churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
"""Model comparison and selection for customer retention prediction."""
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import Any, Dict, List, Optional
|
|
5
|
+
|
|
6
|
+
from sklearn.metrics import (
|
|
7
|
+
accuracy_score,
|
|
8
|
+
average_precision_score,
|
|
9
|
+
f1_score,
|
|
10
|
+
precision_score,
|
|
11
|
+
recall_score,
|
|
12
|
+
roc_auc_score,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
from customer_retention.core.compat import DataFrame, Series
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@dataclass
|
|
19
|
+
class ModelMetrics:
|
|
20
|
+
pr_auc: float
|
|
21
|
+
roc_auc: float
|
|
22
|
+
f1: float
|
|
23
|
+
precision: float
|
|
24
|
+
recall: float
|
|
25
|
+
accuracy: float
|
|
26
|
+
train_test_gap: Optional[float] = None
|
|
27
|
+
cv_std: Optional[float] = None
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@dataclass
|
|
31
|
+
class ComparisonResult:
|
|
32
|
+
model_metrics: Dict[str, ModelMetrics]
|
|
33
|
+
ranking: List[str]
|
|
34
|
+
best_model_name: str
|
|
35
|
+
comparison_table: DataFrame
|
|
36
|
+
selection_reason: str
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class ModelComparator:
|
|
40
|
+
def __init__(
|
|
41
|
+
self,
|
|
42
|
+
primary_metric: str = "pr_auc",
|
|
43
|
+
weights: Optional[Dict[str, float]] = None,
|
|
44
|
+
):
|
|
45
|
+
self.primary_metric = primary_metric
|
|
46
|
+
self.weights = weights or {
|
|
47
|
+
"pr_auc": 0.40,
|
|
48
|
+
"generalization_gap": 0.20,
|
|
49
|
+
"cv_stability": 0.15,
|
|
50
|
+
"business_cost": 0.15,
|
|
51
|
+
"training_time": 0.05,
|
|
52
|
+
"interpretability": 0.05,
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
def compare(
|
|
56
|
+
self,
|
|
57
|
+
models: Dict[str, Any],
|
|
58
|
+
X_test: DataFrame,
|
|
59
|
+
y_test: Series,
|
|
60
|
+
X_train: Optional[DataFrame] = None,
|
|
61
|
+
y_train: Optional[Series] = None,
|
|
62
|
+
) -> ComparisonResult:
|
|
63
|
+
model_metrics = {}
|
|
64
|
+
|
|
65
|
+
for name, model in models.items():
|
|
66
|
+
metrics = self._evaluate_model(model, X_test, y_test, X_train, y_train)
|
|
67
|
+
model_metrics[name] = metrics
|
|
68
|
+
|
|
69
|
+
ranking = self._rank_models(model_metrics)
|
|
70
|
+
best_model_name = ranking[0]
|
|
71
|
+
comparison_table = self._build_comparison_table(model_metrics, ranking)
|
|
72
|
+
selection_reason = self._generate_selection_reason(best_model_name, model_metrics)
|
|
73
|
+
|
|
74
|
+
return ComparisonResult(
|
|
75
|
+
model_metrics=model_metrics,
|
|
76
|
+
ranking=ranking,
|
|
77
|
+
best_model_name=best_model_name,
|
|
78
|
+
comparison_table=comparison_table,
|
|
79
|
+
selection_reason=selection_reason,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
