churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,572 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"id": "7074023b",
|
|
6
|
+
"metadata": {
|
|
7
|
+
"papermill": {
|
|
8
|
+
"duration": 0.002564,
|
|
9
|
+
"end_time": "2026-02-02T13:03:54.779668",
|
|
10
|
+
"exception": false,
|
|
11
|
+
"start_time": "2026-02-02T13:03:54.777104",
|
|
12
|
+
"status": "completed"
|
|
13
|
+
},
|
|
14
|
+
"tags": []
|
|
15
|
+
},
|
|
16
|
+
"source": [
|
|
17
|
+
"# Chapter 9: Business Alignment\n",
|
|
18
|
+
"\n",
|
|
19
|
+
"**Purpose:** Align data exploration with business objectives and constraints.\n",
|
|
20
|
+
"\n",
|
|
21
|
+
"**Outputs:**\n",
|
|
22
|
+
"- Business context documentation\n",
|
|
23
|
+
"- Success metrics definition\n",
|
|
24
|
+
"- Constraints and requirements\n",
|
|
25
|
+
"\n",
|
|
26
|
+
"---"
|
|
27
|
+
]
|
|
28
|
+
},
|
|
29
|
+
{
|
|
30
|
+
"cell_type": "markdown",
|
|
31
|
+
"id": "6204d96d",
|
|
32
|
+
"metadata": {
|
|
33
|
+
"papermill": {
|
|
34
|
+
"duration": 0.001754,
|
|
35
|
+
"end_time": "2026-02-02T13:03:54.783320",
|
|
36
|
+
"exception": false,
|
|
37
|
+
"start_time": "2026-02-02T13:03:54.781566",
|
|
38
|
+
"status": "completed"
|
|
39
|
+
},
|
|
40
|
+
"tags": []
|
|
41
|
+
},
|
|
42
|
+
"source": [
|
|
43
|
+
"## 9.1 Setup"
|
|
44
|
+
]
|
|
45
|
+
},
|
|
46
|
+
{
|
|
47
|
+
"cell_type": "code",
|
|
48
|
+
"execution_count": null,
|
|
49
|
+
"id": "36b7856f",
|
|
50
|
+
"metadata": {
|
|
51
|
+
"execution": {
|
|
52
|
+
"iopub.execute_input": "2026-02-02T13:03:54.788245Z",
|
|
53
|
+
"iopub.status.busy": "2026-02-02T13:03:54.788106Z",
|
|
54
|
+
"iopub.status.idle": "2026-02-02T13:03:56.567208Z",
|
|
55
|
+
"shell.execute_reply": "2026-02-02T13:03:56.566685Z"
|
|
56
|
+
},
|
|
57
|
+
"papermill": {
|
|
58
|
+
"duration": 1.782784,
|
|
59
|
+
"end_time": "2026-02-02T13:03:56.568124",
|
|
60
|
+
"exception": false,
|
|
61
|
+
"start_time": "2026-02-02T13:03:54.785340",
|
|
62
|
+
"status": "completed"
|
|
63
|
+
},
|
|
64
|
+
"tags": []
|
|
65
|
+
},
|
|
66
|
+
"outputs": [],
|
|
67
|
+
"source": [
|
|
68
|
+
"from customer_retention.analysis.notebook_progress import track_and_export_previous\n",
|
|
69
|
+
"track_and_export_previous(\"09_business_alignment.ipynb\")\n",
|
|
70
|
+
"\n",
|
|
71
|
+
"from customer_retention.analysis.auto_explorer import ExplorationFindings\n",
|
|
72
|
+
"from customer_retention.analysis.visualization import display_table\n",
|
|
73
|
+
"import pandas as pd\n",
|
|
74
|
+
"from customer_retention.core.config.experiments import FINDINGS_DIR, EXPERIMENTS_DIR, OUTPUT_DIR, setup_experiments_structure\n",
|
|
75
|
+
"from customer_retention.stages.temporal import TEMPORAL_METADATA_COLS\n"
|
|
76
|
+
]
|
|
77
|
+
},
|
|
78
|
+
{
|
|
79
|
+
"cell_type": "code",
|
|
80
|
+
"execution_count": null,
|
|
81
|
+
"id": "820fd2e1",
|
|
82
|
+
"metadata": {
|
|
83
|
+
"execution": {
|
|
84
|
+
"iopub.execute_input": "2026-02-02T13:03:56.572098Z",
|
|
85
|
+
"iopub.status.busy": "2026-02-02T13:03:56.571946Z",
