churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,505 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Customer segmentation module for feature engineering.
|
|
3
|
+
|
|
4
|
+
This module provides functions for creating customer segments based on
|
|
5
|
+
value, engagement, recency, and other behavioral patterns.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from dataclasses import dataclass, field
|
|
9
|
+
from enum import Enum
|
|
10
|
+
from typing import Any, Dict, List, Optional
|
|
11
|
+
|
|
12
|
+
from customer_retention.core.compat import DataFrame, pd
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class SegmentationType(Enum):
|
|
16
|
+
"""Types of customer segmentation."""
|
|
17
|
+
VALUE_FREQUENCY = "value_frequency"
|
|
18
|
+
RECENCY = "recency"
|
|
19
|
+
ENGAGEMENT = "engagement"
|
|
20
|
+
LIFECYCLE = "lifecycle"
|
|
21
|
+
RFM = "rfm"
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@dataclass
|
|
25
|
+
class SegmentDefinition:
|
|
26
|
+
"""Definition of a customer segment."""
|
|
27
|
+
name: str
|
|
28
|
+
segment_type: SegmentationType
|
|
29
|
+
description: str
|
|
30
|
+
criteria: Dict[str, Any] = field(default_factory=dict)
|
|
31
|
+
count: int = 0
|
|
32
|
+
percentage: float = 0.0
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@dataclass
|
|
36
|
+
class SegmentationResult:
|
|
37
|
+
"""Result of customer segmentation."""
|
|
38
|
+
segment_column: str
|
|
39
|
+
segment_type: SegmentationType
|
|
40
|
+
total_customers: int
|
|
41
|
+
segments: List[SegmentDefinition] = field(default_factory=list)
|
|
42
|
+
segment_distribution: Dict[str, int] = field(default_factory=dict)
|
|
43
|
+
|
|
44
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
45
|
+
"""Convert to dictionary for display."""
|
|
46
|
+
return {
|
|
47
|
+
"segment_column": self.segment_column,
|
|
48
|
+
"segment_type": self.segment_type.value,
|
|
49
|
+
"total_customers": self.total_customers,
|
|
50
|
+
"segment_distribution": self.segment_distribution,
|
|
51
|
+
"segments": [
|
|
52
|
+
{
|
|
53
|
+
"name": s.name,
|
|
54
|
+
"description": s.description,
|
|
55
|
+
"count": s.count,
|
|
56
|
+
"percentage": round(s.percentage, 2)
|
|
57
|
+
}
|
|
58
|
+
for s in self.segments
|
|
59
|
+
]
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class CustomerSegmenter:
|
|
64
|
+
"""
|
|
65
|
+
Creates customer segments based on various behavioral patterns.
|
|
66
|
+
|
|
67
|
+
Provides methods for value-based, recency-based, engagement-based,
|
|
68
|
+
and RFM segmentation.
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
def segment_by_value_frequency(
|
|
72
|
+
self,
|
|
73
|
+
df: DataFrame,
|
|
74
|
+
value_column: str,
|
|
75
|
+
frequency_column: str,
|
|
76
|
+
value_threshold: Optional[float] = None,
|
|
77
|
+
frequency_threshold: Optional[float] = None,
|
|
78
|
+
output_column: str = "customer_segment"
|
|
79
|
+
) -> tuple[DataFrame, SegmentationResult]:
|
|
80
|
+
"""
|
|
81
|
+
Segment customers by value and purchase frequency.