def _evaluate_model(
|
|
83
|
+
self,
|
|
84
|
+
model,
|
|
85
|
+
X_test: DataFrame,
|
|
86
|
+
y_test: Series,
|
|
87
|
+
X_train: Optional[DataFrame],
|
|
88
|
+
y_train: Optional[Series],
|
|
89
|
+
) -> ModelMetrics:
|
|
90
|
+
y_pred = model.predict(X_test)
|
|
91
|
+
y_proba = model.predict_proba(X_test)[:, 1]
|
|
92
|
+
|
|
93
|
+
pr_auc = average_precision_score(y_test, y_proba)
|
|
94
|
+
roc_auc = roc_auc_score(y_test, y_proba)
|
|
95
|
+
|
|
96
|
+
train_test_gap = None
|
|
97
|
+
if X_train is not None and y_train is not None:
|
|
98
|
+
y_train_proba = model.predict_proba(X_train)[:, 1]
|
|
99
|
+
train_pr_auc = average_precision_score(y_train, y_train_proba)
|
|
100
|
+
train_test_gap = train_pr_auc - pr_auc
|
|
101
|
+
|
|
102
|
+
return ModelMetrics(
|
|
103
|
+
pr_auc=pr_auc,
|
|
104
|
+
roc_auc=roc_auc,
|
|
105
|
+
f1=f1_score(y_test, y_pred, zero_division=0),
|
|
106
|
+
precision=precision_score(y_test, y_pred, zero_division=0),
|
|
107
|
+
recall=recall_score(y_test, y_pred, zero_division=0),
|
|
108
|
+
accuracy=accuracy_score(y_test, y_pred),
|
|
109
|
+
train_test_gap=train_test_gap,
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
def _rank_models(self, model_metrics: Dict[str, ModelMetrics]) -> List[str]:
|
|
113
|
+
scores = {}
|
|
114
|
+
for name, metrics in model_metrics.items():
|
|
115
|
+
scores[name] = getattr(metrics, self.primary_metric)
|
|
116
|
+
|
|
117
|
+
return sorted(scores.keys(), key=lambda x: scores[x], reverse=True)
|
|
118
|
+
|
|
119
|
+
def _build_comparison_table(
|
|
120
|
+
self,
|
|
121
|
+
model_metrics: Dict[str, ModelMetrics],
|
|
122
|
+
ranking: List[str],
|
|
123
|
+
) -> DataFrame:
|
|
124
|
+
rows = []
|
|
125
|
+
for name in ranking:
|
|
126
|
+
metrics = model_metrics[name]
|
|
127
|
+
rows.append({
|
|
128
|
+
"model": name,
|
|
129
|
+
"pr_auc": metrics.pr_auc,
|
|
130
|
+
"roc_auc": metrics.roc_auc,
|
|
131
|
+
"f1": metrics.f1,
|
|
132
|
+
"precision": metrics.precision,
|
|
133
|
+
"recall": metrics.recall,
|
|
134
|
+
"accuracy": metrics.accuracy,
|
|
135
|
+
"train_test_gap": metrics.train_test_gap,
|
|
136
|
+
})
|
|
137
|
+
|
|
138
|
+
return DataFrame(rows).set_index("model")
|
|
139
|
+
|
|
140
|
+
def _generate_selection_reason(
|
|
141
|
+
self,
|
|
142
|
+
best_model_name: str,
|
|
143
|
+
model_metrics: Dict[str, ModelMetrics],
|
|
144
|
+
) -> str:
|
|
145
|
+
metrics = model_metrics[best_model_name]
|
|
146
|
+
return (
|
|
147
|
+
f"Selected {best_model_name} based on highest {self.primary_metric} "
|
|
148
|
+
f"({getattr(metrics, self.primary_metric):.4f})"
|
|
149
|
+
)
|
|
@@ -0,0 +1,138 @@
|
|
|
1
|
+
"""Model evaluation metrics for customer retention prediction."""
