churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,636 @@
|
|
|
1
|
+
from dataclasses import dataclass, field
|
|
2
|
+
from enum import Enum
|
|
3
|
+
from typing import Dict, List, Optional, Tuple
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
from scipy import stats
|
|
7
|
+
|
|
8
|
+
from customer_retention.core.compat import DataFrame, pd
|
|
9
|
+
from customer_retention.core.utils import compute_effect_size
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TrendDirection(str, Enum):
|
|
13
|
+
INCREASING = "increasing"
|
|
14
|
+
DECREASING = "decreasing"
|
|
15
|
+
STABLE = "stable"
|
|
16
|
+
UNKNOWN = "unknown"
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@dataclass
|
|
20
|
+
class TrendResult:
|
|
21
|
+
direction: TrendDirection
|
|
22
|
+
strength: float
|
|
23
|
+
slope: Optional[float] = None
|
|
24
|
+
p_value: Optional[float] = None
|
|
25
|
+
confidence: str = "low"
|
|
26
|
+
|
|
27
|
+
@property
|
|
28
|
+
def is_significant(self) -> bool:
|
|
29
|
+
return self.p_value is not None and self.p_value < 0.05
|
|
30
|
+
|
|
31
|
+
@property
|
|
32
|
+
def has_direction(self) -> bool:
|
|
33
|
+
return self.direction in [TrendDirection.INCREASING, TrendDirection.DECREASING]
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@dataclass
|
|
37
|
+
class TrendRecommendation:
|
|
38
|
+
action: str
|
|
39
|
+
priority: str
|
|
40
|
+
reason: str
|
|
41
|
+
features: List[str] = field(default_factory=list)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
@dataclass
|
|
45
|
+
class SeasonalityPeriod:
|
|
46
|
+
period: int
|
|
47
|
+
strength: float
|
|
48
|
+
period_name: Optional[str] = None
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@dataclass
|
|
52
|
+
class RecencyResult:
|
|
53
|
+
avg_recency_days: float
|
|
54
|
+
median_recency_days: float
|
|
55
|
+
min_recency_days: float
|
|
56
|
+
max_recency_days: float
|
|
57
|
+
target_correlation: Optional[float] = None
|
|
58
|
+
recency_distribution: Optional[dict] = None
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
@dataclass
|
|
62
|
+
class GroupStats:
|
|
63
|
+
mean: float
|
|
64
|
+
median: float
|
|
65
|
+
std: float
|
|
66
|
+
q25: float
|
|
67
|
+
q75: float
|
|
68
|
+
count: int
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@dataclass
|
|
72
|
+
class RecencyBucketStats:
|
|
73
|
+
bucket_label: str
|
|
74
|
+
bucket_range: Tuple[int, int]
|
|
75
|
+
entity_count: int
|
|
76
|
+
target_rate: float
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
@dataclass
|
|
80
|
+
class RecencyInsight:
|
|
81
|
+
finding: str
|
|
82
|
+
metric_value: float
|
|
83
|
+
metric_name: str
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
@dataclass
|
|
87
|
+
class AnomalyDiagnostics:
|
|
88
|
+
target_1_is_minority: bool
|
|
89
|
+
target_1_pct: float
|
|
90
|
+
retained_median_tenure: Optional[float] = None
|
|
91
|
+
churned_median_tenure: Optional[float] = None
|
|
92
|
+
tenure_explains_pattern: bool = False
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
@dataclass
|
|
96
|
+
class RecencyComparisonResult:
|
|
97
|
+
retained_stats: GroupStats
|
|
98
|
+
churned_stats: GroupStats
|
|
99
|
+
cohens_d: float
|
|
100
|
+
effect_interpretation: str
|
|
101
|
+
churned_higher: bool
|
|
102
|
+
recommendations: List[Dict]
|
|
103
|
+
bucket_stats: List[RecencyBucketStats] = field(default_factory=list)
|
|
104
|
+
key_findings: List[RecencyInsight] = field(default_factory=list)
|
|
105
|
+
inflection_bucket: Optional[str] = None
|
|
106
|
+
distribution_pattern: str = "unknown"
|
|
107
|
+
anomaly_diagnostics: Optional[AnomalyDiagnostics] = None
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
@dataclass
|
|
111
|
+
class CohortDistribution:
|
|
112
|
+
year_counts: Dict[int, int]
|
|
113
|
+
total_entities: int
|
|
114
|
+
dominant_year: int
|
|
115
|
+
dominant_pct: float
|
|
116
|
+
num_years: int