|
|
86
|
+
"iopub.status.idle": "2026-02-02T13:03:56.796802Z",
|
|
87
|
+
"shell.execute_reply": "2026-02-02T13:03:56.796402Z"
|
|
88
|
+
},
|
|
89
|
+
"papermill": {
|
|
90
|
+
"duration": 0.227756,
|
|
91
|
+
"end_time": "2026-02-02T13:03:56.797497",
|
|
92
|
+
"exception": false,
|
|
93
|
+
"start_time": "2026-02-02T13:03:56.569741",
|
|
94
|
+
"status": "completed"
|
|
95
|
+
},
|
|
96
|
+
"tags": []
|
|
97
|
+
},
|
|
98
|
+
"outputs": [],
|
|
99
|
+
"source": [
|
|
100
|
+
"# === CONFIGURATION ===\n",
|
|
101
|
+
"from pathlib import Path\n",
|
|
102
|
+
"\n",
|
|
103
|
+
"# FINDINGS_DIR imported from customer_retention.core.config.experiments\n",
|
|
104
|
+
"\n",
|
|
105
|
+
"findings_files = [f for f in FINDINGS_DIR.glob(\"*_findings.yaml\") if \"multi_dataset\" not in f.name]\n",
|
|
106
|
+
"if not findings_files:\n",
|
|
107
|
+
" raise FileNotFoundError(f\"No findings files found in {FINDINGS_DIR}. Run notebook 01 first.\")\n",
|
|
108
|
+
"\n",
|
|
109
|
+
"# Prefer aggregated findings (from 01d) over event-level findings\n",
|
|
110
|
+
"# Pattern: *_aggregated* in filename indicates aggregated data\n",
|
|
111
|
+
"aggregated_files = [f for f in findings_files if \"_aggregated\" in f.name]\n",
|
|
112
|
+
"non_aggregated_files = [f for f in findings_files if \"_aggregated\" not in f.name]\n",
|
|
113
|
+
"\n",
|
|
114
|
+
"if aggregated_files:\n",
|
|
115
|
+
" # Use most recent aggregated file\n",
|
|
116
|
+
" aggregated_files.sort(key=lambda f: f.stat().st_mtime, reverse=True)\n",
|
|
117
|
+
" FINDINGS_PATH = str(aggregated_files[0])\n",
|
|
118
|
+
" print(f\"Found {len(aggregated_files)} aggregated findings file(s)\")\n",
|
|
119
|
+
" print(f\"Using: {FINDINGS_PATH}\")\n",
|
|
120
|
+
" if non_aggregated_files:\n",
|
|
121
|
+
" print(f\" (Skipping {len(non_aggregated_files)} event-level findings)\")\n",
|
|
122
|
+
"else:\n",
|
|
123
|
+
" # Fall back to most recent non-aggregated file\n",
|
|
124
|
+
" non_aggregated_files.sort(key=lambda f: f.stat().st_mtime, reverse=True)\n",
|
|
125
|
+
" FINDINGS_PATH = str(non_aggregated_files[0])\n",
|
|
126
|
+
" print(f\"Found {len(findings_files)} findings file(s)\")\n",
|
|
127
|
+
" print(f\"Using: {FINDINGS_PATH}\")\n",
|
|
128
|
+
"\n",
|
|
129
|
+
"findings = ExplorationFindings.load(FINDINGS_PATH)\n",
|
|
130
|
+
"\n",
|
|
131
|
+
"print(f\"\\nLoaded findings for {findings.column_count} columns\")"
|
|
132
|
+
]
|
|
133
|
+
},
|
|
134
|
+
{
|
|
135
|
+
"cell_type": "markdown",
|
|
136
|
+
"id": "9c6ad68b",
|
|
137
|
+
"metadata": {
|
|
138
|
+
"papermill": {
|
|
139
|
+
"duration": 0.001286,
|
|
140
|
+
"end_time": "2026-02-02T13:03:56.800501",
|
|
141
|
+
"exception": false,
|
|
142
|
+
"start_time": "2026-02-02T13:03:56.799215",
|
|
143
|
+
"status": "completed"
|
|
144
|
+
},
|
|
145
|
+
"tags": []
|
|
146
|
+
},
|
|
147
|
+
"source": [
|
|
148
|
+
"## 9.2 Business Context\n",
|
|
149
|
+
"\n",
|
|
150
|
+
"Define the business context for this project."