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import Any, Dict, Optional
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
from sklearn.metrics import (
|
|
8
|
+
accuracy_score,
|
|
9
|
+
average_precision_score,
|
|
10
|
+
balanced_accuracy_score,
|
|
11
|
+
brier_score_loss,
|
|
12
|
+
classification_report,
|
|
13
|
+
confusion_matrix,
|
|
14
|
+
f1_score,
|
|
15
|
+
log_loss,
|
|
16
|
+
precision_recall_curve,
|
|
17
|
+
precision_score,
|
|
18
|
+
recall_score,
|
|
19
|
+
roc_auc_score,
|
|
20
|
+
roc_curve,
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
from customer_retention.core.compat import DataFrame, Series
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@dataclass
|
|
27
|
+
class EvaluationResult:
|
|
28
|
+
metrics: Dict[str, float]
|
|
29
|
+
confusion_matrix: np.ndarray
|
|
30
|
+
classification_report: Dict[str, Any]
|
|
31
|
+
curves: Dict[str, Dict[str, np.ndarray]]
|
|
32
|
+
threshold: float
|
|
33
|
+
predictions: np.ndarray
|
|
34
|
+
probabilities: np.ndarray
|
|
35
|
+
dataset_name: Optional[str] = None
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class ModelEvaluator:
|
|
39
|
+
def __init__(self, threshold: float = 0.5, positive_class: int = 1):
|
|
40
|
+
self.threshold = threshold
|
|
41
|
+
self.positive_class = positive_class
|
|
42
|
+
|
|
43
|
+
def evaluate(
|
|
44
|
+
self,
|
|
45
|
+
model,
|
|
46
|
+
X: DataFrame,
|
|
47
|
+
y: Series,
|
|
48
|
+
dataset_name: Optional[str] = None,
|
|
49
|
+
) -> EvaluationResult:
|
|
50
|
+
probabilities = model.predict_proba(X)[:, self.positive_class]
|
|
51
|
+
predictions = (probabilities >= self.threshold).astype(int)
|
|
52
|
+
|
|
53
|
+
metrics = self._compute_metrics(y, predictions, probabilities)
|
|
54
|
+
cm = confusion_matrix(y, predictions)
|
|
55
|
+
report = classification_report(y, predictions, output_dict=True)
|
|
56
|
+
curves = self._compute_curves(y, probabilities)
|
|
57
|
+
|
|
58
|
+
return EvaluationResult(
|
|
59
|
+
metrics=metrics,
|
|
60
|
+
confusion_matrix=cm,
|
|
61
|
+
classification_report=report,
|
|
62
|
+
curves=curves,
|
|
63
|
+
threshold=self.threshold,
|
|
64
|
+
predictions=predictions,
|
|
65
|
+
probabilities=probabilities,
|
|
66
|
+
dataset_name=dataset_name,
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
def _compute_metrics(
|
|
70
|
+
self,
|
|
71
|
+
y_true: Series,
|
|
72
|
+
y_pred: np.ndarray,
|
|
73
|
+
y_proba: np.ndarray,
|
|
74
|
+
) -> Dict[str, float]:
|
|
75
|
+
metrics = {
|
|
76
|
+
"accuracy": accuracy_score(y_true, y_pred),
|
|
77
|
+
"balanced_accuracy": balanced_accuracy_score(y_true, y_pred),
|
|
78
|
+
"precision": precision_score(y_true, y_pred, zero_division=0),
|
|
79
|
+
"recall": recall_score(y_true, y_pred, zero_division=0),
|
|
80
|
+
"f1": f1_score(y_true, y_pred, zero_division=0),
|
|
81
|
+
"roc_auc": roc_auc_score(y_true, y_proba),
|
|
82
|
+
"pr_auc": average_precision_score(y_true, y_proba),
|
|
83
|
+
"average_precision": average_precision_score(y_true, y_proba),
|
|
84
|
+