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
@dataclass
|
|
120
|
+
class CohortRecommendation:
|
|
121
|
+
action: str
|
|
122
|
+
priority: str
|
|
123
|
+
reason: str
|
|
124
|
+
features: List[str] = field(default_factory=list)
|
|
125
|
+
insight: Optional[str] = None
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
@dataclass
|
|
129
|
+
class TemporalPatternAnalysis:
|
|
130
|
+
trend: Optional[TrendResult] = None
|
|
131
|
+
seasonality: List[SeasonalityPeriod] = field(default_factory=list)
|
|
132
|
+
cohort_analysis: Optional[DataFrame] = None
|
|
133
|
+
recency_analysis: Optional[RecencyResult] = None
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def compute_group_stats(values: np.ndarray) -> GroupStats:
|
|
137
|
+
return GroupStats(
|
|
138
|
+
mean=float(np.mean(values)),
|
|
139
|
+
median=float(np.median(values)),
|
|
140
|
+
std=float(np.std(values)),
|
|
141
|
+
q25=float(np.percentile(values, 25)),
|
|
142
|
+
q75=float(np.percentile(values, 75)),
|
|
143
|
+
count=len(values)
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def generate_trend_recommendations(trend: TrendResult, mean_value: float = 1.0) -> List[TrendRecommendation]:
|
|
148
|
+
recommendations = []
|
|
149
|
+
daily_pct = (trend.slope / mean_value * 100) if trend.slope and mean_value else 0
|
|
150
|
+
|
|
151
|
+
if trend.has_direction and trend.strength > 0.3 and trend.is_significant:
|
|
152
|
+
recommendations.append(TrendRecommendation(
|
|
153
|
+
action="add_trend_features", priority="high",
|
|
154
|
+
features=["recent_vs_overall_ratio", "entity_trend_slope"],
|
|
155
|
+
reason=f"Strong {trend.direction.value} trend (R²={trend.strength:.2f}, {daily_pct:+.2f}%/day)"
|
|
156
|
+
))
|
|
157
|
+
recommendations.append(TrendRecommendation(
|
|
158
|
+
action="consider_detrending", priority="medium", features=[],
|
|
159
|
+
reason="Strong trend may dominate signal - consider detrending aggregated features"
|
|
160
|
+
))
|
|
161
|
+
recommendations.append(TrendRecommendation(
|
|
162
|
+
action="time_based_split", priority="high", features=[],
|
|
163
|
+
reason="Strong trend detected - use time-based train/test split to avoid leakage"
|
|
164
|
+
))
|
|
165
|
+
elif trend.has_direction and trend.strength > 0.1 and trend.is_significant:
|
|
166
|
+
recommendations.append(TrendRecommendation(
|
|
167
|
+
action="add_trend_features", priority="medium",
|
|
168
|
+
features=["recent_vs_overall_ratio"],
|
|
169
|
+
reason=f"Moderate {trend.direction.value} trend (R²={trend.strength:.2f})"
|
|
170
|
+
))
|
|
171
|
+
elif trend.direction == TrendDirection.STABLE:
|
|
172
|
+
recommendations.append(TrendRecommendation(
|
|
173
|
+
action="skip_trend_features", priority="low", features=[],
|
|
174
|
+
reason=f"No significant trend (R²={trend.strength:.2f}) - trend features unlikely to help"
|
|
175
|
+
))
|
|
176
|
+
return recommendations
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
def analyze_cohort_distribution(first_events: DataFrame, time_column: str) -> CohortDistribution:
|
|
180
|
+
years = first_events[time_column].dt.year
|
|
181
|
+
year_counts = years.value_counts().sort_index().to_dict()
|
|
182
|
+
total = len(first_events)
|
|
183
|
+
dominant_year = years.mode().iloc[0] if len(years) > 0 else 0
|
|
184
|
+
dominant_pct = (year_counts.get(dominant_year, 0) / total * 100) if total > 0 else 0
|
|
185
|
+
return CohortDistribution(
|
|
186
|
+
year_counts=year_counts, total_entities=total,
|
|
187
|
+
dominant_year=int(dominant_year), dominant_pct=dominant_pct, num_years=len(year_counts)
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def generate_cohort_recommendations(
|
|
192
|
+
dist: CohortDistribution, retention_variation: Optional[float] = None
|
|
193
|
+
) -> List[CohortRecommendation]:
|
|
194
|
+
recommendations = []
|
|
195
|
+
skew_threshold = 80
|
|
196
|
+
|
|
197
|
+
if dist.dominant_pct > skew_threshold:
|
|
198
|
+
recommendations.append(CohortRecommendation(
|
|
199
|
+
action="skip_cohort_features", priority="low",
|
|
200
|
+
reason=f"{dist.dominant_pct:.0f}% onboarded in {dist.dominant_year} - insufficient variation",
|
|
201
|
+
insight="Established customer base, not a growing acquisition funnel"
|
|
202
|
+
))
|
|
203
|
+
elif dist.num_years >= 3 and dist.dominant_pct < 60:
|
|
204
|
+
recommendations.append(CohortRecommendation(
|
|
205
|
+
action="add_cohort_features", priority="medium",
|
|
206
|
+
features=["cohort_year", "cohort_quarter"],
|
|
207
|
+
reason=f"Good variation across {dist.num_years} years - cohort features may be valuable"
|
|
208
|
+
))
|
|
209
|
+
else:
|
|
210
|
+
recommendations.append(CohortRecommendation(
|
|
211
|
+
action="consider_cohort_features", priority="low",
|
|
212
|
+
features=["cohort_year"],
|
|
213
|
+
reason="Moderate variation - test if cohort features improve model"
|
|
214
|
+
))
|
|
215
|
+
|
|
216
|
+
if retention_variation is not None and retention_variation > 0.1:
|
|
217
|
+
recommendations.append(CohortRecommendation(
|
|
218
|
+
action="investigate_cohort_retention", priority="medium",
|
|
219
|
+
reason=f"Retention varies {retention_variation*100:.0f}pp across cohorts - investigate drivers"
|
|
220
|
+
))
|
|
221
|
+
return recommendations
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
DEFAULT_BUCKET_EDGES = [0, 7, 30, 90, 180, float("inf")]
|
|
225
|
+
BUCKET_LABELS = ["0-7d", "8-30d", "31-90d", "91-180d", ">180d"]
|
|
226
|
+
INFLECTION_MIN_DROP = 0.10
|
|
227
|
+
MONOTONIC_TOLERANCE = 0.05
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
def compute_recency_buckets(
|
|
231
|
+
df: DataFrame, entity_column: str, time_column: str, target_column: str,
|
|
232
|
+
reference_date: pd.Timestamp, bucket_edges: Optional[List[float]] = None
|
|
233
|
+
) -> List[RecencyBucketStats]:
|
|
234
|
+
edges = bucket_edges or DEFAULT_BUCKET_EDGES
|
|
235
|
+
labels = _generate_bucket_labels(edges)
|
|
236
|
+
entity_last = df.groupby(entity_column)[time_column].max().reset_index()
|
|
237
|
+
entity_last["recency_days"] = (reference_date - entity_last[time_column]).dt.days
|
|
238
|
+
entity_target = df.groupby(entity_column)[target_column].first().reset_index()
|
|
239
|
+
entity_data = entity_last.merge(entity_target, on=entity_column)
|
|
240
|
+
entity_data["bucket"] = pd.cut(entity_data["recency_days"], bins=edges, labels=labels, include_lowest=True)
|
|
241
|
+
bucket_stats = []
|
|
242
|
+
for i, label in enumerate(labels):
|
|
243
|
+
bucket_data = entity_data[entity_data["bucket"] == label]
|
|
244
|
+
if len(bucket_data) == 0:
|
|
245
|
+
continue
|
|
246
|
+
bucket_stats.append(RecencyBucketStats(
|
|
247
|
+
bucket_label=label,
|
|
248
|
+
bucket_range=(int(edges[i]), int(edges[i + 1]) if edges[i + 1] != float("inf") else 9999),
|
|
249
|
+
entity_count=len(bucket_data),
|
|
250
|
+
target_rate=float(bucket_data[target_column].mean())
|
|
251
|
+
))
|
|
252
|
+
return bucket_stats
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
def _generate_bucket_labels(edges: List[float]) -> List[str]:
|
|
256
|
+
labels = []
|
|
257
|
+
for i in range(len(edges) - 1):
|
|
258
|
+
start, end = int(edges[i]), edges[i + 1]
|
|
259
|
+
if end == float("inf"):
|
|
260
|
+
labels.append(f">{start}d")
|
|
261
|
+
elif start == 0:
|
|
262
|
+
labels.append(f"0-{int(end)}d")
|
|
263
|
+
else:
|
|
264
|
+
labels.append(f"{start + 1}-{int(end)}d")
|
|
265
|
+
return labels
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
def detect_inflection_bucket(buckets: List[RecencyBucketStats]) -> Optional[str]:
|
|
269
|
+
if len(buckets) < 2:
|
|
270
|
+
return None
|
|
271
|
+
max_drop, inflection_label = 0.0, None
|
|
272
|
+
for i in range(len(buckets) - 1):
|
|
273
|
+
drop = buckets[i].target_rate - buckets[i + 1].target_rate
|
|
274
|
+
if drop > max_drop:
|
|
275
|
+