|
|
82
|
+
|
|
83
|
+
Creates 4 segments:
|
|
84
|
+
- High_Value_Frequent: High value + high frequency
|
|
85
|
+
- High_Value_Infrequent: High value + low frequency
|
|
86
|
+
- Low_Value_Frequent: Low value + high frequency
|
|
87
|
+
- Low_Value_Infrequent: Low value + low frequency
|
|
88
|
+
|
|
89
|
+
Parameters
|
|
90
|
+
----------
|
|
91
|
+
df : DataFrame
|
|
92
|
+
Data to segment
|
|
93
|
+
value_column : str
|
|
94
|
+
Column representing customer value (e.g., total revenue)
|
|
95
|
+
frequency_column : str
|
|
96
|
+
Column representing purchase frequency
|
|
97
|
+
value_threshold : float, optional
|
|
98
|
+
Threshold for high value. Default: median
|
|
99
|
+
frequency_threshold : float, optional
|
|
100
|
+
Threshold for high frequency. Default: median
|
|
101
|
+
output_column : str
|
|
102
|
+
Name of the output segment column
|
|
103
|
+
|
|
104
|
+
Returns
|
|
105
|
+
-------
|
|
106
|
+
tuple[DataFrame, SegmentationResult]
|
|
107
|
+
DataFrame with segment column and segmentation results
|
|
108
|
+
"""
|
|
109
|
+
df_result = df.copy()
|
|
110
|
+
|
|
111
|
+
# Calculate thresholds if not provided
|
|
112
|
+
if value_threshold is None:
|
|
113
|
+
value_threshold = df[value_column].median()
|
|
114
|
+
if frequency_threshold is None:
|
|
115
|
+
frequency_threshold = df[frequency_column].median()
|
|
116
|
+
|
|
117
|
+
def assign_segment(row):
|
|
118
|
+
high_value = row[value_column] >= value_threshold
|
|
119
|
+
high_freq = row[frequency_column] >= frequency_threshold
|
|
120
|
+
|
|
121
|
+
if high_value and high_freq:
|
|
122
|
+
return "High_Value_Frequent"
|
|
123
|
+
elif high_value and not high_freq:
|
|
124
|
+
return "High_Value_Infrequent"
|
|
125
|
+
elif not high_value and high_freq:
|
|
126
|
+
return "Low_Value_Frequent"
|
|
127
|
+
else:
|
|
128
|
+
return "Low_Value_Infrequent"
|
|
129
|
+
|
|
130
|
+
df_result[output_column] = df_result.apply(assign_segment, axis=1)
|
|
131
|
+
|
|
132
|
+
# Build result
|
|
133
|
+
distribution = df_result[output_column].value_counts().to_dict()
|
|
134
|
+
total = len(df_result)
|
|
135
|
+
|
|
136
|
+
segments = [
|
|
137
|
+
SegmentDefinition(
|
|
138
|
+
name="High_Value_Frequent",
|
|
139
|
+
segment_type=SegmentationType.VALUE_FREQUENCY,
|
|
140
|
+
description="Best customers - high value and frequent purchases",
|
|
141
|
+
criteria={"value": f">= {value_threshold:.2f}", "frequency": f">= {frequency_threshold:.2f}"},
|
|
142
|
+
count=distribution.get("High_Value_Frequent", 0),
|
|
143
|
+
percentage=(distribution.get("High_Value_Frequent", 0) / total * 100) if total > 0 else 0
|
|
144
|
+
),
|
|
145
|
+
SegmentDefinition(
|
|
146
|
+
name="High_Value_Infrequent",
|
|
147
|
+
segment_type=SegmentationType.VALUE_FREQUENCY,
|
|
148
|
+
description="Potential for increased frequency - high value but low frequency",
|
|
149
|
+
criteria={"value": f">= {value_threshold:.2f}", "frequency": f"< {frequency_threshold:.2f}"},
|
|
150
|
+
count=distribution.get("High_Value_Infrequent", 0),
|
|
151
|
+
percentage=(distribution.get("High_Value_Infrequent", 0) / total * 100) if total > 0 else 0
|
|
152
|
+
),
|
|
153
|
+
SegmentDefinition(
|
|
154
|
+
name="Low_Value_Frequent",
|
|
155
|
+
segment_type=SegmentationType.VALUE_FREQUENCY,
|
|
156
|
+
description="Potential for upselling - frequent but low value",
|
|
157
|
+
criteria={"value": f"< {value_threshold:.2f}", "frequency": f">= {frequency_threshold:.2f}"},
|
|
158
|
+
count=distribution.get("Low_Value_Frequent", 0),
|
|
159
|
+
percentage=(distribution.get("Low_Value_Frequent", 0) / total * 100) if total > 0 else 0
|
|
160
|
+
),
|
|
161
|
+
SegmentDefinition(
|
|
162
|
+
name="Low_Value_Infrequent",
|
|
163
|
+
segment_type=SegmentationType.VALUE_FREQUENCY,
|
|
164
|
+
description="Needs activation - low value and low frequency",
|
|
165
|
+
criteria={"value": f"< {value_threshold:.2f}", "frequency": f"< {frequency_threshold:.2f}"},
|
|
166
|
+
count=distribution.get("Low_Value_Infrequent", 0),
|
|
167
|
+
percentage=(distribution.get("Low_Value_Infrequent", 0) / total * 100) if total > 0 else 0
|
|
168
|
+
)
|
|
169
|
+
]
|
|
170
|
+
|
|
171
|
+
result = SegmentationResult(
|
|
172
|
+
segment_column=output_column,
|
|
173
|
+
segment_type=SegmentationType.VALUE_FREQUENCY,
|
|
174
|
+
total_customers=total,
|
|
175
|
+
segments=segments,
|
|
176
|
+
segment_distribution=distribution
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
return df_result, result
|
|
180
|
+
|
|
181
|
+
def segment_by_recency(
|
|
182
|
+
self,
|
|
183
|
+
df: DataFrame,
|
|
184
|
+
days_since_column: str,
|
|
185
|
+
thresholds: Optional[Dict[str, int]] = None,
|
|
186
|
+
output_column: str = "recency_segment"
|
|
187
|
+
) -> tuple[DataFrame, SegmentationResult]:
|
|
188
|
+
"""
|
|
189
|
+
Segment customers by recency (days since last activity).
