churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,679 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"id": "cell-0",
|
|
6
|
+
"metadata": {
|
|
7
|
+
"papermill": {
|
|
8
|
+
"duration": 0.002487,
|
|
9
|
+
"end_time": "2026-02-02T13:00:52.603186",
|
|
10
|
+
"exception": false,
|
|
11
|
+
"start_time": "2026-02-02T13:00:52.600699",
|
|
12
|
+
"status": "completed"
|
|
13
|
+
},
|
|
14
|
+
"tags": []
|
|
15
|
+
},
|
|
16
|
+
"source": [
|
|
17
|
+
"# Chapter 1b: Temporal Quality Assessment (Event Bronze Track)\n",
|
|
18
|
+
"\n",
|
|
19
|
+
"**Purpose:** Run quality checks specific to event-level datasets to identify data issues before feature engineering.\n",
|
|
20
|
+
"\n",
|
|
21
|
+
"**When to use this notebook:**\n",
|
|
22
|
+
"- After completing 01a_temporal_deep_dive.ipynb\n",
|
|
23
|
+
"- Your dataset is EVENT_LEVEL granularity\n",
|
|
24
|
+
"- You want to validate temporal data integrity before aggregation\n",
|
|
25
|
+
"\n",
|
|
26
|
+
"| Check | What It Detects | Why It Matters for ML |\n",
|
|
27
|
+
"|-------|-----------------|----------------------|\n",
|
|
28
|
+
"| **TQ001** | Duplicate events (same entity + timestamp) | Inflates counts, skews aggregations, creates artificial sequence patterns |\n",
|
|
29
|
+
"| **TQ002** | Unexpected temporal gaps | Rolling features become misleading; \"events in last 30d\" drops during gaps |\n",
|
|
30
|
+
"| **TQ003** | Future dates | Data leakage — model sees future during training |\n",
|
|
31
|
+
"| **TQ004** | Ambiguous event ordering | Sequence features undefined when multiple events share timestamp |"
|
|
32
|
+
]
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
"cell_type": "markdown",
|
|
36
|
+
"id": "cell-1",
|
|
37
|
+
"metadata": {
|
|
38
|
+
"papermill": {
|
|
39
|
+
"duration": 0.00158,
|
|
40
|
+
"end_time": "2026-02-02T13:00:52.606755",
|
|
41
|
+
"exception": false,
|
|
42
|
+
"start_time": "2026-02-02T13:00:52.605175",
|
|
43
|
+
"status": "completed"
|
|
44
|
+
},
|
|
45
|
+
"tags": []
|
|
46
|
+
},
|
|
47
|
+
"source": [
|
|
48
|
+
"## 1b.1 Load Findings and Data"
|
|
49
|
+
]
|
|
50
|
+
},
|
|
51
|
+
{
|
|
52
|
+
"cell_type": "code",
|
|
53
|
+
"execution_count": null,
|
|
54
|
+
"id": "cell-2",
|
|
55
|
+
"metadata": {
|
|
56
|
+
"execution": {
|
|
57
|
+
"iopub.execute_input": "2026-02-02T13:00:52.611011Z",
|
|
58
|
+
"iopub.status.busy": "2026-02-02T13:00:52.610876Z",
|
|
59
|
+
"iopub.status.idle": "2026-02-02T13:00:54.504186Z",
|
|
60
|
+
"shell.execute_reply": "2026-02-02T13:00:54.503492Z"
|
|
61
|
+
},
|
|
62
|
+
"papermill": {
|
|
63
|
+
"duration": 1.896686,
|
|
64
|
+
"end_time": "2026-02-02T13:00:54.505137",
|
|
65
|
+
"exception": false,
|
|
66
|
+
"start_time": "2026-02-02T13:00:52.608451",
|
|
67
|
+
"status": "completed"
|
|
68
|
+
},
|
|
69
|
+
"tags": []
|
|
70
|
+
},
|
|
71
|
+
"outputs": [],
|
|
72
|
+
"source": [
|
|
73
|
+
"from customer_retention.analysis.notebook_progress import track_and_export_previous\n",
|
|
74
|
+
"track_and_export_previous(\"01b_temporal_quality.ipynb\")\n",
|
|
75
|
+
"\n",
|
|
76
|
+
"from pathlib import Path\n",
|
|
77
|
+
"import pandas as pd\n",
|
|
78
|
+
"import plotly.graph_objects as go\n",
|
|
79
|
+
"from plotly.subplots import make_subplots\n",
|
|
80
|
+
"\n",
|
|
81
|
+
"from customer_retention.analysis.auto_explorer import ExplorationFindings, RecommendationEngine\n",
|
|
82
|
+
"from customer_retention.analysis.visualization import ChartBuilder, display_figure\n",
|
|
83
|
+