|
|
151
|
+
]
|
|
152
|
+
},
|
|
153
|
+
{
|
|
154
|
+
"cell_type": "code",
|
|
155
|
+
"execution_count": null,
|
|
156
|
+
"id": "a947050e",
|
|
157
|
+
"metadata": {
|
|
158
|
+
"execution": {
|
|
159
|
+
"iopub.execute_input": "2026-02-02T13:03:56.804379Z",
|
|
160
|
+
"iopub.status.busy": "2026-02-02T13:03:56.804249Z",
|
|
161
|
+
"iopub.status.idle": "2026-02-02T13:03:56.806909Z",
|
|
162
|
+
"shell.execute_reply": "2026-02-02T13:03:56.806232Z"
|
|
163
|
+
},
|
|
164
|
+
"papermill": {
|
|
165
|
+
"duration": 0.00536,
|
|
166
|
+
"end_time": "2026-02-02T13:03:56.807553",
|
|
167
|
+
"exception": false,
|
|
168
|
+
"start_time": "2026-02-02T13:03:56.802193",
|
|
169
|
+
"status": "completed"
|
|
170
|
+
},
|
|
171
|
+
"tags": []
|
|
172
|
+
},
|
|
173
|
+
"outputs": [],
|
|
174
|
+
"source": [
|
|
175
|
+
"BUSINESS_CONTEXT = {\n",
|
|
176
|
+
" \"project_name\": \"Customer Churn Prediction\",\n",
|
|
177
|
+
" \"business_objective\": \"Reduce customer churn by 20% through proactive retention campaigns\",\n",
|
|
178
|
+
" \"stakeholders\": [\"Marketing Team\", \"Customer Success\", \"Data Science\"],\n",
|
|
179
|
+
" \"timeline\": \"Q1 2025\",\n",
|
|
180
|
+
" \"budget_constraints\": \"$50k for retention campaigns per month\"\n",
|
|
181
|
+
"}\n",
|
|
182
|
+
"\n",
|
|
183
|
+
"print(\"Business Context:\")\n",
|
|
184
|
+
"for key, value in BUSINESS_CONTEXT.items():\n",
|
|
185
|
+
" print(f\" {key}: {value}\")"
|
|
186
|
+
]
|
|
187
|
+
},
|
|
188
|
+
{
|
|
189
|
+
"cell_type": "markdown",
|
|
190
|
+
"id": "947806c0",
|
|
191
|
+
"metadata": {
|
|
192
|
+
"papermill": {
|
|
193
|
+
"duration": 0.001199,
|
|
194
|
+
"end_time": "2026-02-02T13:03:56.810126",
|
|
195
|
+
"exception": false,
|
|
196
|
+
"start_time": "2026-02-02T13:03:56.808927",
|
|
197
|
+
"status": "completed"
|
|
198
|
+
},
|
|
199
|
+
"tags": []
|
|
200
|
+
},
|
|
201
|
+
"source": [
|
|
202
|
+
"## 9.3 Success Metrics"
|
|
203
|
+
]
|
|
204
|
+
},
|
|
205
|
+
{
|
|
206
|
+
"cell_type": "code",
|
|
207
|
+
"execution_count": null,
|
|
208
|
+
"id": "aec679b2",
|
|
209
|
+
"metadata": {
|
|
210
|
+
"execution": {
|
|
211
|
+
"iopub.execute_input": "2026-02-02T13:03:56.813855Z",
|
|
212
|
+
"iopub.status.busy": "2026-02-02T13:03:56.813739Z",
|
|
213
|
+
"iopub.status.idle": "2026-02-02T13:03:56.821979Z",
|
|
214
|
+
"shell.execute_reply": "2026-02-02T13:03:56.821450Z"
|
|
215
|
+
},
|
|
216
|
+
"papermill": {
|
|
217
|
+
"duration": 0.010836,
|
|
218
|
+
"end_time": "2026-02-02T13:03:56.822560",
|
|
219
|
+
"exception": false,
|
|
220
|
+
"start_time": "2026-02-02T13:03:56.811724",
|
|
221
|
+
"status": "completed"
|
|
222
|
+
},
|
|
223
|
+
"tags": []
|
|
224