max_drop, inflection_label = drop, buckets[i + 1].bucket_label
|
|
276
|
+
return inflection_label if max_drop >= INFLECTION_MIN_DROP else None
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
def classify_distribution_pattern(buckets: List[RecencyBucketStats]) -> str:
|
|
280
|
+
if len(buckets) < 2:
|
|
281
|
+
return "insufficient_data"
|
|
282
|
+
rates = [b.target_rate for b in buckets]
|
|
283
|
+
total_drop = rates[0] - rates[-1]
|
|
284
|
+
if abs(total_drop) < MONOTONIC_TOLERANCE:
|
|
285
|
+
return "flat_no_pattern"
|
|
286
|
+
drops = [rates[i] - rates[i + 1] for i in range(len(rates) - 1)]
|
|
287
|
+
max_drop = max(drops) if drops else 0
|
|
288
|
+
avg_drop = total_drop / (len(rates) - 1) if len(rates) > 1 else 0
|
|
289
|
+
if max_drop > avg_drop * 2 and max_drop >= INFLECTION_MIN_DROP:
|
|
290
|
+
return "threshold_step"
|
|
291
|
+
if all(d >= -MONOTONIC_TOLERANCE for d in drops):
|
|
292
|
+
return "monotonic_decline"
|
|
293
|
+
return "variable"
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def _diagnose_anomaly_pattern(
|
|
297
|
+
df: DataFrame, entity_column: str, time_column: str, target_column: str
|
|
298
|
+
) -> AnomalyDiagnostics:
|
|
299
|
+
entity_target = df.groupby(entity_column)[target_column].first()
|
|
300
|
+
target_1_pct = float(entity_target.mean() * 100)
|
|
301
|
+
target_1_is_minority = target_1_pct < 50
|
|
302
|
+
entity_first = df.groupby(entity_column)[time_column].min()
|
|
303
|
+
entity_last = df.groupby(entity_column)[time_column].max()
|
|
304
|
+
tenure = (entity_last - entity_first).dt.days
|
|
305
|
+
tenure_by_target = pd.DataFrame({"target": entity_target, "tenure": tenure})
|
|
306
|
+
retained_tenure = tenure_by_target[tenure_by_target["target"] == 1]["tenure"]
|
|
307
|
+
churned_tenure = tenure_by_target[tenure_by_target["target"] == 0]["tenure"]
|
|
308
|
+
retained_median_tenure = float(retained_tenure.median()) if len(retained_tenure) > 0 else None
|
|
309
|
+
churned_median_tenure = float(churned_tenure.median()) if len(churned_tenure) > 0 else None
|
|
310
|
+
tenure_explains = False
|
|
311
|
+
if retained_median_tenure and churned_median_tenure:
|
|
312
|
+
tenure_explains = retained_median_tenure > churned_median_tenure * 1.5
|
|
313
|
+
return AnomalyDiagnostics(
|
|
314
|
+
target_1_is_minority=target_1_is_minority,
|
|
315
|
+
target_1_pct=target_1_pct,
|
|
316
|
+
retained_median_tenure=retained_median_tenure,
|
|
317
|
+
churned_median_tenure=churned_median_tenure,
|
|
318
|
+
tenure_explains_pattern=tenure_explains
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
def generate_recency_insights(result: "RecencyComparisonResult") -> List[RecencyInsight]:
|
|
323
|
+
insights = []
|
|
324
|
+
median_gap = result.churned_stats.median - result.retained_stats.median
|
|
325
|
+
gap_direction = "longer" if median_gap > 0 else "shorter"
|
|
326
|
+
insights.append(RecencyInsight(
|
|
327
|
+
finding=f"Churned entities last active {abs(median_gap):.0f} days {gap_direction} than retained (median: {result.churned_stats.median:.0f}d vs {result.retained_stats.median:.0f}d)",
|
|
328
|
+
metric_value=median_gap,
|
|
329
|
+
metric_name="median_gap_days"
|
|
330
|
+
))
|
|
331
|
+
if not result.churned_higher and result.anomaly_diagnostics:
|
|
332
|
+
diag = result.anomaly_diagnostics
|
|
333
|
+
anomaly_parts = ["⚠️ Unusual pattern: churned have MORE recent activity."]
|
|
334
|
+
if diag.target_1_is_minority:
|
|
335
|
+
anomaly_parts.append(f"Target=1 is minority ({diag.target_1_pct:.0f}%) - likely means CHURN not retention.")
|
|
336
|
+
else:
|
|
337
|
+
anomaly_parts.append(f"Target=1 is majority ({diag.target_1_pct:.0f}%) - confirms retention label.")
|
|
338
|
+
if diag.tenure_explains_pattern:
|
|
339
|
+
anomaly_parts.append(f"Tenure gap explains pattern: retained={diag.retained_median_tenure:.0f}d vs churned={diag.churned_median_tenure:.0f}d median tenure.")