"from customer_retention.core.config.column_config import ColumnType\n",
|
|
84
|
+
"from customer_retention.stages.profiling import (\n",
|
|
85
|
+
" DuplicateEventCheck, TemporalGapCheck, FutureDateCheck, EventOrderCheck,\n",
|
|
86
|
+
" TemporalQualityReporter, SegmentAwareOutlierAnalyzer\n",
|
|
87
|
+
")\n",
|
|
88
|
+
"from customer_retention.stages.temporal import load_data_with_snapshot_preference, TEMPORAL_METADATA_COLS\n",
|
|
89
|
+
"from customer_retention.core.config.experiments import FINDINGS_DIR, EXPERIMENTS_DIR, OUTPUT_DIR, setup_experiments_structure\n"
|
|
90
|
+
]
|
|
91
|
+
},
|
|
92
|
+
{
|
|
93
|
+
"cell_type": "code",
|
|
94
|
+
"execution_count": null,
|
|
95
|
+
"id": "cell-3",
|
|
96
|
+
"metadata": {
|
|
97
|
+
"execution": {
|
|
98
|
+
"iopub.execute_input": "2026-02-02T13:00:54.509631Z",
|
|
99
|
+
"iopub.status.busy": "2026-02-02T13:00:54.509304Z",
|
|
100
|
+
"iopub.status.idle": "2026-02-02T13:00:55.198236Z",
|
|
101
|
+
"shell.execute_reply": "2026-02-02T13:00:55.197651Z"
|
|
102
|
+
},
|
|
103
|
+
"papermill": {
|
|
104
|
+
"duration": 0.692154,
|
|
105
|
+
"end_time": "2026-02-02T13:00:55.199216",
|
|
106
|
+
"exception": false,
|
|
107
|
+
"start_time": "2026-02-02T13:00:54.507062",
|
|
108
|
+
"status": "completed"
|
|
109
|
+
},
|
|
110
|
+
"tags": []
|
|
111
|
+
},
|
|
112
|
+
"outputs": [],
|
|
113
|
+
"source": [
|
|
114
|
+
"# FINDINGS_DIR imported from customer_retention.core.config.experiments\n",
|
|
115
|
+
"findings_files = sorted(\n",
|
|
116
|
+
" [f for f in FINDINGS_DIR.glob(\"*_findings.yaml\") if \"multi_dataset\" not in f.name],\n",
|
|
117
|
+
" key=lambda f: f.stat().st_mtime, reverse=True\n",
|
|
118
|
+
")\n",
|
|
119
|
+
"if not findings_files:\n",
|
|
120
|
+
" raise FileNotFoundError(f\"No findings in {FINDINGS_DIR}. Run notebook 01 first.\")\n",
|
|
121
|
+
"\n",
|
|
122
|
+
"FINDINGS_PATH = str(findings_files[0])\n",
|
|
123
|
+
"findings = ExplorationFindings.load(FINDINGS_PATH)\n",
|
|
124
|
+
"print(f\"Using: {FINDINGS_PATH}\")\n",
|
|
125
|
+
"\n",
|
|
126
|
+
"ts_meta = findings.time_series_metadata\n",
|
|
127
|
+
"ENTITY_COLUMN, TIME_COLUMN = ts_meta.entity_column, ts_meta.time_column\n",
|
|
128
|
+
"print(f\"Entity: {ENTITY_COLUMN}, Time: {TIME_COLUMN}\")\n",
|
|
129
|
+
"\n",
|
|
130
|
+
"df, data_source = load_data_with_snapshot_preference(findings, output_dir=str(FINDINGS_DIR))\n",
|
|
131
|
+
"charts = ChartBuilder()\n",
|
|
132
|
+
"print(f\"Loaded {len(df):,} rows ({data_source})\")"
|
|
133
|
+
]
|
|
134
|
+
},
|
|
135
|
+
{
|
|
136
|
+
"cell_type": "markdown",
|
|
137
|
+
"id": "cell-4",
|
|
138
|
+
"metadata": {
|
|
139
|
+
"papermill": {
|
|
140
|
+
"duration": 0.0014,
|
|
141
|
+
"end_time": "2026-02-02T13:00:55.202447",
|
|
142
|
+
"exception": false,
|
|
143
|
+
"start_time": "2026-02-02T13:00:55.201047",
|
|
144
|
+
"status": "completed"
|
|
145
|
+
},
|
|
146
|
+
"tags": []
|
|
147
|
+
},
|
|
148
|
+
"source": [
|
|
149
|
+
"## 1b.2 Configure Quality Checks"
|
|
150
|
+
]
|
|
151
|
+
},
|
|
152
|
+
{
|
|
153
|
+
"cell_type": "code",
|
|
154
|
+
"execution_count": null,
|
|
155
|
+
"id": "cell-5",
|
|
156
|
+
"metadata": {
|
|
157
|
+
"execution": {
|
|
158
|
+
"iopub.execute_input": "2026-02-02T13:00:55.206889Z",
|
|
159
|
+
"iopub.status.busy": "2026-02-02T13:00:55.206640Z",
|
|
160
|
+
"iopub.status.idle": "2026-02-02T13:00:55.209364Z",
|
|
161
|
+
"shell.execute_reply": "2026-02-02T13:00:55.208747Z"
|
|
162
|
+
},
|
|
163
|
+
"papermill": {
|
|
164
|
+
"duration": 0.005584,
|
|
165
|
+