|
+
},
|
|
225
|
+
"outputs": [],
|
|
226
|
+
"source": [
|
|
227
|
+
"SUCCESS_METRICS = [\n",
|
|
228
|
+
" {\n",
|
|
229
|
+
" \"Metric\": \"Model AUC\",\n",
|
|
230
|
+
" \"Target\": \">= 0.80\",\n",
|
|
231
|
+
" \"Priority\": \"High\",\n",
|
|
232
|
+
" \"Rationale\": \"Need strong discrimination to prioritize high-risk customers\"\n",
|
|
233
|
+
" },\n",
|
|
234
|
+
" {\n",
|
|
235
|
+
" \"Metric\": \"Precision at 20%\",\n",
|
|
236
|
+
" \"Target\": \">= 0.60\",\n",
|
|
237
|
+
" \"Priority\": \"High\",\n",
|
|
238
|
+
" \"Rationale\": \"Limited budget means we can only target top 20% of predictions\"\n",
|
|
239
|
+
" },\n",
|
|
240
|
+
" {\n",
|
|
241
|
+
" \"Metric\": \"Churn Rate Reduction\",\n",
|
|
242
|
+
" \"Target\": \"20%\",\n",
|
|
243
|
+
" \"Priority\": \"High\",\n",
|
|
244
|
+
" \"Rationale\": \"Primary business objective\"\n",
|
|
245
|
+
" },\n",
|
|
246
|
+
" {\n",
|
|
247
|
+
" \"Metric\": \"Model Latency\",\n",
|
|
248
|
+
" \"Target\": \"< 100ms\",\n",
|
|
249
|
+
" \"Priority\": \"Medium\",\n",
|
|
250
|
+
" \"Rationale\": \"Required for real-time scoring\"\n",
|
|
251
|
+
" },\n",
|
|
252
|
+
" {\n",
|
|
253
|
+
" \"Metric\": \"Fairness (Demographic Parity)\",\n",
|
|
254
|
+
" \"Target\": \"Ratio >= 0.8\",\n",
|
|
255
|
+
" \"Priority\": \"Medium\",\n",
|
|
256
|
+
" \"Rationale\": \"Ensure equitable treatment across segments\"\n",
|
|
257
|
+
" }\n",
|
|
258
|
+
"]\n",
|
|
259
|
+
"\n",
|
|
260
|
+
"metrics_df = pd.DataFrame(SUCCESS_METRICS)\n",
|
|
261
|
+
"print(\"Success Metrics:\")\n",
|
|
262
|
+
"display(metrics_df)"
|
|
263
|
+
]
|
|
264
|
+
},
|
|
265
|
+
{
|
|
266
|
+
"cell_type": "markdown",
|
|
267
|
+
"id": "5dc340a7",
|
|
268
|
+
"metadata": {
|
|
269
|
+
"papermill": {
|
|
270
|
+
"duration": 0.001352,
|
|
271
|
+
"end_time": "2026-02-02T13:03:56.825447",
|
|
272
|
+
"exception": false,
|
|
273
|
+
"start_time": "2026-02-02T13:03:56.824095",
|
|
274
|
+
"status": "completed"
|
|
275
|
+
},
|
|
276
|
+
"tags": []
|
|
277
|
+
},
|
|
278
|
+
"source": [
|
|
279
|
+
"## 9.4 Deployment Requirements"
|
|
280
|
+
]
|
|
281
|
+
},
|
|
282
|
+
{
|
|
283
|
+
"cell_type": "code",
|
|
284
|
+
"execution_count": null,
|
|
285
|
+
"id": "27e74568",
|
|
286
|
+
"metadata": {
|
|
287
|
+
"execution": {
|
|
288
|
+
"iopub.execute_input": "2026-02-02T13:03:56.829419Z",
|
|
289
|
+
"iopub.status.busy": "2026-02-02T13:03:56.829310Z",
|
|
290
|
+
"iopub.status.idle": "2026-02-02T13:03:56.832011Z",
|
|
291
|
+
"shell.execute_reply": "2026-02-02T13:03:56.831338Z"
|
|
292
|
+
},
|
|
293
|
+
"papermill": {
|
|
294
|
+
"duration": 0.005715,
|
|
295
|
+
"end_time": "2026-02-02T13:03:56.832732",
|
|
296
|
+
"exception": false,