"brier_score": brier_score_loss(y_true, y_proba),
|
|
85
|
+
"log_loss": log_loss(y_true, y_proba),
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
lift_gain = self._compute_lift_gain(y_true, y_proba)
|
|
89
|
+
metrics.update(lift_gain)
|
|
90
|
+
|
|
91
|
+
return metrics
|
|
92
|
+
|
|
93
|
+
def _compute_curves(
|
|
94
|
+
self,
|
|
95
|
+
y_true: Series,
|
|
96
|
+
y_proba: np.ndarray,
|
|
97
|
+
) -> Dict[str, Dict[str, np.ndarray]]:
|
|
98
|
+
fpr, tpr, roc_thresholds = roc_curve(y_true, y_proba)
|
|
99
|
+
precision, recall, pr_thresholds = precision_recall_curve(y_true, y_proba)
|
|
100
|
+
|
|
101
|
+
return {
|
|
102
|
+
"roc_curve": {
|
|
103
|
+
"fpr": fpr,
|
|
104
|
+
"tpr": tpr,
|
|
105
|
+
"thresholds": roc_thresholds,
|
|
106
|
+
},
|
|
107
|
+
"pr_curve": {
|
|
108
|
+
"precision": precision,
|
|
109
|
+
"recall": recall,
|
|
110
|
+
"thresholds": pr_thresholds,
|
|
111
|
+
},
|
|
112
|
+
}
|
|
113
|
+
|
|
114
|
+
def _compute_lift_gain(
|
|
115
|
+
self,
|
|
116
|
+
y_true: Series,
|
|
117
|
+
y_proba: np.ndarray,
|
|
118
|
+
) -> Dict[str, float]:
|
|
119
|
+
y_true = np.array(y_true)
|
|
120
|
+
sorted_indices = np.argsort(y_proba)[::-1]
|
|
121
|
+
y_sorted = y_true[sorted_indices]
|
|
122
|
+
|
|
123
|
+
n_total = len(y_true)
|
|
124
|
+
n_positive = y_true.sum()
|
|
125
|
+
baseline_rate = n_positive / n_total
|
|
126
|
+
|
|
127
|
+
metrics = {}
|
|
128
|
+
for k in [10, 20]:
|
|
129
|
+
top_k_idx = int(n_total * k / 100)
|
|
130
|
+
top_k_positive = y_sorted[:top_k_idx].sum()
|
|
131
|
+
|
|
132
|
+
lift = (top_k_positive / top_k_idx) / baseline_rate if top_k_idx > 0 else 0
|
|
133
|
+
gain = top_k_positive / n_positive if n_positive > 0 else 0
|
|
134
|
+
|
|
135
|
+
metrics[f"lift_at_{k}"] = lift
|
|
136
|
+
metrics[f"gain_at_{k}"] = gain
|
|
137
|
+
|
|
138
|
+
return metrics
|
|
@@ -0,0 +1,131 @@
|
|
|
1
|
+
"""Threshold optimization for classification models."""
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from enum import Enum
|
|
5
|
+
from typing import Any, Dict, Optional
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
from sklearn.metrics import confusion_matrix, f1_score, fbeta_score, precision_score, recall_score
|
|
9
|
+
|
|
10
|
+
from customer_retention.core.compat import DataFrame, Series
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class OptimizationObjective(Enum):
|
|
14
|
+
MIN_COST = "min_cost"
|
|
15
|
+
MAX_F1 = "max_f1"
|
|
16
|
+
MAX_F2 = "max_f2"
|
|
17
|
+
TARGET_RECALL = "target_recall"
|
|
18
|
+
TARGET_PRECISION = "target_precision"
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@dataclass
|
|
22
|
+
class ThresholdResult:
|
|
23
|
+
optimal_threshold: float
|
|
24
|
+
threshold_metrics: Dict[str, float]
|
|
25
|
+
cost_at_threshold: Optional[float]
|
|
26
|
+
comparison_default: Dict[str, Any]
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class ThresholdOptimizer:
|
|
30
|
+
def __init__(
|
|
31
|
+
self,
|
|
32
|
+
objective: OptimizationObjective = OptimizationObjective.MAX_F1,