"end_time": "2026-02-02T13:00:55.209814",
|
|
166
|
+
"exception": false,
|
|
167
|
+
"start_time": "2026-02-02T13:00:55.204230",
|
|
168
|
+
"status": "completed"
|
|
169
|
+
},
|
|
170
|
+
"tags": []
|
|
171
|
+
},
|
|
172
|
+
"outputs": [],
|
|
173
|
+
"source": [
|
|
174
|
+
"REFERENCE_DATE = pd.Timestamp.now() # or pd.Timestamp(\"2024-01-01\")\n",
|
|
175
|
+
"EXPECTED_FREQUENCY = \"D\" # D=daily, W=weekly, M=monthly, H=hourly\n",
|
|
176
|
+
"MAX_GAP_MULTIPLE = 3.0\n",
|
|
177
|
+
"\n",
|
|
178
|
+
"print(f\"Reference: {REFERENCE_DATE.date()}, Frequency: {EXPECTED_FREQUENCY}, Gap threshold: {MAX_GAP_MULTIPLE}x\")"
|
|
179
|
+
]
|
|
180
|
+
},
|
|
181
|
+
{
|
|
182
|
+
"cell_type": "markdown",
|
|
183
|
+
"id": "cell-6",
|
|
184
|
+
"metadata": {
|
|
185
|
+
"papermill": {
|
|
186
|
+
"duration": 0.001492,
|
|
187
|
+
"end_time": "2026-02-02T13:00:55.213170",
|
|
188
|
+
"exception": false,
|
|
189
|
+
"start_time": "2026-02-02T13:00:55.211678",
|
|
190
|
+
"status": "completed"
|
|
191
|
+
},
|
|
192
|
+
"tags": []
|
|
193
|
+
},
|
|
194
|
+
"source": [
|
|
195
|
+
"## 1b.3 Run Temporal Quality Checks\n",
|
|
196
|
+
"\n",
|
|
197
|
+
"| Issue Type | ML Impact | Mitigation |\n",
|
|
198
|
+
"|------------|-----------|------------|\n",
|
|
199
|
+
"| Duplicates | Sum/count features inflated; artificial patterns in sequences | Deduplicate or add sequence index |\n",
|
|
200
|
+
"| Gaps | Rolling aggregations drop; recency features spike | Document gaps; add gap indicator feature |\n",
|
|
201
|
+
"| Future dates | Model trains on leaked future info | Filter to reference date; check timezone handling |\n",
|
|
202
|
+
"| Ordering | \"Previous event\" features undefined | Add tiebreaker column; use stable sort |"
|
|
203
|
+
]
|
|
204
|
+
},
|
|
205
|
+
{
|
|
206
|
+
"cell_type": "code",
|
|
207
|
+
"execution_count": null,
|
|
208
|
+
"id": "cell-7",
|
|
209
|
+
"metadata": {
|
|
210
|
+
"execution": {
|
|
211
|
+
"iopub.execute_input": "2026-02-02T13:00:55.217026Z",
|
|
212
|
+
"iopub.status.busy": "2026-02-02T13:00:55.216922Z",
|
|
213
|
+
"iopub.status.idle": "2026-02-02T13:00:55.267263Z",
|
|
214
|
+
"shell.execute_reply": "2026-02-02T13:00:55.266748Z"
|
|
215
|
+
},
|
|
216
|
+
"papermill": {
|
|
217
|
+
"duration": 0.053177,
|
|
218
|
+
"end_time": "2026-02-02T13:00:55.267824",
|
|
219
|
+
"exception": false,
|
|
220
|
+
"start_time": "2026-02-02T13:00:55.214647",
|
|
221
|
+
"status": "completed"
|
|
222
|
+
},
|
|
223
|
+
"tags": []
|
|
224
|
+
},
|
|
225
|
+
"outputs": [],
|
|
226
|
+
"source": [
|
|
227
|
+
"checks = [\n",
|
|
228
|
+
" DuplicateEventCheck(entity_column=ENTITY_COLUMN, time_column=TIME_COLUMN),\n",
|
|
229
|
+
" TemporalGapCheck(time_column=TIME_COLUMN, expected_frequency=EXPECTED_FREQUENCY, max_gap_multiple=MAX_GAP_MULTIPLE),\n",
|
|
230
|
+
" FutureDateCheck(time_column=TIME_COLUMN, reference_date=REFERENCE_DATE),\n",
|
|
231
|
+
" EventOrderCheck(entity_column=ENTITY_COLUMN, time_column=TIME_COLUMN),\n",
|
|
232
|
+
"]\n",
|
|
233
|
+
"results = [check.run(df) for check in checks]\n",
|
|
234
|
+
"reporter = TemporalQualityReporter(results, len(df))\n",
|
|
235
|
+
"reporter.print_results()"
|
|
236
|
+
]
|
|
237
|
+
},
|
|
238
|
+
{
|
|
239
|
+
"cell_type": "markdown",
|
|
240
|
+
"id": "cell-8",
|
|
241
|
+
"metadata": {
|
|
242
|
+
"papermill": {
|
|
243
|
+
"duration": 0.001479,
|
|
244
|
+
"end_time": "2026-02-02T13:00:55.270977",
|
|
245
|
+
"exception": false,
|
|
246
|
+
"start_time": "2026-02-02T13:00:55.269498",
|
|
247
|
+
"status": "completed"