|
|
340
|
+
insights.append(RecencyInsight(finding=" ".join(anomaly_parts), metric_value=0.0, metric_name="pattern_anomaly"))
|
|
341
|
+
effect_desc = _effect_size_description(result.cohens_d, result.effect_interpretation)
|
|
342
|
+
insights.append(RecencyInsight(finding=effect_desc, metric_value=abs(result.cohens_d), metric_name="effect_size"))
|
|
343
|
+
if result.inflection_bucket and result.churned_higher:
|
|
344
|
+
insights.append(RecencyInsight(
|
|
345
|
+
finding=f"Sharpest target rate drop occurs at {result.inflection_bucket} boundary",
|
|
346
|
+
metric_value=0.0, metric_name="inflection_point"
|
|
347
|
+
))
|
|
348
|
+
return insights
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
def _effect_size_description(cohens_d: float, interpretation: str) -> str:
|
|
352
|
+
abs_d = abs(cohens_d)
|
|
353
|
+
if abs_d >= 0.8:
|
|
354
|
+
return f"Recency strongly discriminates target ({interpretation}, d={cohens_d:+.2f}) - high predictive value"
|
|
355
|
+
if abs_d >= 0.5:
|
|
356
|
+
return f"Recency moderately discriminates target ({interpretation}, d={cohens_d:+.2f}) - useful predictor"
|
|
357
|
+
if abs_d >= 0.2:
|
|
358
|
+
return f"Recency weakly discriminates target ({interpretation}, d={cohens_d:+.2f}) - may help in combination"
|
|
359
|
+
return f"Recency has minimal discriminative power ({interpretation}, d={cohens_d:+.2f})"
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
def _generate_enhanced_recommendations(
|
|
363
|
+
churned_higher: bool, cohens_d: float, inflection_bucket: Optional[str],
|
|
364
|
+
distribution_pattern: str, bucket_stats: List[RecencyBucketStats],
|
|
365
|
+
anomaly_diagnostics: Optional[AnomalyDiagnostics] = None
|
|
366
|
+
) -> List[Dict]:
|
|
367
|
+
recommendations = []
|
|
368
|
+
if not churned_higher:
|
|
369
|
+
diag = anomaly_diagnostics
|
|
370
|
+
if diag and diag.target_1_is_minority:
|
|
371
|
+
recommendations.append({
|
|
372
|
+
"action": "invert_target_interpretation", "priority": "high",
|
|
373
|
+
"reason": f"Target=1 is minority ({diag.target_1_pct:.0f}%) - interpret as CHURN; recency pattern is classic churn behavior",
|
|
374
|
+
"features": ["days_since_last_event", "log_recency"]
|
|
375
|
+
})
|
|
376
|
+
elif diag and diag.tenure_explains_pattern:
|
|
377
|
+
recommendations.append({
|
|
378
|
+
"action": "use_tenure_adjusted_recency", "priority": "high",
|
|
379
|
+
"reason": f"Retained have {diag.retained_median_tenure:.0f}d vs churned {diag.churned_median_tenure:.0f}d median tenure - use recency relative to tenure",
|
|
380
|
+
"features": ["recency_vs_tenure_ratio", "normalized_recency"]
|
|
381
|
+
})
|
|
382
|
+
else:
|
|
383
|
+
recommendations.append({
|
|
384
|
+
"action": "investigate_further", "priority": "high",
|
|
385
|
+
"reason": "Pattern unexpected and not explained by target definition or tenure - review data collection",
|
|
386
|
+
"features": []
|
|
387
|
+
})
|
|
388
|
+
if diag and not diag.target_1_is_minority and not diag.tenure_explains_pattern:
|
|
389
|
+
recommendations.append({
|
|
390
|
+
"action": "check_pre_churn_activity", "priority": "medium",
|
|
391
|
+
"reason": "Churned may show activity spike before leaving (support tickets, complaints)",
|
|
392
|
+
"features": ["activity_trend_last_30d", "support_interaction_count"]
|
|
393
|
+
})
|
|
394
|
+
return recommendations[:3]
|
|
395
|
+
abs_d = abs(cohens_d)
|
|
396
|
+
if abs_d >= 0.5:
|
|
397
|
+
recommendations.append({
|
|
398
|
+
"action": "add_recency_features", "priority": "high",
|
|
399
|
+
"reason": f"Strong effect size (d={cohens_d:+.2f}) - recency is a key predictor",
|
|
400
|
+
"features": ["days_since_last_event", "log_recency"]
|
|
401
|
+
})
|
|
402
|
+
if inflection_bucket and distribution_pattern == "threshold_step":
|
|
403
|