|
|
297
|
+
"start_time": "2026-02-02T13:03:56.827017",
|
|
298
|
+
"status": "completed"
|
|
299
|
+
},
|
|
300
|
+
"tags": []
|
|
301
|
+
},
|
|
302
|
+
"outputs": [],
|
|
303
|
+
"source": [
|
|
304
|
+
"DEPLOYMENT_REQUIREMENTS = {\n",
|
|
305
|
+
" \"scoring_mode\": \"Both batch and real-time\",\n",
|
|
306
|
+
" \"batch_frequency\": \"Daily\",\n",
|
|
307
|
+
" \"real_time_latency\": \"< 100ms p99\",\n",
|
|
308
|
+
" \"infrastructure\": \"Databricks\",\n",
|
|
309
|
+
" \"model_registry\": \"MLflow\",\n",
|
|
310
|
+
" \"monitoring\": \"Required - drift detection and performance tracking\",\n",
|
|
311
|
+
" \"retraining\": \"Monthly or on significant drift\"\n",
|
|
312
|
+
"}\n",
|
|
313
|
+
"\n",
|
|
314
|
+
"print(\"Deployment Requirements:\")\n",
|
|
315
|
+
"for key, value in DEPLOYMENT_REQUIREMENTS.items():\n",
|
|
316
|
+
" print(f\" {key}: {value}\")"
|
|
317
|
+
]
|
|
318
|
+
},
|
|
319
|
+
{
|
|
320
|
+
"cell_type": "markdown",
|
|
321
|
+
"id": "154da6ba",
|
|
322
|
+
"metadata": {
|
|
323
|
+
"papermill": {
|
|
324
|
+
"duration": 0.00148,
|
|
325
|
+
"end_time": "2026-02-02T13:03:56.835906",
|
|
326
|
+
"exception": false,
|
|
327
|
+
"start_time": "2026-02-02T13:03:56.834426",
|
|
328
|
+
"status": "completed"
|
|
329
|
+
},
|
|
330
|
+
"tags": []
|
|
331
|
+
},
|
|
332
|
+
"source": [
|
|
333
|
+
"## 9.5 Data Constraints"
|
|
334
|
+
]
|
|
335
|
+
},
|
|
336
|
+
{
|
|
337
|
+
"cell_type": "code",
|
|
338
|
+
"execution_count": null,
|
|
339
|
+
"id": "f6682f6e",
|
|
340
|
+
"metadata": {
|
|
341
|
+
"execution": {
|
|
342
|
+
"iopub.execute_input": "2026-02-02T13:03:56.839748Z",
|
|
343
|
+
"iopub.status.busy": "2026-02-02T13:03:56.839615Z",
|
|
344
|
+
"iopub.status.idle": "2026-02-02T13:03:56.844180Z",
|
|
345
|
+
"shell.execute_reply": "2026-02-02T13:03:56.843643Z"
|
|
346
|
+
},
|
|
347
|
+
"papermill": {
|
|
348
|
+
"duration": 0.007327,
|
|
349
|
+
"end_time": "2026-02-02T13:03:56.844666",
|
|
350
|
+
"exception": false,
|
|
351
|
+
"start_time": "2026-02-02T13:03:56.837339",
|
|
352
|
+
"status": "completed"
|
|
353
|
+
},
|
|
354
|
+
"tags": []
|
|
355
|
+
},
|
|
356
|
+
"outputs": [],
|
|
357
|
+
"source": [
|
|
358
|
+
"DATA_CONSTRAINTS = [\n",
|
|
359
|
+
" {\n",
|
|
360
|
+
" \"Constraint\": \"PII Handling\",\n",
|
|
361
|
+
" \"Requirement\": \"No direct PII in features (names, SSN, etc.)\",\n",
|
|
362
|
+
" \"Status\": \"To verify\"\n",
|
|
363
|
+
" },\n",
|
|
364
|
+
" {\n",
|
|
365
|
+
" \"Constraint\": \"Data Freshness\",\n",
|
|
366
|
+
" \"Requirement\": \"Features must be available within 24 hours\",\n",
|
|
367
|
+
" \"Status\": \"To verify\"\n",
|
|
368
|
+
" },\n",
|
|
369
|
+
" {\n",