|
|
248
|
+
},
|
|
249
|
+
"tags": []
|
|
250
|
+
},
|
|
251
|
+
"source": [
|
|
252
|
+
"## 1b.4 Quality Score\n",
|
|
253
|
+
"\n",
|
|
254
|
+
"| Component | Weight | Scoring Logic |\n",
|
|
255
|
+
"|-----------|--------|---------------|\n",
|
|
256
|
+
"| Each check | 25% | 100 if no issues; deductions proportional to % affected |\n",
|
|
257
|
+
"| Grade A | 90-100 | Proceed with confidence |\n",
|
|
258
|
+
"| Grade B | 75-89 | Document issues, proceed with caution |\n",
|
|
259
|
+
"| Grade C | 60-74 | Address issues before feature engineering |\n",
|
|
260
|
+
"| Grade D | <60 | Investigation required |"
|
|
261
|
+
]
|
|
262
|
+
},
|
|
263
|
+
{
|
|
264
|
+
"cell_type": "code",
|
|
265
|
+
"execution_count": null,
|
|
266
|
+
"id": "cell-9",
|
|
267
|
+
"metadata": {
|
|
268
|
+
"execution": {
|
|
269
|
+
"iopub.execute_input": "2026-02-02T13:00:55.275294Z",
|
|
270
|
+
"iopub.status.busy": "2026-02-02T13:00:55.275192Z",
|
|
271
|
+
"iopub.status.idle": "2026-02-02T13:00:55.277551Z",
|
|
272
|
+
"shell.execute_reply": "2026-02-02T13:00:55.276851Z"
|
|
273
|
+
},
|
|
274
|
+
"papermill": {
|
|
275
|
+
"duration": 0.005227,
|
|
276
|
+
"end_time": "2026-02-02T13:00:55.278101",
|
|
277
|
+
"exception": false,
|
|
278
|
+
"start_time": "2026-02-02T13:00:55.272874",
|
|
279
|
+
"status": "completed"
|
|
280
|
+
},
|
|
281
|
+
"tags": []
|
|
282
|
+
},
|
|
283
|
+
"outputs": [],
|
|
284
|
+
"source": [
|
|
285
|
+
"reporter.print_score()\n",
|
|
286
|
+
"quality_score, grade, passed = reporter.quality_score, reporter.grade, reporter.passed"
|
|
287
|
+
]
|
|
288
|
+
},
|
|
289
|
+
{
|
|
290
|
+
"cell_type": "markdown",
|
|
291
|
+
"id": "cell-10",
|
|
292
|
+
"metadata": {
|
|
293
|
+
"papermill": {
|
|
294
|
+
"duration": 0.001615,
|
|
295
|
+
"end_time": "2026-02-02T13:00:55.281714",
|
|
296
|
+
"exception": false,
|
|
297
|
+
"start_time": "2026-02-02T13:00:55.280099",
|
|
298
|
+
"status": "completed"
|
|
299
|
+
},
|
|
300
|
+
"tags": []
|
|
301
|
+
},
|
|
302
|
+
"source": [
|
|
303
|
+
"## 1b.5 Event Volume Analysis\n",
|
|
304
|
+
"\n",
|
|
305
|
+
"| What to Look For | Indicates | Action |\n",
|
|
306
|
+
"|-----------------|-----------|--------|\n",
|
|
307
|
+
"| Missing bars | Data gaps (TQ002) | Document; add gap indicator |\n",
|
|
308
|
+
"| Declining trend | Population shrinkage or data cutoff | Check if intentional |\n",
|
|
309
|
+
"| Spikes | Campaigns, seasonality, or data issues | Investigate cause |\n",
|
|
310
|
+
"| Flat periods | Possible logging outages | Verify with data source |"
|
|
311
|
+
]
|
|
312
|
+
},
|
|
313
|
+
{
|
|
314
|
+
"cell_type": "code",
|
|
315
|
+
"execution_count": null,
|
|
316
|
+
"id": "cell-11",
|
|
317
|
+
"metadata": {
|
|
318
|
+
"execution": {
|
|
319
|
+
"iopub.execute_input": "2026-02-02T13:00:55.286039Z",
|
|
320
|
+
"iopub.status.busy": "2026-02-02T13:00:55.285927Z",
|
|
321
|
+
"iopub.status.idle": "2026-02-02T13:00:55.315871Z",
|
|
322
|
+
"shell.execute_reply": "2026-02-02T13:00:55.315137Z"
|
|
323
|
+
},
|
|
324
|
+
"papermill": {
|
|
325
|
+
"duration": 0.033261,
|
|
326
|
+
"end_time": "2026-02-02T13:00:55.316776",
|
|
327
|
+
"exception": false,
|
|
328
|
+
"start_time": "2026-02-02T13:00:55.283515",
|
|
329
|
+
"status": "completed"
|
|
330
|
+
},
|
|
331
|
+
"tags": []
|
|
332
|
+
},
|
|
333
|
+
"outputs": [],
|
|
334
|
+
"source": [
|
|
335
|
+
"df_temp = df.copy()\n",
|
|
336
|
+
"df_temp[TIME_COLUMN] = pd.to_datetime(df_temp[TIME_COLUMN])\n",
|
|
337
|
+