+
threshold_days = _extract_threshold_from_bucket(inflection_bucket)
|
|
404
|
+
recommendations.append({
|
|
405
|
+
"action": "create_activity_threshold_flag", "priority": "high",
|
|
406
|
+
"reason": f"Clear threshold at {inflection_bucket}: create binary is_active_{threshold_days}d flag",
|
|
407
|
+
"features": [f"is_active_{threshold_days}d"]
|
|
408
|
+
})
|
|
409
|
+
elif distribution_pattern == "monotonic_decline":
|
|
410
|
+
recommendations.append({
|
|
411
|
+
"action": "use_continuous_recency", "priority": "medium",
|
|
412
|
+
"reason": "Monotonic decline pattern: continuous recency features outperform binary flags",
|
|
413
|
+
"features": ["days_since_last_event", "log_recency", "recency_percentile"]
|
|
414
|
+
})
|
|
415
|
+
if len(recommendations) < 2 and bucket_stats:
|
|
416
|
+
recommendations.append({
|
|
417
|
+
"action": "add_recency_buckets", "priority": "medium",
|
|
418
|
+
"reason": "Create recency bucket features for interpretable segments",
|
|
419
|
+
"features": ["recency_bucket"]
|
|
420
|
+
})
|
|
421
|
+
return recommendations[:3]
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
def _extract_threshold_from_bucket(bucket_label: str) -> int:
|
|
425
|
+
import re
|
|
426
|
+
match = re.search(r"(\d+)", bucket_label)
|
|
427
|
+
return int(match.group(1)) if match else 30
|
|
428
|
+
|
|
429
|
+
|
|
430
|
+
def compare_recency_by_target(
|
|
431
|
+
df: DataFrame, entity_column: str, time_column: str, target_column: str,
|
|
432
|
+
reference_date: Optional[pd.Timestamp] = None, cap_percentile: float = 0.99
|
|
433
|
+
) -> Optional[RecencyComparisonResult]:
|
|
434
|
+
if target_column not in df.columns:
|
|
435
|
+
return None
|
|
436
|
+
ref_date = reference_date or df[time_column].max()
|
|
437
|
+
entity_last = df.groupby(entity_column)[time_column].max().reset_index()
|
|
438
|
+
entity_last["recency_days"] = (ref_date - entity_last[time_column]).dt.days
|
|
439
|
+
entity_target = df.groupby(entity_column)[target_column].first().reset_index()
|
|
440
|
+
entity_recency = entity_last.merge(entity_target, on=entity_column)
|
|
441
|
+
cap = entity_recency["recency_days"].quantile(cap_percentile)
|
|
442
|
+
entity_capped = entity_recency[entity_recency["recency_days"] <= cap]
|
|
443
|
+
retained = entity_capped[entity_capped[target_column] == 1]["recency_days"].values
|
|
444
|
+
churned = entity_capped[entity_capped[target_column] == 0]["recency_days"].values
|
|
445
|
+
if len(retained) < 2 or len(churned) < 2:
|
|
446
|
+
return None
|
|
447
|
+
cohens_d, effect_interp = compute_effect_size(retained, churned)
|
|
448
|
+
churned_higher = bool(np.median(churned) > np.median(retained))
|
|
449
|
+
bucket_stats = compute_recency_buckets(df, entity_column, time_column, target_column, ref_date)
|
|
450
|
+
inflection_bucket = detect_inflection_bucket(bucket_stats)
|
|
451
|
+
distribution_pattern = classify_distribution_pattern(bucket_stats)
|
|
452
|
+
anomaly_diag = _diagnose_anomaly_pattern(df, entity_column, time_column, target_column) if not churned_higher else None
|
|
453
|
+
recommendations = _generate_enhanced_recommendations(
|
|
454
|
+
churned_higher, cohens_d, inflection_bucket, distribution_pattern, bucket_stats, anomaly_diag
|
|
455
|
+
)
|
|
456
|
+
result = RecencyComparisonResult(
|
|
457
|
+
retained_stats=compute_group_stats(retained),
|
|
458
|
+
churned_stats=compute_group_stats(churned),
|
|
459
|
+
cohens_d=cohens_d, effect_interpretation=effect_interp,
|
|
460
|
+
churned_higher=churned_higher, recommendations=recommendations,
|
|
461
|
+
bucket_stats=bucket_stats, inflection_bucket=inflection_bucket,
|
|
462
|
+
distribution_pattern=distribution_pattern, anomaly_diagnostics=anomaly_diag
|
|
463
|
+
)
|
|
464
|
+
result.key_findings = generate_recency_insights(result)