|
|
370
|
+
" \"Constraint\": \"Historical Depth\",\n",
|
|
371
|
+
" \"Requirement\": \"Minimum 12 months of history for training\",\n",
|
|
372
|
+
" \"Status\": \"To verify\"\n",
|
|
373
|
+
" },\n",
|
|
374
|
+
" {\n",
|
|
375
|
+
" \"Constraint\": \"Protected Attributes\",\n",
|
|
376
|
+
" \"Requirement\": \"Age, gender, race should not be direct features\",\n",
|
|
377
|
+
" \"Status\": \"To verify\"\n",
|
|
378
|
+
" }\n",
|
|
379
|
+
"]\n",
|
|
380
|
+
"\n",
|
|
381
|
+
"constraints_df = pd.DataFrame(DATA_CONSTRAINTS)\n",
|
|
382
|
+
"print(\"Data Constraints:\")\n",
|
|
383
|
+
"display(constraints_df)"
|
|
384
|
+
]
|
|
385
|
+
},
|
|
386
|
+
{
|
|
387
|
+
"cell_type": "markdown",
|
|
388
|
+
"id": "dadb506b",
|
|
389
|
+
"metadata": {
|
|
390
|
+
"papermill": {
|
|
391
|
+
"duration": 0.00146,
|
|
392
|
+
"end_time": "2026-02-02T13:03:56.847876",
|
|
393
|
+
"exception": false,
|
|
394
|
+
"start_time": "2026-02-02T13:03:56.846416",
|
|
395
|
+
"status": "completed"
|
|
396
|
+
},
|
|
397
|
+
"tags": []
|
|
398
|
+
},
|
|
399
|
+
"source": [
|
|
400
|
+
"## 9.6 Intervention Strategy"
|
|
401
|
+
]
|
|
402
|
+
},
|
|
403
|
+
{
|
|
404
|
+
"cell_type": "code",
|
|
405
|
+
"execution_count": null,
|
|
406
|
+
"id": "97c21062",
|
|
407
|
+
"metadata": {
|
|
408
|
+
"execution": {
|
|
409
|
+
"iopub.execute_input": "2026-02-02T13:03:56.851591Z",
|
|
410
|
+
"iopub.status.busy": "2026-02-02T13:03:56.851490Z",
|
|
411
|
+
"iopub.status.idle": "2026-02-02T13:03:56.855665Z",
|
|
412
|
+
"shell.execute_reply": "2026-02-02T13:03:56.855228Z"
|
|
413
|
+
},
|
|
414
|
+
"papermill": {
|
|
415
|
+
"duration": 0.007099,
|
|
416
|
+
"end_time": "2026-02-02T13:03:56.856357",
|
|
417
|
+
"exception": false,
|
|
418
|
+
"start_time": "2026-02-02T13:03:56.849258",
|
|
419
|
+
"status": "completed"
|
|
420
|
+
},
|
|
421
|
+
"tags": []
|
|
422
|
+
},
|
|
423
|
+
"outputs": [],
|
|
424
|
+
"source": [
|
|
425
|
+
"INTERVENTIONS = [\n",
|
|
426
|
+
" {\n",
|
|
427
|
+
" \"Risk Level\": \"High (>0.8)\",\n",
|
|
428
|
+
" \"Intervention\": \"Personal call from account manager\",\n",
|
|
429
|
+
" \"Cost\": \"$50/customer\",\n",
|
|
430
|
+
" \"Expected Effectiveness\": \"40% retention\"\n",
|
|
431
|
+
" },\n",
|
|
432
|
+
" {\n",
|
|
433
|
+
" \"Risk Level\": \"Medium (0.5-0.8)\",\n",
|
|
434
|
+
" \"Intervention\": \"Personalized email + discount offer\",\n",
|
|
435
|
+
" \"Cost\": \"$10/customer\",\n",
|
|
436
|
+
" \"Expected Effectiveness\": \"20% retention\"\n",
|
|
437
|
+
" },\n",
|
|
438
|
+
" {\n",
|
|
439
|
+
" \"Risk Level\": \"Low (<0.5)\",\n",
|
|
440
|
+
" \"Intervention\": \"Automated engagement email\",\n",
|
|
441
|
+