"time_span = (df_temp[TIME_COLUMN].max() - df_temp[TIME_COLUMN].min()).days\n",
|
|
338
|
+
"\n",
|
|
339
|
+
"freq, label = (\"D\", \"Daily\") if time_span <= 90 else (\"W\", \"Weekly\") if time_span <= 365 else (\"ME\", \"Monthly\")\n",
|
|
340
|
+
"counts = df_temp.groupby(pd.Grouper(key=TIME_COLUMN, freq=freq)).size()\n",
|
|
341
|
+
"\n",
|
|
342
|
+
"fig = go.Figure(go.Bar(x=counts.index, y=counts.values, marker_color=\"#4682B4\"))\n",
|
|
343
|
+
"fig.update_layout(title=f\"{label} Event Volume (gaps = missing bars)\", height=300, template=\"plotly_white\")\n",
|
|
344
|
+
"display_figure(fig)"
|
|
345
|
+
]
|
|
346
|
+
},
|
|
347
|
+
{
|
|
348
|
+
"cell_type": "markdown",
|
|
349
|
+
"id": "cell-14",
|
|
350
|
+
"metadata": {
|
|
351
|
+
"papermill": {
|
|
352
|
+
"duration": 0.003275,
|
|
353
|
+
"end_time": "2026-02-02T13:00:55.323645",
|
|
354
|
+
"exception": false,
|
|
355
|
+
"start_time": "2026-02-02T13:00:55.320370",
|
|
356
|
+
"status": "completed"
|
|
357
|
+
},
|
|
358
|
+
"tags": []
|
|
359
|
+
},
|
|
360
|
+
"source": [
|
|
361
|
+
"## 1b.6 Outlier Analysis\n",
|
|
362
|
+
"\n",
|
|
363
|
+
"| Approach | When to Use | Why It Matters |\n",
|
|
364
|
+
"|----------|-------------|----------------|\n",
|
|
365
|
+
"| Global detection | Homogeneous data | Simple threshold works |\n",
|
|
366
|
+
"| Segment-aware | Data has natural groups | Avoids false positives when segments have different scales |\n",
|
|
367
|
+
"\n",
|
|
368
|
+
"Segment-aware detection clusters entities by target (or other segment) and detects outliers within each group separately."
|
|
369
|
+
]
|
|
370
|
+
},
|
|
371
|
+
{
|
|
372
|
+
"cell_type": "code",
|
|
373
|
+
"execution_count": null,
|
|
374
|
+
"id": "cell-15",
|
|
375
|
+
"metadata": {
|
|
376
|
+
"execution": {
|
|
377
|
+
"iopub.execute_input": "2026-02-02T13:00:55.331243Z",
|
|
378
|
+
"iopub.status.busy": "2026-02-02T13:00:55.331125Z",
|
|
379
|
+
"iopub.status.idle": "2026-02-02T13:01:05.464597Z",
|
|
380
|
+
"shell.execute_reply": "2026-02-02T13:01:05.463713Z"
|
|
381
|
+
},
|
|
382
|
+
"papermill": {
|
|
383
|
+
"duration": 10.138458,
|
|
384
|
+
"end_time": "2026-02-02T13:01:05.465385",
|
|
385
|
+
"exception": false,
|
|
386
|
+
"start_time": "2026-02-02T13:00:55.326927",
|
|
387
|
+
"status": "completed"
|
|
388
|
+
},
|
|
389
|
+
"tags": []
|
|
390
|
+
},
|
|
391
|
+
"outputs": [],
|
|
392
|
+
"source": [
|
|
393
|
+
"numeric_cols = [n for n, c in findings.columns.items()\n",
|
|
394
|
+
" if c.inferred_type in [ColumnType.NUMERIC_CONTINUOUS, ColumnType.NUMERIC_DISCRETE]\n",
|
|
395
|
+
" and n not in [ENTITY_COLUMN, TIME_COLUMN] and n not in TEMPORAL_METADATA_COLS]\n",
|
|
396
|
+
"\n",
|
|
397
|
+
"if numeric_cols:\n",
|
|
398
|
+
" analyzer = SegmentAwareOutlierAnalyzer(max_segments=5)\n",
|
|
399
|
+
" result = analyzer.analyze(df, feature_cols=numeric_cols, segment_col=None, target_col=findings.target_column)\n",
|
|
400
|
+
" \n",
|
|
401
|
+
" print(f\"Segments detected: {result.n_segments}\")\n",
|
|
402
|
+
" if result.n_segments > 1:\n",
|
|
403
|
+
" data = [{\"Feature\": c, \"Global\": result.global_analysis[c].outliers_detected,\n",
|
|
404
|
+
" \"Segment\": sum(s[c].outliers_detected for s in result.segment_analysis.values() if c in s)}\n",
|
|
405
|
+
" for c in numeric_cols]\n",
|
|
406
|
+
" display(pd.DataFrame(data))\n",
|
|
407
|
+
" if result.segmentation_recommended:\n",
|
|
408
|
+
" print(\"\\n💡 Segment-specific outlier treatment recommended\")\n",
|
|
409
|
+
" else:\n",
|
|
410
|
+