|
|
190
|
+
|
|
191
|
+
Default segments:
|
|
192
|
+
- Active_30d: Active within 30 days
|
|
193
|
+
- Recent_90d: Active 31-90 days ago
|
|
194
|
+
- Lapsing_180d: Active 91-180 days ago
|
|
195
|
+
- Dormant_180d+: Inactive for 180+ days
|
|
196
|
+
|
|
197
|
+
Parameters
|
|
198
|
+
----------
|
|
199
|
+
df : DataFrame
|
|
200
|
+
Data to segment
|
|
201
|
+
days_since_column : str
|
|
202
|
+
Column with days since last activity
|
|
203
|
+
thresholds : Dict[str, int], optional
|
|
204
|
+
Custom thresholds {"active": 30, "recent": 90, "lapsing": 180}
|
|
205
|
+
output_column : str
|
|
206
|
+
Name of the output segment column
|
|
207
|
+
|
|
208
|
+
Returns
|
|
209
|
+
-------
|
|
210
|
+
tuple[DataFrame, SegmentationResult]
|
|
211
|
+
DataFrame with segment column and segmentation results
|
|
212
|
+
"""
|
|
213
|
+
df_result = df.copy()
|
|
214
|
+
|
|
215
|
+
if thresholds is None:
|
|
216
|
+
thresholds = {"active": 30, "recent": 90, "lapsing": 180}
|
|
217
|
+
|
|
218
|
+
active_days = thresholds.get("active", 30)
|
|
219
|
+
recent_days = thresholds.get("recent", 90)
|
|
220
|
+
lapsing_days = thresholds.get("lapsing", 180)
|
|
221
|
+
|
|
222
|
+
def assign_recency_bucket(days):
|
|
223
|
+
if pd.isna(days):
|
|
224
|
+
return "Unknown"
|
|
225
|
+
days = int(days)
|
|
226
|
+
if days <= active_days:
|
|
227
|
+
return f"Active_{active_days}d"
|
|
228
|
+
elif days <= recent_days:
|
|
229
|
+
return f"Recent_{recent_days}d"
|
|
230
|
+
elif days <= lapsing_days:
|
|
231
|
+
return f"Lapsing_{lapsing_days}d"
|
|
232
|
+
else:
|
|
233
|
+
return f"Dormant_{lapsing_days}d+"
|
|
234
|
+
|
|
235
|
+
df_result[output_column] = df_result[days_since_column].apply(assign_recency_bucket)
|
|
236
|
+
|
|
237
|
+
# Build result
|
|
238
|
+
distribution = df_result[output_column].value_counts().to_dict()
|
|
239
|
+
total = len(df_result)
|
|
240
|
+
|
|
241
|
+
segment_names = [f"Active_{active_days}d", f"Recent_{recent_days}d",
|
|
242
|
+
f"Lapsing_{lapsing_days}d", f"Dormant_{lapsing_days}d+"]
|
|
243
|
+
segment_descriptions = [
|
|
244
|
+
"Recently active customers",
|
|
245
|
+
"Customers with recent activity",
|
|
246
|
+
"Customers at risk of churning",
|
|
247
|
+
"Inactive customers needing re-engagement"
|
|
248
|
+
]
|
|
249
|
+
|
|
250
|
+
segments = []
|
|
251
|
+
for name, desc in zip(segment_names, segment_descriptions):
|
|
252
|
+
count = distribution.get(name, 0)
|
|
253
|
+
segments.append(SegmentDefinition(
|
|
254
|
+
name=name,
|
|
255
|
+
segment_type=SegmentationType.RECENCY,
|
|
256
|
+
description=desc,
|
|
257
|
+
count=count,
|
|
258
|
+
percentage=(count / total * 100) if total > 0 else 0
|
|
259
|
+
))
|
|
260
|
+
|
|
261
|
+
result = SegmentationResult(
|
|
262
|
+
