}).reset_index()
|
|
553
|
+
event_stats.columns = [entity_col, "first_event", "last_event", "event_count"]
|
|
554
|
+
|
|
555
|
+
result = result.merge(event_stats, on=entity_col, how="left")
|
|
556
|
+
result = result.merge(ref_dates, on=entity_col)
|
|
557
|
+
|
|
558
|
+
# Days since last event (from reference date)
|
|
559
|
+
result["days_since_last_event"] = (
|
|
560
|
+
result["reference_date"] - result["last_event"]
|
|
561
|
+
).dt.days
|
|
562
|
+
|
|
563
|
+
# Days since first event (tenure)
|
|
564
|
+
result["days_since_first_event"] = (
|
|
565
|
+
result["reference_date"] - result["first_event"]
|
|
566
|
+
).dt.days
|
|
567
|
+
|
|
568
|
+
# Active span (first to last event)
|
|
569
|
+
result["active_span_days"] = (
|
|
570
|
+
result["last_event"] - result["first_event"]
|
|
571
|
+
).dt.days
|
|
572
|
+
|
|
573
|
+
# Recency ratio: days_since_last / active_span (0 = just active, 1 = dormant)
|
|
574
|
+
result["recency_ratio"] = np.where(
|
|
575
|
+
result["active_span_days"] > 0,
|
|
576
|
+
result["days_since_last_event"] / (result["active_span_days"] + result["days_since_last_event"]),
|
|
577
|
+
0
|
|
578
|
+
)
|
|
579
|
+
result["recency_ratio"] = result["recency_ratio"].clip(0, 1)
|
|
580
|
+
|
|
581
|
+
# Clean up
|
|
582
|
+
result = result.drop(columns=["first_event", "last_event", "event_count", "reference_date"])
|
|
583
|
+
|
|
584
|
+
feature_names = [
|
|
585
|
+
"days_since_last_event", "days_since_first_event",
|
|
586
|
+
"active_span_days", "recency_ratio"
|
|
587
|
+
]
|
|
588
|
+
|
|
589
|
+
group_result = FeatureGroupResult(
|
|
590
|
+
group=FeatureGroup.RECENCY,
|
|
591
|
+
features=feature_names,
|
|
592
|
+
rationale=self.RATIONALES[FeatureGroup.RECENCY],
|
|
593
|
+
)
|
|
594
|
+
|
|
595
|
+
return result, group_result
|
|
596
|
+
|
|
597
|
+
def _compute_regularity(
|
|
598
|
+
self,
|
|
599
|
+
events_df: pd.DataFrame,
|
|
600
|
+
entity_col: str,
|
|
601
|
+
time_col: str,
|
|
602
|
+
ref_dates: pd.DataFrame,
|
|
603
|
+
) -> tuple:
|
|
604
|
+
"""Compute frequency and regularity features (Group 6)."""
|
|
605
|
+
result = ref_dates[[entity_col]].copy()
|
|
606
|
+
|
|
607
|
+
for entity in result[entity_col].unique():
|
|
608
|
+
entity_events = events_df[events_df[entity_col] == entity].sort_values(time_col)
|
|
609
|
+
|
|
610
|
+
if len(entity_events) < 2:
|
|
611
|
+
continue
|
|
612
|
+
|
|
613
|
+
# Inter-event gaps
|
|
614
|
+
gaps = entity_events[time_col].diff().dt.days.dropna()
|
|
615
|
+
|
|
616
|
+
if len(gaps) > 0:
|
|
617
|
+
gap_mean = gaps.mean()
|
|
618
|
+
gap_std = gaps.std() if len(gaps) > 1 else 0
|
|
619
|
+
gap_max = gaps.max()
|
|
620
|
+
|
|
621
|
+
mask = result[entity_col] == entity
|
|
622
|
+
|
|
623
|
+
# Event frequency (events per 30 days)
|
|
624
|
+
total_days = (entity_events[time_col].max() - entity_events[time_col].min()).days
|
|
625
|
+
if total_days > 0:
|
|
626
|
+
result.loc[mask, "event_frequency"] = len(entity_events) / total_days * 30
|
|
627
|
+
else:
|
|