" print(\"Data appears homogeneous - using global outlier detection\")\n",
|
|
411
|
+
"else:\n",
|
|
412
|
+
" print(\"No numeric columns for outlier analysis.\")"
|
|
413
|
+
]
|
|
414
|
+
},
|
|
415
|
+
{
|
|
416
|
+
"cell_type": "markdown",
|
|
417
|
+
"id": "cell-16",
|
|
418
|
+
"metadata": {
|
|
419
|
+
"papermill": {
|
|
420
|
+
"duration": 0.003472,
|
|
421
|
+
"end_time": "2026-02-02T13:01:05.472843",
|
|
422
|
+
"exception": false,
|
|
423
|
+
"start_time": "2026-02-02T13:01:05.469371",
|
|
424
|
+
"status": "completed"
|
|
425
|
+
},
|
|
426
|
+
"tags": []
|
|
427
|
+
},
|
|
428
|
+
"source": [
|
|
429
|
+
"## 1b.7 Data Validation\n",
|
|
430
|
+
"\n",
|
|
431
|
+
"| Check | Issue | Impact |\n",
|
|
432
|
+
"|-------|-------|--------|\n",
|
|
433
|
+
"| Binary fields | Values outside {0, 1} | Model crashes or silent errors |\n",
|
|
434
|
+
"| String consistency | Case/spacing variants (\"Yes\" vs \"yes\") | Inflated cardinality; split categories |\n",
|
|
435
|
+
"| Missing patterns | Systematic missingness | Bias in imputation |"
|
|
436
|
+
]
|
|
437
|
+
},
|
|
438
|
+
{
|
|
439
|
+
"cell_type": "code",
|
|
440
|
+
"execution_count": null,
|
|
441
|
+
"id": "cell-17",
|
|
442
|
+
"metadata": {
|
|
443
|
+
"execution": {
|
|
444
|
+
"iopub.execute_input": "2026-02-02T13:01:05.481150Z",
|
|
445
|
+
"iopub.status.busy": "2026-02-02T13:01:05.481017Z",
|
|
446
|
+
"iopub.status.idle": "2026-02-02T13:01:05.648331Z",
|
|
447
|
+
"shell.execute_reply": "2026-02-02T13:01:05.647595Z"
|
|
448
|
+
},
|
|
449
|
+
"papermill": {
|
|
450
|
+
"duration": 0.172374,
|
|
451
|
+
"end_time": "2026-02-02T13:01:05.649066",
|
|
452
|
+
"exception": false,
|
|
453
|
+
"start_time": "2026-02-02T13:01:05.476692",
|
|
454
|
+
"status": "completed"
|
|
455
|
+
},
|
|
456
|
+
"tags": []
|
|
457
|
+
},
|
|
458
|
+
"outputs": [],
|
|
459
|
+
"source": [
|
|
460
|
+
"# Binary field validation\n",
|
|
461
|
+
"binary_cols = [n for n, c in findings.columns.items() if c.inferred_type == ColumnType.BINARY and n not in TEMPORAL_METADATA_COLS]\n",
|
|
462
|
+
"for col in binary_cols:\n",
|
|
463
|
+
" c0, c1 = (df[col] == 0).sum(), (df[col] == 1).sum()\n",
|
|
464
|
+
" print(f\"✓ {col}: 0={c0:,} ({c0/(c0+c1)*100:.1f}%), 1={c1:,} ({c1/(c0+c1)*100:.1f}%)\")\n",
|
|
465
|
+
"\n",
|
|
466
|
+
"# Consistency check\n",
|
|
467
|
+
"issues = []\n",
|
|
468
|
+
"for col in df.select_dtypes(include=['object']).columns:\n",
|
|
469
|
+
" if col in [ENTITY_COLUMN, TIME_COLUMN]: continue\n",
|
|
470
|
+
" variants = {}\n",
|
|
471
|
+
" for v in df[col].dropna().unique():\n",
|
|
472
|
+
" key = str(v).lower().strip()\n",
|
|
473
|
+
" variants.setdefault(key, []).append(v)\n",
|
|
474
|
+
" issues.extend([{\"Column\": col, \"Variants\": vs} for vs in variants.values() if len(vs) > 1])\n",
|
|
475
|
+
"\n",
|
|
476
|
+
"print(f\"\\n{'⚠️ Consistency issues: ' + str(len(issues)) if issues else '✅ No consistency issues'}\")"
|
|
477
|
+
]
|
|
478
|
+
},
|
|
479
|
+
{
|
|
480
|
+
"cell_type": "markdown",
|
|
481
|
+
"id": "cell-18",
|
|
482
|
+
"metadata": {
|
|
483
|
+
"papermill": {
|
|
484
|
+
"duration": 0.003229,
|
|
485
|
+
"end_time": "2026-02-02T13:01:05.655939",
|
|
486
|
+
"exception": false,
|
|
487
|
+
"start_time": "2026-02-02T13:01:05.652710",
|
|
488
|
+
"status": "completed"
|
|
489
|
+
},
|
|
490
|
+
"tags": []
|
|
491
|
+
},
|
|
492
|
+
"source": [
|
|
493
|
+
"## 1b.8 Recommendations\n",
|
|
494
|
+
"\n",
|
|
495
|
+
"Framework-generated recommendations based on column-level issues detected during exploration."