segment_column=output_column,
|
|
263
|
+
segment_type=SegmentationType.RECENCY,
|
|
264
|
+
total_customers=total,
|
|
265
|
+
segments=segments,
|
|
266
|
+
segment_distribution=distribution
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
return df_result, result
|
|
270
|
+
|
|
271
|
+
def segment_by_engagement(
|
|
272
|
+
self,
|
|
273
|
+
df: DataFrame,
|
|
274
|
+
engagement_column: str,
|
|
275
|
+
low_threshold: float = 0.3,
|
|
276
|
+
high_threshold: float = 0.7,
|
|
277
|
+
output_column: str = "engagement_segment"
|
|
278
|
+
) -> tuple[DataFrame, SegmentationResult]:
|
|
279
|
+
"""
|
|
280
|
+
Segment customers by engagement score.
|
|
281
|
+
|
|
282
|
+
Parameters
|
|
283
|
+
----------
|
|
284
|
+
df : DataFrame
|
|
285
|
+
Data to segment
|
|
286
|
+
engagement_column : str
|
|
287
|
+
Column with engagement score (0-1 scale)
|
|
288
|
+
low_threshold : float
|
|
289
|
+
Threshold below which engagement is considered low
|
|
290
|
+
high_threshold : float
|
|
291
|
+
Threshold above which engagement is considered high
|
|
292
|
+
output_column : str
|
|
293
|
+
Name of the output segment column
|
|
294
|
+
|
|
295
|
+
Returns
|
|
296
|
+
-------
|
|
297
|
+
tuple[DataFrame, SegmentationResult]
|
|
298
|
+
DataFrame with segment column and segmentation results
|
|
299
|
+
"""
|
|
300
|
+
df_result = df.copy()
|
|
301
|
+
|
|
302
|
+
def assign_engagement(score):
|
|
303
|
+
if pd.isna(score):
|
|
304
|
+
return "Unknown"
|
|
305
|
+
if score >= high_threshold:
|
|
306
|
+
return "High_Engagement"
|
|
307
|
+
elif score >= low_threshold:
|
|
308
|
+
return "Medium_Engagement"
|
|
309
|
+
else:
|
|
310
|
+
return "Low_Engagement"
|
|
311
|
+
|
|
312
|
+
df_result[output_column] = df_result[engagement_column].apply(assign_engagement)
|
|
313
|
+
|
|
314
|
+
# Build result
|
|
315
|
+
distribution = df_result[output_column].value_counts().to_dict()
|
|
316
|
+
total = len(df_result)
|
|
317
|
+
|
|
318
|
+
segments = [
|
|
319
|
+
SegmentDefinition(
|
|
320
|
+
name="High_Engagement",
|
|
321
|
+
segment_type=SegmentationType.ENGAGEMENT,
|
|
322
|
+
description=f"Highly engaged customers (score >= {high_threshold})",
|
|
323
|
+
criteria={"score": f">= {high_threshold}"},
|
|
324
|
+
count=distribution.get("High_Engagement", 0),
|
|
325
|
+
percentage=(distribution.get("High_Engagement", 0) / total * 100) if total > 0 else 0
|
|
326
|
+
),
|
|
327
|
+
SegmentDefinition(
|
|
328
|
+
name="Medium_Engagement",
|
|
329
|
+
segment_type=SegmentationType.ENGAGEMENT,
|
|
330
|
+
description=f"Moderately engaged customers ({low_threshold} <= score < {high_threshold})",
|
|
331
|
+
criteria={"score": f"{low_threshold} - {high_threshold}"},
|
|
332
|
+
count=distribution.get("Medium_Engagement", 0),
|
|
333
|
+