|
|
33
|
+
cost_fn: float = 100,
|
|
34
|
+
cost_fp: float = 10,
|
|
35
|
+
target_recall: Optional[float] = None,
|
|
36
|
+
target_precision: Optional[float] = None,
|
|
37
|
+
threshold_step: float = 0.01,
|
|
38
|
+
):
|
|
39
|
+
self.objective = objective
|
|
40
|
+
self.cost_fn = cost_fn
|
|
41
|
+
self.cost_fp = cost_fp
|
|
42
|
+
self.target_recall = target_recall
|
|
43
|
+
self.target_precision = target_precision
|
|
44
|
+
self.threshold_step = threshold_step
|
|
45
|
+
|
|
46
|
+
def optimize(self, model, X: DataFrame, y: Series) -> ThresholdResult:
|
|
47
|
+
probabilities = model.predict_proba(X)[:, 1]
|
|
48
|
+
thresholds = np.arange(0.01, 1.0, self.threshold_step)
|
|
49
|
+
|
|
50
|
+
best_threshold = 0.5
|
|
51
|
+
best_score = float("-inf") if self.objective != OptimizationObjective.MIN_COST else float("inf")
|
|
52
|
+
|
|
53
|
+
for threshold in thresholds:
|
|
54
|
+
predictions = (probabilities >= threshold).astype(int)
|
|
55
|
+
score = self._calculate_score(y, predictions, probabilities, threshold)
|
|
56
|
+
|
|
57
|
+
if self._is_better_score(score, best_score):
|
|
58
|
+
best_score = score
|
|
59
|
+
best_threshold = threshold
|
|
60
|
+
|
|
61
|
+
optimal_predictions = (probabilities >= best_threshold).astype(int)
|
|
62
|
+
threshold_metrics = self._calculate_metrics(y, optimal_predictions)
|
|
63
|
+
cost_at_threshold = self._calculate_cost(y, optimal_predictions)
|
|
64
|
+
comparison_default = self._compare_with_default(y, probabilities, best_threshold)
|
|
65
|
+
|
|
66
|
+
return ThresholdResult(
|
|
67
|
+
optimal_threshold=best_threshold,
|
|
68
|
+
threshold_metrics=threshold_metrics,
|
|
69
|
+
cost_at_threshold=cost_at_threshold,
|
|
70
|
+
comparison_default=comparison_default,
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
def _calculate_score(self, y_true, y_pred, y_proba, threshold) -> float:
|
|
74
|
+
if self.objective == OptimizationObjective.MIN_COST:
|
|
75
|
+
return self._calculate_cost(y_true, y_pred)
|
|
76
|
+
|
|
77
|
+
if self.objective == OptimizationObjective.MAX_F1:
|
|
78
|
+
return f1_score(y_true, y_pred, zero_division=0)
|
|
79
|
+
|
|
80
|
+
if self.objective == OptimizationObjective.MAX_F2:
|
|
81
|
+
return fbeta_score(y_true, y_pred, beta=2, zero_division=0)
|
|
82
|
+
|
|
83
|
+
if self.objective == OptimizationObjective.TARGET_RECALL:
|
|
84
|
+
recall = recall_score(y_true, y_pred, zero_division=0)
|
|
85
|
+
if recall >= self.target_recall:
|
|
86
|
+
return precision_score(y_true, y_pred, zero_division=0)
|
|
87
|
+
return float("-inf")
|
|
88
|
+
|
|
89
|
+
if self.objective == OptimizationObjective.TARGET_PRECISION:
|
|
90
|
+
precision = precision_score(y_true, y_pred, zero_division=0)
|
|
91
|
+
if precision >= self.target_precision:
|
|
92
|
+
return recall_score(y_true, y_pred, zero_division=0)
|
|
93
|
+
return float("-inf")
|
|
94
|
+
|
|
95
|
+
return f1_score(y_true, y_pred, zero_division=0)
|
|
96
|
+
|
|
97
|
+
def _is_better_score(self, score: float, best_score: float) -> bool:
|
|
98
|
+
if self.objective == OptimizationObjective.MIN_COST:
|
|
99
|
+
return score < best_score
|
|
100
|
+
return score > best_score
|
|
101
|
+
|
|
102
|
+
def _calculate_cost(self, y_true, y_pred) -> float:
|
|
103
|
+
cm = confusion_matrix(y_true, y_pred)
|
|
104
|
+
tn, fp, fn, tp = cm.ravel()
|
|
105
|
+
return fn * self.cost_fn + fp * self.cost_fp
|
|
106
|
+
|
|
107
|
+
def _calculate_metrics(self, y_true, y_pred) -> Dict[str, float]:
|
|
108
|
+
return {
|
|
109
|
+
"precision": precision_score(y_true, y_pred, zero_division=0),
|
|
110
|
+
"recall": recall_score(y_true, y_pred, zero_division=0),
|
|
111
|
+
"f1": f1_score(y_true, y_pred, zero_division=0),
|
|
112
|
+
"f2": fbeta_score(y_true, y_pred, beta=2, zero_division=0),
|
|
113
|
+
}
|
|
114
|
+
|
|
115
|
+
def _compare_with_default(
|
|
116
|
+
self,
|
|
117
|
+
y_true: Series,
|
|
118
|
+
y_proba: np.ndarray,
|
|
119
|
+
optimal_threshold: float,
|
|
120
|
+
) -> Dict[str, Any]:
|
|
121
|
+
default_threshold = 0.5
|
|
122
|
+
default_preds = (y_proba >= default_threshold).astype(int)
|
|
123
|
+
optimal_preds = (y_proba >= optimal_threshold).astype(int)
|
|
124
|
+
|
|
125
|
+
return {
|
|
126
|
+
"default_threshold": default_threshold,
|
|
127
|
+
"default_f1": f1_score(y_true, default_preds, zero_division=0),
|
|
128
|
+
"default_cost": self._calculate_cost(y_true, default_preds),
|
|
129
|
+
"optimal_f1": f1_score(y_true, optimal_preds, zero_division=0),
|
|
130
|
+
"optimal_cost": self._calculate_cost(y_true, optimal_preds),
|
|
131
|
+
}
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
from customer_retention.core.components.enums import Severity
|
|
2
|
+
|
|
3
|
+
from .alert_manager import (
|
|
4
|
+
Alert,
|
|
5
|
+
AlertChannel,
|
|
6
|
+
AlertCondition,
|
|
7
|
+
AlertConfig,
|
|
8
|
+
AlertLevel,
|
|
9
|
+
AlertManager,
|
|
10
|
+
AlertResult,
|
|
11
|
+
EmailSender,
|
|
12
|
+
SlackSender,
|
|
13
|
+
)
|
|
14
|
+
from .drift_detector import DriftConfig, DriftDetector, DriftResult, DriftType, FeatureDriftResult, TargetDriftResult
|
|
15
|
+
from .performance_monitor import (
|
|
16
|
+
CalibrationCurve,
|
|
17
|
+
DistributionAnalysis,
|
|
18
|
+
DistributionComparison,
|
|
19
|
+
MonitoringConfig,
|
|
20
|
+
PerformanceMonitor,
|
|
21
|
+
PerformanceResult,
|
|
22
|
+
PerformanceStatus,
|
|
23
|
+
ProportionAnalysis,
|
|
24
|
+
ProxyMetrics,
|
|
25
|
+
TrendReport,
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
__all__ = [
|
|
29
|
+
"Severity",
|
|
30
|
+
"DriftDetector", "DriftType", "DriftResult",
|
|
31
|
+
"DriftConfig", "FeatureDriftResult", "TargetDriftResult",
|
|
32
|
+
"PerformanceMonitor", "PerformanceResult", "PerformanceStatus",
|
|
33
|
+
"ProxyMetrics", "MonitoringConfig", "CalibrationCurve", "DistributionAnalysis",
|
|
34
|
+
"ProportionAnalysis", "DistributionComparison", "TrendReport",
|
|
35
|
+
"AlertManager", "Alert", "AlertLevel", "AlertChannel",
|
|
36
|
+
"AlertConfig", "AlertCondition", "AlertResult", "EmailSender", "SlackSender"
|
|
37
|
+
]
|