|
|
496
|
+
]
|
|
497
|
+
},
|
|
498
|
+
{
|
|
499
|
+
"cell_type": "code",
|
|
500
|
+
"execution_count": null,
|
|
501
|
+
"id": "cell-19",
|
|
502
|
+
"metadata": {
|
|
503
|
+
"execution": {
|
|
504
|
+
"iopub.execute_input": "2026-02-02T13:01:05.663919Z",
|
|
505
|
+
"iopub.status.busy": "2026-02-02T13:01:05.663801Z",
|
|
506
|
+
"iopub.status.idle": "2026-02-02T13:01:05.667016Z",
|
|
507
|
+
"shell.execute_reply": "2026-02-02T13:01:05.666376Z"
|
|
508
|
+
},
|
|
509
|
+
"papermill": {
|
|
510
|
+
"duration": 0.00802,
|
|
511
|
+
"end_time": "2026-02-02T13:01:05.667651",
|
|
512
|
+
"exception": false,
|
|
513
|
+
"start_time": "2026-02-02T13:01:05.659631",
|
|
514
|
+
"status": "completed"
|
|
515
|
+
},
|
|
516
|
+
"tags": []
|
|
517
|
+
},
|
|
518
|
+
"outputs": [],
|
|
519
|
+
"source": [
|
|
520
|
+
"rec_engine = RecommendationEngine()\n",
|
|
521
|
+
"recs = rec_engine.recommend_cleaning(findings)\n",
|
|
522
|
+
"\n",
|
|
523
|
+
"if recs:\n",
|
|
524
|
+
" for r in sorted(recs, key=lambda x: {\"high\": 0, \"medium\": 1, \"low\": 2}.get(x.severity, 3)):\n",
|
|
525
|
+
" icon = {\"high\": \"🔴\", \"medium\": \"🟡\", \"low\": \"🟢\"}.get(r.severity, \"⚪\")\n",
|
|
526
|
+
" print(f\"{icon} [{r.severity.upper()}] {r.column_name}: {r.description}\")\n",
|
|
527
|
+
" label = r.strategy_label if r.strategy_label else r.strategy.replace(\"_\", \" \").title()\n",
|
|
528
|
+
" print(f\" Strategy: {label}\")\n",
|
|
529
|
+
"else:\n",
|
|
530
|
+
" print(\"✅ No critical cleaning recommendations\")"
|
|
531
|
+
]
|
|
532
|
+
},
|
|
533
|
+
{
|
|
534
|
+
"cell_type": "markdown",
|
|
535
|
+
"id": "cell-20",
|
|
536
|
+
"metadata": {
|
|
537
|
+
"papermill": {
|
|
538
|
+
"duration": 0.004024,
|
|
539
|
+
"end_time": "2026-02-02T13:01:05.675373",
|
|
540
|
+
"exception": false,
|
|
541
|
+
"start_time": "2026-02-02T13:01:05.671349",
|
|
542
|
+
"status": "completed"
|
|
543
|
+
},
|
|
544
|
+
"tags": []
|
|
545
|
+
},
|
|
546
|
+
"source": [
|
|
547
|
+
"## 1b.9 Save Results"
|
|
548
|
+
]
|
|
549
|
+
},
|
|
550
|
+
{
|
|
551
|
+
"cell_type": "code",
|
|
552
|
+
"execution_count": null,
|
|
553
|
+
"id": "cell-21",
|
|
554
|
+
"metadata": {
|
|
555
|
+
"execution": {
|
|
556
|
+
"iopub.execute_input": "2026-02-02T13:01:05.683302Z",
|
|
557
|
+
"iopub.status.busy": "2026-02-02T13:01:05.683171Z",
|
|
558
|
+
"iopub.status.idle": "2026-02-02T13:01:05.699141Z",
|
|
559
|
+
"shell.execute_reply": "2026-02-02T13:01:05.698285Z"
|
|
560
|
+
},
|
|
561
|
+
"papermill": {
|
|
562
|
+
"duration": 0.021202,
|
|
563
|
+
"end_time": "2026-02-02T13:01:05.699979",
|
|
564
|
+
"exception": false,
|
|
565
|
+
"start_time": "2026-02-02T13:01:05.678777",
|
|
566
|
+
"status": "completed"
|
|
567
|
+
},
|
|
568
|
+
"tags": []
|
|
569
|
+
},
|
|
570
|
+
"outputs": [],
|
|
571
|
+
"source": [
|
|
572
|
+
"if not findings.metadata:\n",
|
|
573
|
+
" findings.metadata = {}\n",
|
|
574
|
+
"findings.metadata[\"temporal_quality\"] = reporter.to_dict()\n",
|
|
575
|
+
"findings.save(FINDINGS_PATH)\n",
|
|
576
|
+
"print(f\"Saved to: {FINDINGS_PATH}\")\n",
|
|
577
|
+
"print(f\"Score: {quality_score:.0f}/100 (Grade {grade})\")\n"
|
|
578
|
+
]
|
|
579
|
+
},
|
|
580
|
+
{
|
|
581
|
+
"cell_type": "markdown",
|
|
582
|
+
"id": "cell-22",
|
|
583
|
+
"metadata": {
|
|
584
|
+
"papermill": {
|
|
585
|
+
"duration": 0.003113,
|
|
586
|
+
"end_time": "2026-02-02T13:01:05.706587",
|
|
587
|
+
"exception": false,
|
|
588
|
+
"start_time": "2026-02-02T13:01:05.703474",
|
|
589
|
+
"status": "completed"
|
|
590
|
+
},
|
|
591
|
+
"tags": []
|