percentage=(distribution.get("Medium_Engagement", 0) / total * 100) if total > 0 else 0
|
|
334
|
+
),
|
|
335
|
+
SegmentDefinition(
|
|
336
|
+
name="Low_Engagement",
|
|
337
|
+
segment_type=SegmentationType.ENGAGEMENT,
|
|
338
|
+
description=f"Low engagement customers (score < {low_threshold})",
|
|
339
|
+
criteria={"score": f"< {low_threshold}"},
|
|
340
|
+
count=distribution.get("Low_Engagement", 0),
|
|
341
|
+
percentage=(distribution.get("Low_Engagement", 0) / total * 100) if total > 0 else 0
|
|
342
|
+
)
|
|
343
|
+
]
|
|
344
|
+
|
|
345
|
+
result = SegmentationResult(
|
|
346
|
+
segment_column=output_column,
|
|
347
|
+
segment_type=SegmentationType.ENGAGEMENT,
|
|
348
|
+
total_customers=total,
|
|
349
|
+
segments=segments,
|
|
350
|
+
segment_distribution=distribution
|
|
351
|
+
)
|
|
352
|
+
|
|
353
|
+
return df_result, result
|
|
354
|
+
|
|
355
|
+
def create_engagement_score(
|
|
356
|
+
self,
|
|
357
|
+
df: DataFrame,
|
|
358
|
+
open_rate_column: str,
|
|
359
|
+
click_rate_column: str,
|
|
360
|
+
open_weight: float = 0.6,
|
|
361
|
+
click_weight: float = 0.4,
|
|
362
|
+
output_column: str = "engagement_score"
|
|
363
|
+
) -> DataFrame:
|
|
364
|
+
"""
|
|
365
|
+
Create a composite email engagement score.
|
|
366
|
+
|
|
367
|
+
Parameters
|
|
368
|
+
----------
|
|
369
|
+
df : DataFrame
|
|
370
|
+
Data to process
|
|
371
|
+
open_rate_column : str
|
|
372
|
+
Column with email open rate (0-100 scale)
|
|
373
|
+
click_rate_column : str
|
|
374
|
+
Column with email click rate (0-100 scale)
|
|
375
|
+
open_weight : float
|
|
376
|
+
Weight for open rate (default: 0.6)
|
|
377
|
+
click_weight : float
|
|
378
|
+
Weight for click rate (default: 0.4)
|
|
379
|
+
output_column : str
|
|
380
|
+
Name of the output column
|
|
381
|
+
|
|
382
|
+
Returns
|
|
383
|
+
-------
|
|
384
|
+
DataFrame
|
|
385
|
+
DataFrame with engagement score column
|
|
386
|
+
"""
|
|
387
|
+
df_result = df.copy()
|
|
388
|
+
|
|
389
|
+
# Normalize to 0-1 scale if needed
|
|
390
|
+
open_rate = df_result[open_rate_column]
|
|
391
|
+
click_rate = df_result[click_rate_column]
|
|
392
|
+
|
|
393
|
+
if open_rate.max() > 1:
|
|
394
|
+
open_rate = open_rate / 100
|
|
395
|
+
if click_rate.max() > 1:
|
|
396
|
+
click_rate = click_rate / 100
|
|
397
|
+
|
|
398
|
+
df_result[output_column] = (open_weight * open_rate + click_weight * click_rate)
|
|
399
|
+
|
|
400
|
+
return df_result
|
|
401
|
+
|
|
402
|
+
def create_tenure_features(
|
|
403
|
+
self,
|
|
404
|
+
df: DataFrame,
|
|
405
|
+
created_column: str,
|
|
406
|
+
reference_date: Optional[Any] = None,
|
|
407
|
+
output_prefix: str = ""
|
|
408
|
+
) -> DataFrame:
|
|
409
|
+
"""
|
|
410
|
+
Create tenure-based features from account creation date.