" \"Cost\": \"$0.50/customer\",\n",
|
|
442
|
+
" \"Expected Effectiveness\": \"5% retention\"\n",
|
|
443
|
+
" }\n",
|
|
444
|
+
"]\n",
|
|
445
|
+
"\n",
|
|
446
|
+
"interventions_df = pd.DataFrame(INTERVENTIONS)\n",
|
|
447
|
+
"print(\"Intervention Strategy:\")\n",
|
|
448
|
+
"display(interventions_df)"
|
|
449
|
+
]
|
|
450
|
+
},
|
|
451
|
+
{
|
|
452
|
+
"cell_type": "markdown",
|
|
453
|
+
"id": "d54fd4f3",
|
|
454
|
+
"metadata": {
|
|
455
|
+
"papermill": {
|
|
456
|
+
"duration": 0.00165,
|
|
457
|
+
"end_time": "2026-02-02T13:03:56.859839",
|
|
458
|
+
"exception": false,
|
|
459
|
+
"start_time": "2026-02-02T13:03:56.858189",
|
|
460
|
+
"status": "completed"
|
|
461
|
+
},
|
|
462
|
+
"tags": []
|
|
463
|
+
},
|
|
464
|
+
"source": [
|
|
465
|
+
"## 9.7 Save Business Context to Findings"
|
|
466
|
+
]
|
|
467
|
+
},
|
|
468
|
+
{
|
|
469
|
+
"cell_type": "code",
|
|
470
|
+
"execution_count": null,
|
|
471
|
+
"id": "6cba5547",
|
|
472
|
+
"metadata": {
|
|
473
|
+
"execution": {
|
|
474
|
+
"iopub.execute_input": "2026-02-02T13:03:56.864013Z",
|
|
475
|
+
"iopub.status.busy": "2026-02-02T13:03:56.863903Z",
|
|
476
|
+
"iopub.status.idle": "2026-02-02T13:03:56.938199Z",
|
|
477
|
+
"shell.execute_reply": "2026-02-02T13:03:56.937543Z"
|
|
478
|
+
},
|
|
479
|
+
"papermill": {
|
|
480
|
+
"duration": 0.077367,
|
|
481
|
+
"end_time": "2026-02-02T13:03:56.938923",
|
|
482
|
+
"exception": false,
|
|
483
|
+
"start_time": "2026-02-02T13:03:56.861556",
|
|
484
|
+
"status": "completed"
|
|
485
|
+
},
|
|
486
|
+
"tags": []
|
|
487
|
+
},
|
|
488
|
+
"outputs": [],
|
|
489
|
+
"source": [
|
|
490
|
+
"findings.metadata = findings.metadata or {}\n",
|
|
491
|
+
"findings.metadata[\"business_context\"] = BUSINESS_CONTEXT\n",
|
|
492
|
+
"findings.metadata[\"success_metrics\"] = SUCCESS_METRICS\n",
|
|
493
|
+
"findings.metadata[\"deployment_requirements\"] = DEPLOYMENT_REQUIREMENTS\n",
|
|
494
|
+
"\n",
|
|
495
|
+
"findings.save(FINDINGS_PATH)\n",
|
|
496
|
+
"print(f\"Business context saved to: {FINDINGS_PATH}\")\n"
|
|
497
|
+
]
|
|
498
|
+
},
|
|
499
|
+
{
|
|
500
|
+
"cell_type": "markdown",
|
|
501
|
+
"id": "18808635",
|
|
502
|
+
"metadata": {
|
|
503
|
+
"papermill": {
|
|
504
|
+
"duration": 0.012662,
|
|
505
|
+
"end_time": "2026-02-02T13:03:56.953575",
|
|
506
|
+
"exception": false,
|
|
507
|
+
"start_time": "2026-02-02T13:03:56.940913",
|
|
508
|
+
"status": "completed"
|
|
509
|
+
},
|
|
510
|
+
"tags": []
|
|
511
|
+
},
|
|
512
|
+
"source": [
|
|
513
|
+
"---\n",
|
|
514
|
+
"\n",
|
|
515
|
+
"## Next Steps\n",
|
|
516
|
+
"\n",
|
|
517
|
+
"Continue to **10_spec_generation.ipynb** to generate production specifications."