|
592
|
+
},
|
|
593
|
+
"source": [
|
|
594
|
+
"---\n",
|
|
595
|
+
"\n",
|
|
596
|
+
"## Summary: What We Learned\n",
|
|
597
|
+
"\n",
|
|
598
|
+
"In this notebook, we validated temporal data quality:\n",
|
|
599
|
+
"\n",
|
|
600
|
+
"1. **Temporal Quality Checks** — Detected duplicates, gaps, future dates, ordering issues\n",
|
|
601
|
+
"2. **Quality Score** — Quantified overall data health with pass/fail grading\n",
|
|
602
|
+
"3. **Event Volume** — Visualized data coverage over time\n",
|
|
603
|
+
"4. **Outlier Analysis** — Compared global vs segment-aware detection\n",
|
|
604
|
+
"5. **Data Validation** — Verified binary fields and string consistency\n",
|
|
605
|
+
"\n",
|
|
606
|
+
"## Quality Score Interpretation\n",
|
|
607
|
+
"\n",
|
|
608
|
+
"| Grade | Score | Meaning | Action |\n",
|
|
609
|
+
"|-------|-------|---------|--------|\n",
|
|
610
|
+
"| A | 90-100 | Excellent | Proceed with confidence |\n",
|
|
611
|
+
"| B | 75-89 | Good | Document issues, proceed |\n",
|
|
612
|
+
"| C | 60-74 | Fair | Address issues before aggregation |\n",
|
|
613
|
+
"| D | <60 | Poor | Investigation required |\n",
|
|
614
|
+
"\n",
|
|
615
|
+
"---\n",
|
|
616
|
+
"\n",
|
|
617
|
+
"## Next Steps\n",
|
|
618
|
+
"\n",
|
|
619
|
+
"Continue with the **Event Bronze Track**:\n",
|
|
620
|
+
"\n",
|
|
621
|
+
"1. **01c_temporal_patterns.ipynb** — Detect trends, seasonality, cohort effects\n",
|
|
622
|
+
"2. **01d_event_aggregation.ipynb** — Aggregate events to entity-level features\n",
|
|
623
|
+
"\n",
|
|
624
|
+
"After 01d, continue with **Entity Bronze Track** (02 → 03 → 04) on aggregated data."
|
|
625
|
+
]
|
|
626
|
+
},
|
|
627
|
+
{
|
|
628
|
+
"cell_type": "markdown",
|
|
629
|
+
"id": "f1ec2c4e",
|
|
630
|
+
"metadata": {
|
|
631
|
+
"papermill": {
|
|
632
|
+
"duration": 0.00297,
|
|
633
|
+
"end_time": "2026-02-02T13:01:05.712602",
|
|
634
|
+
"exception": false,
|
|
635
|
+
"start_time": "2026-02-02T13:01:05.709632",
|
|
636
|
+
"status": "completed"
|
|
637
|
+
},
|
|
638
|
+
"tags": []
|
|
639
|
+
},
|
|
640
|
+
"source": [
|
|
641
|
+
"> **Save Reminder:** Save this notebook (Ctrl+S / Cmd+S) before running the next one.\n",
|
|
642
|
+
"> The next notebook will automatically export this notebook's HTML documentation from the saved file."
|
|
643
|
+
]
|
|
644
|
+
}
|
|
645
|
+
],
|
|
646
|
+
"metadata": {
|
|
647
|
+
"kernelspec": {
|
|
648
|
+
"display_name": "Python 3",
|
|
649
|
+
"language": "python",
|
|
650
|
+
"name": "python3"
|
|
651
|
+
},
|
|
652
|
+
"language_info": {
|
|
653
|
+
"codemirror_mode": {
|
|
654
|
+
"name": "ipython",
|
|
655
|
+
"version": 3
|
|
656
|
+
},
|
|
657
|
+
"file_extension": ".py",
|
|
658
|
+
"mimetype": "text/x-python",
|
|
659
|
+
"name": "python",
|
|
660
|
+
"nbconvert_exporter": "python",
|
|
661
|
+
"pygments_lexer": "ipython3",
|
|
662
|
+
"version": "3.12.4"
|
|
663
|
+
},
|
|
664
|
+
"papermill": {
|
|
665
|
+
"default_parameters": {},
|
|
666
|
+
"duration": 16.265903,
|
|
667
|
+
"end_time": "2026-02-02T13:01:08.333031",
|
|
668
|
+
"environment_variables": {},
|
|
669
|
+
"exception": null,
|
|
670
|
+
"input_path": "/Users/Vital/python/CustomerRetention/exploration_notebooks/01b_temporal_quality.ipynb",
|
|
671
|
+
"output_path": "/Users/Vital/python/CustomerRetention/exploration_notebooks/01b_temporal_quality.ipynb",
|
|
672
|
+
"parameters": {},
|
|
673
|
+
"start_time": "2026-02-02T13:00:52.067128",
|
|
674
|
+
"version": "2.6.0"
|
|
675
|
+
}
|
|
676
|
+
},
|
|
677
|
+
"nbformat": 4,
|
|
678
|
+
"nbformat_minor": 5
|
|
679
|
+
}
|