|
|
411
|
+
|
|
412
|
+
Parameters
|
|
413
|
+
----------
|
|
414
|
+
df : DataFrame
|
|
415
|
+
Data to process
|
|
416
|
+
created_column : str
|
|
417
|
+
Column with account creation date
|
|
418
|
+
reference_date : datetime-like, optional
|
|
419
|
+
Reference date for calculations. Default: max date in data
|
|
420
|
+
output_prefix : str
|
|
421
|
+
Prefix for output column names
|
|
422
|
+
|
|
423
|
+
Returns
|
|
424
|
+
-------
|
|
425
|
+
DataFrame
|
|
426
|
+
DataFrame with tenure features
|
|
427
|
+
"""
|
|
428
|
+
df_result = df.copy()
|
|
429
|
+
|
|
430
|
+
# Ensure datetime
|
|
431
|
+
if not pd.api.types.is_datetime64_any_dtype(df_result[created_column]):
|
|
432
|
+
df_result[created_column] = pd.to_datetime(df_result[created_column], errors='coerce', format='mixed')
|
|
433
|
+
|
|
434
|
+
# Set reference date
|
|
435
|
+
if reference_date is None:
|
|
436
|
+
reference_date = df_result[created_column].max()
|
|
437
|
+
else:
|
|
438
|
+
reference_date = pd.to_datetime(reference_date)
|
|
439
|
+
|
|
440
|
+
prefix = f"{output_prefix}_" if output_prefix else ""
|
|
441
|
+
|
|
442
|
+
# Tenure in days
|
|
443
|
+
df_result[f"{prefix}tenure_days"] = (reference_date - df_result[created_column]).dt.days
|
|
444
|
+
|
|
445
|
+
# Tenure in months
|
|
446
|
+
df_result[f"{prefix}tenure_months"] = df_result[f"{prefix}tenure_days"] / 30.44
|
|
447
|
+
|
|
448
|
+
# Tenure bucket
|
|
449
|
+
def tenure_bucket(days):
|
|
450
|
+
if pd.isna(days) or days < 0:
|
|
451
|
+
return "Unknown"
|
|
452
|
+
if days <= 90:
|
|
453
|
+
return "New_0_3m"
|
|
454
|
+
elif days <= 180:
|
|
455
|
+
return "Growing_3_6m"
|
|
456
|
+
elif days <= 365:
|
|
457
|
+
return "Established_6_12m"
|
|
458
|
+
else:
|
|
459
|
+
return "Mature_12m+"
|
|
460
|
+
|
|
461
|
+
df_result[f"{prefix}tenure_bucket"] = df_result[f"{prefix}tenure_days"].apply(tenure_bucket)
|
|
462
|
+
|
|
463
|
+
return df_result
|
|
464
|
+
|
|
465
|
+
def create_recency_features(
|
|
466
|
+
self,
|
|
467
|
+
df: DataFrame,
|
|
468
|
+
last_activity_column: str,
|
|
469
|
+
reference_date: Optional[Any] = None,
|
|
470
|
+
output_column: str = "days_since_last_activity"
|
|
471
|
+
) -> DataFrame:
|
|
472
|
+
"""
|
|
473
|
+
Create recency features from last activity date.
|
|
474
|
+
|
|
475
|
+
Parameters
|
|
476
|
+
----------
|
|
477
|
+
df : DataFrame
|
|
478
|
+
Data to process
|
|
479
|
+
last_activity_column : str
|
|
480
|
+
Column with last activity date
|
|
481
|
+
reference_date : datetime-like, optional
|
|
482
|
+
Reference date for calculations. Default: max date in data
|
|
483
|
+
output_column : str
|
|
484
|
+
Name of the output column
|
|
485
|
+
|
|
486
|
+
Returns
|
|
487
|
+
-------
|
|
488
|
+
DataFrame
|
|
489
|
+
DataFrame with recency feature
|
|
490
|
+
"""
|
|
491
|
+
df_result = df.copy()
|
|
492
|
+
|
|
493
|
+
# Ensure datetime
|
|
494
|
+
if not pd.api.types.is_datetime64_any_dtype(df_result[last_activity_column]):
|
|
495
|
+
df_result[last_activity_column] = pd.to_datetime(df_result[last_activity_column], errors='coerce', format='mixed')
|
|
496
|
+
|
|
497
|
+
# Set reference date
|
|
498
|
+
if reference_date is None:
|
|
499
|
+
reference_date = df_result[last_activity_column].max()
|
|
500
|
+
else:
|
|
501
|
+
reference_date = pd.to_datetime(reference_date)
|
|
502
|
+
|
|
503
|
+
df_result[output_column] = (reference_date - df_result[last_activity_column]).dt.days
|
|
504
|
+
|
|
505
|
+
return df_result
|