628
|
+
result.loc[mask, "event_frequency"] = len(entity_events)
|
|
629
|
+
|
|
630
|
+
result.loc[mask, "inter_event_gap_mean"] = gap_mean
|
|
631
|
+
result.loc[mask, "inter_event_gap_std"] = gap_std
|
|
632
|
+
result.loc[mask, "inter_event_gap_max"] = gap_max
|
|
633
|
+
|
|
634
|
+
# Regularity score: 1 - (std / mean), higher = more regular
|
|
635
|
+
if gap_mean > 0:
|
|
636
|
+
regularity = max(0, 1 - (gap_std / gap_mean))
|
|
637
|
+
result.loc[mask, "regularity_score"] = regularity
|
|
638
|
+
else:
|
|
639
|
+
result.loc[mask, "regularity_score"] = 1.0
|
|
640
|
+
|
|
641
|
+
# Fill NaN for entities with single event
|
|
642
|
+
for col in ["event_frequency", "inter_event_gap_mean", "inter_event_gap_std",
|
|
643
|
+
"inter_event_gap_max", "regularity_score"]:
|
|
644
|
+
if col not in result.columns:
|
|
645
|
+
result[col] = np.nan
|
|
646
|
+
|
|
647
|
+
feature_names = [
|
|
648
|
+
"event_frequency", "inter_event_gap_mean", "inter_event_gap_std",
|
|
649
|
+
"inter_event_gap_max", "regularity_score"
|
|
650
|
+
]
|
|
651
|
+
|
|
652
|
+
group_result = FeatureGroupResult(
|
|
653
|
+
group=FeatureGroup.REGULARITY,
|
|
654
|
+
features=feature_names,
|
|
655
|
+
rationale=self.RATIONALES[FeatureGroup.REGULARITY],
|
|
656
|
+
)
|
|
657
|
+
|
|
658
|
+
return result, group_result
|
|
659
|
+
|
|
660
|
+
def _compute_cohort_comparison(
|
|
661
|
+
self,
|
|
662
|
+
lag_features: pd.DataFrame,
|
|
663
|
+
value_cols: List[str],
|
|
664
|
+
entity_col: str,
|
|
665
|
+
) -> tuple:
|
|
666
|
+
"""Compute cohort comparison features (Group 7)."""
|
|
667
|
+
result = lag_features[[entity_col]].copy()
|
|
668
|
+
feature_names = []
|
|
669
|
+
|
|
670
|
+
for col in value_cols:
|
|
671
|
+
lag0_col = f"lag0_{col}_sum"
|
|
672
|
+
|
|
673
|
+
if lag0_col in lag_features.columns:
|
|
674
|
+
cohort_mean = lag_features[lag0_col].mean()
|
|
675
|
+
cohort_std = lag_features[lag0_col].std()
|
|
676
|
+
|
|
677
|
+
# Difference from cohort mean
|
|
678
|
+
vs_mean_name = f"{col}_vs_cohort_mean"
|
|
679
|
+
result[vs_mean_name] = lag_features[lag0_col] - cohort_mean
|
|
680
|
+
feature_names.append(vs_mean_name)
|
|
681
|
+
|
|
682
|
+
# Percentage of cohort mean
|
|
683
|
+
vs_pct_name = f"{col}_vs_cohort_pct"
|
|
684
|
+
result[vs_pct_name] = np.where(
|
|
685
|
+
cohort_mean != 0,
|
|
686
|
+
lag_features[lag0_col] / cohort_mean,
|
|
687
|
+
np.nan
|
|
688
|
+
)
|
|
689
|
+
feature_names.append(vs_pct_name)
|
|
690
|
+
|
|
691
|
+
# Z-score (standard deviations from mean)
|
|
692
|
+
if cohort_std > 0:
|
|
693
|
+
zscore_name = f"{col}_cohort_zscore"
|
|
694
|
+
result[zscore_name] = (lag_features[lag0_col] - cohort_mean) / cohort_std
|
|
695
|
+
feature_names.append(zscore_name)
|
|
696
|
+
|
|
697
|
+
group_result = FeatureGroupResult(
|
|
698
|
+
group=FeatureGroup.COHORT_COMPARISON,
|
|
699
|
+
features=feature_names,
|
|
700
|
+
rationale=self.RATIONALES[FeatureGroup.COHORT_COMPARISON],
|
|
701
|
+
)
|
|
702
|
+
|
|
703
|
+
return result, group_result
|