|
|
465
|
+
return result
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+
class TemporalPatternAnalyzer:
|
|
469
|
+
TREND_THRESHOLD = 0.001
|
|
470
|
+
CONFIDENCE_HIGH_P = 0.01
|
|
471
|
+
CONFIDENCE_HIGH_R2 = 0.5
|
|
472
|
+
CONFIDENCE_MED_P = 0.05
|
|
473
|
+
CONFIDENCE_MED_R2 = 0.3
|
|
474
|
+
|
|
475
|
+
def __init__(self, time_column: str):
|
|
476
|
+
self.time_column = time_column
|
|
477
|
+
|
|
478
|
+
def analyze(self, df: DataFrame, value_column: str, entity_column: Optional[str] = None, target_column: Optional[str] = None) -> TemporalPatternAnalysis:
|
|
479
|
+
if len(df) < 2:
|
|
480
|
+
return TemporalPatternAnalysis()
|
|
481
|
+
|
|
482
|
+
trend = self.detect_trend(df, value_column)
|
|
483
|
+
seasonality = self.detect_seasonality(df, value_column)
|
|
484
|
+
|
|
485
|
+
return TemporalPatternAnalysis(
|
|
486
|
+
trend=trend,
|
|
487
|
+
seasonality=seasonality,
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
@staticmethod
|
|
491
|
+
def _unknown_trend() -> TrendResult:
|
|
492
|
+
return TrendResult(direction=TrendDirection.UNKNOWN, strength=0.0, confidence="low")
|
|
493
|
+
|
|
494
|
+
def detect_trend(self, df: DataFrame, value_column: str) -> TrendResult:
|
|
495
|
+
if len(df) < 3:
|
|
496
|
+
return self._unknown_trend()
|
|
497
|
+
|
|
498
|
+
df_clean = df[[self.time_column, value_column]].dropna()
|
|
499
|
+
if len(df_clean) < 3:
|
|
500
|
+
return self._unknown_trend()
|
|
501
|
+
|
|
502
|
+
time_col = pd.to_datetime(df_clean[self.time_column])
|
|
503
|
+
x = (time_col - time_col.min()).dt.total_seconds() / 86400
|
|
504
|
+
y = df_clean[value_column].values
|
|
505
|
+
|
|
506
|
+
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
|
|
507
|
+
r_squared = r_value ** 2
|
|
508
|
+
|
|
509
|
+
mean_y = np.mean(y)
|
|
510
|
+
normalized_slope = slope / mean_y if mean_y != 0 else 0
|
|
511
|
+
|
|
512
|
+
if abs(normalized_slope) < self.TREND_THRESHOLD:
|
|
513
|
+
direction = TrendDirection.STABLE
|
|
514
|
+
elif slope > 0:
|
|
515
|
+
direction = TrendDirection.INCREASING
|
|
516
|
+
else:
|
|
517
|
+
direction = TrendDirection.DECREASING
|
|
518
|
+
|
|
519
|
+
if p_value < self.CONFIDENCE_HIGH_P and r_squared > self.CONFIDENCE_HIGH_R2:
|
|
520
|
+
confidence = "high"
|
|
521
|
+
elif p_value < self.CONFIDENCE_MED_P and r_squared > self.CONFIDENCE_MED_R2:
|
|
522
|
+
confidence = "medium"
|
|
523
|
+
else:
|
|
524
|
+
confidence = "low"
|
|
525
|
+
|
|
526
|
+
return TrendResult(
|
|
527
|
+
direction=direction,
|
|
528
|
+
strength=r_squared,
|
|
529
|
+
slope=slope,
|
|
530
|
+
p_value=p_value,
|
|
531
|
+
confidence=confidence
|
|
532
|
+
)
|
|
533
|
+
|
|
534
|
+
def detect_seasonality(self, df: DataFrame, value_column: str, max_periods: int = 3, additional_lags: Optional[List[int]] = None) -> List[SeasonalityPeriod]:
|
|
535
|
+
if len(df) < 14:
|
|
536
|
+
return []
|
|
537
|
+
|
|
538
|
+
df_clean = df[[self.time_column, value_column]].dropna()
|
|
539
|
+
if len(df_clean) < 14:
|
|
540
|
+
return []
|
|
541
|
+
|
|
542
|
+
df_sorted = df_clean.sort_values(self.time_column)
|
|
543
|
+
values = df_sorted[value_column].values
|
|
544
|
+
|
|
545
|
+
results = []
|
|
546
|
+
period_names = {7: "weekly", 14: "bi-weekly", 21: "tri-weekly", 30: "monthly", 90: "quarterly", 180: "semi-annual", 365: "yearly"}
|
|
547
|
+
|
|
548
|
+
base_lags = [7, 14, 21, 30]
|
|
549
|
+
all_lags = list(set(base_lags + (additional_lags or [])))
|
|
550
|
+
|
|
551
|
+
for lag in all_lags:
|
|
552
|
+
if lag >= len(values) // 2:
|
|
553
|
+
continue
|
|
554
|
+
|
|
555
|
+
acf = self._autocorrelation(values, lag)
|
|
556
|
+
|
|
557
|
+
if acf > 0.3:
|
|
558
|
+
period_name = period_names.get(lag, f"{lag}-day")
|
|
559
|
+
results.append(SeasonalityPeriod(
|
|
560
|
+