|
|
518
|
+
]
|
|
519
|
+
},
|
|
520
|
+
{
|
|
521
|
+
"cell_type": "markdown",
|
|
522
|
+
"id": "f0b54317",
|
|
523
|
+
"metadata": {
|
|
524
|
+
"papermill": {
|
|
525
|
+
"duration": 0.01307,
|
|
526
|
+
"end_time": "2026-02-02T13:03:56.974482",
|
|
527
|
+
"exception": false,
|
|
528
|
+
"start_time": "2026-02-02T13:03:56.961412",
|
|
529
|
+
"status": "completed"
|
|
530
|
+
},
|
|
531
|
+
"tags": []
|
|
532
|
+
},
|
|
533
|
+
"source": [
|
|
534
|
+
"> **Save Reminder:** Save this notebook (Ctrl+S / Cmd+S) before running the next one.\n",
|
|
535
|
+
"> The next notebook will automatically export this notebook's HTML documentation from the saved file."
|
|
536
|
+
]
|
|
537
|
+
}
|
|
538
|
+
],
|
|
539
|
+
"metadata": {
|
|
540
|
+
"kernelspec": {
|
|
541
|
+
"display_name": "Python 3",
|
|
542
|
+
"language": "python",
|
|
543
|
+
"name": "python3"
|
|
544
|
+
},
|
|
545
|
+
"language_info": {
|
|
546
|
+
"codemirror_mode": {
|
|
547
|
+
"name": "ipython",
|
|
548
|
+
"version": 3
|
|
549
|
+
},
|
|
550
|
+
"file_extension": ".py",
|
|
551
|
+
"mimetype": "text/x-python",
|
|
552
|
+
"name": "python",
|
|
553
|
+
"nbconvert_exporter": "python",
|
|
554
|
+
"pygments_lexer": "ipython3",
|
|
555
|
+
"version": "3.12.4"
|
|
556
|
+
},
|
|
557
|
+
"papermill": {
|
|
558
|
+
"default_parameters": {},
|
|
559
|
+
"duration": 5.393777,
|
|
560
|
+
"end_time": "2026-02-02T13:03:59.592619",
|
|
561
|
+
"environment_variables": {},
|
|
562
|
+
"exception": null,
|
|
563
|
+
"input_path": "/Users/Vital/python/CustomerRetention/exploration_notebooks/09_business_alignment.ipynb",
|
|
564
|
+
"output_path": "/Users/Vital/python/CustomerRetention/exploration_notebooks/09_business_alignment.ipynb",
|
|
565
|
+
"parameters": {},
|
|
566
|
+
"start_time": "2026-02-02T13:03:54.198842",
|
|
567
|
+
"version": "2.6.0"
|
|
568
|
+
}
|
|
569
|
+
},
|
|
570
|
+
"nbformat": 4,
|
|
571
|
+
"nbformat_minor": 5
|
|
572
|
+
}
|