period=lag,
|
|
561
|
+
strength=acf,
|
|
562
|
+
period_name=period_name
|
|
563
|
+
))
|
|
564
|
+
|
|
565
|
+
results.sort(key=lambda x: x.strength, reverse=True)
|
|
566
|
+
return results[:max_periods]
|
|
567
|
+
|
|
568
|
+
def _autocorrelation(self, series: np.ndarray, lag: int) -> float:
|
|
569
|
+
n = len(series)
|
|
570
|
+
if lag >= n:
|
|
571
|
+
return 0.0
|
|
572
|
+
|
|
573
|
+
mean = np.mean(series)
|
|
574
|
+
var = np.var(series)
|
|
575
|
+
|
|
576
|
+
if var == 0:
|
|
577
|
+
return 0.0
|
|
578
|
+
|
|
579
|
+
cov = np.mean((series[:-lag] - mean) * (series[lag:] - mean))
|
|
580
|
+
return cov / var
|
|
581
|
+
|
|
582
|
+
def analyze_cohorts(self, df: DataFrame, entity_column: str, cohort_column: str, target_column: Optional[str] = None, period: str = "M") -> DataFrame:
|
|
583
|
+
if len(df) == 0:
|
|
584
|
+
return pd.DataFrame()
|
|
585
|
+
|
|
586
|
+
df_copy = df.copy()
|
|
587
|
+
entity_first_event = df_copy.groupby(entity_column)[cohort_column].min()
|
|
588
|
+
df_copy["_cohort"] = df_copy[entity_column].map(entity_first_event)
|
|
589
|
+
df_copy["_cohort"] = pd.to_datetime(df_copy["_cohort"]).dt.to_period(period)
|
|
590
|
+
|
|
591
|
+
entity_cohorts = df_copy.groupby(entity_column)["_cohort"].first().reset_index()
|
|
592
|
+
entity_cohorts.columns = [entity_column, "_cohort"]
|
|
593
|
+
|
|
594
|
+
cohort_stats = entity_cohorts.groupby("_cohort").agg({entity_column: "count"}).reset_index()
|
|
595
|
+
cohort_stats.columns = ["cohort", "entity_count"]
|
|
596
|
+
|
|
597
|
+
cohort_dates = df_copy.groupby("_cohort")[self.time_column].agg(["min", "max"]).reset_index()
|
|
598
|
+
cohort_dates.columns = ["cohort", "first_event", "last_event"]
|
|
599
|
+
cohort_stats = cohort_stats.merge(cohort_dates, on="cohort", how="left")
|
|
600
|
+
|
|
601
|
+
if target_column and target_column in df.columns:
|
|
602
|
+
entity_target = df_copy.groupby(entity_column)[target_column].max()
|
|
603
|
+
entity_cohorts["_target"] = entity_cohorts[entity_column].map(entity_target)
|
|
604
|
+
target_stats = entity_cohorts.groupby("_cohort")["_target"].mean().reset_index()
|
|
605
|
+
target_stats.columns = ["cohort", "retention_rate"]
|
|
606
|
+
cohort_stats = cohort_stats.merge(target_stats, on="cohort", how="left")
|
|
607
|
+
|
|
608
|
+
return cohort_stats.sort_values("cohort")
|
|
609
|
+
|
|
610
|
+
def analyze_recency(self, df: DataFrame, entity_column: str, target_column: Optional[str] = None, reference_date: Optional[pd.Timestamp] = None) -> RecencyResult:
|
|
611
|
+
if len(df) == 0:
|
|
612
|
+
return RecencyResult(avg_recency_days=0, median_recency_days=0, min_recency_days=0, max_recency_days=0)
|
|
613
|
+
|
|
614
|
+
ref_date = reference_date or pd.Timestamp.now()
|
|
615
|
+
pd.to_datetime(df[self.time_column])
|
|
616
|
+
|
|
617
|
+
entity_last = df.groupby(entity_column)[self.time_column].max()
|
|
618
|
+
entity_last = pd.to_datetime(entity_last)
|
|
619
|
+
recency_days = (ref_date - entity_last).dt.days
|
|
620
|
+
|
|
621
|
+
target_correlation = None
|
|
622
|
+
if target_column and target_column in df.columns:
|
|
623
|
+
entity_target = df.groupby(entity_column)[target_column].first()
|
|
624
|
+
combined = pd.DataFrame({"recency": recency_days, "target": entity_target}).dropna()
|
|
625
|
+
|
|
626
|
+
if len(combined) > 2:
|
|
627
|
+
corr, _ = stats.pearsonr(combined["recency"], combined["target"])
|
|
628
|
+
target_correlation = corr
|
|
629
|
+
|
|
630
|
+
return RecencyResult(
|
|
631
|
+
avg_recency_days=float(recency_days.mean()),
|
|
632
|
+
median_recency_days=float(recency_days.median()),
|
|
633
|
+
min_recency_days=float(recency_days.min()),
|
|
634
|
+
max_recency_days=float(recency_days.max()),
|
|
635
|
+
target_correlation=target_correlation,
|
|
636
|
+
)
|