churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,527 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from datetime import datetime
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from customer_retention.core.compat import Timestamp, is_bool_dtype, is_datetime64_any_dtype, pd
|
|
8
|
+
from customer_retention.core.config.column_config import ColumnType
|
|
9
|
+
|
|
10
|
+
from .profile_result import (
|
|
11
|
+
BinaryMetrics,
|
|
12
|
+
CategoricalMetrics,
|
|
13
|
+
DatetimeMetrics,
|
|
14
|
+
IdentifierMetrics,
|
|
15
|
+
NumericMetrics,
|
|
16
|
+
TargetMetrics,
|
|
17
|
+
UniversalMetrics,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class ColumnProfiler(ABC):
|
|
22
|
+
def compute_universal_metrics(self, series: pd.Series) -> UniversalMetrics:
|
|
23
|
+
total_count = len(series)
|
|
24
|
+
null_count = int(series.isna().sum())
|
|
25
|
+
null_percentage = (null_count / total_count * 100) if total_count > 0 else 0
|
|
26
|
+
|
|
27
|
+
distinct_count = int(series.nunique())
|
|
28
|
+
distinct_percentage = (distinct_count / total_count * 100) if total_count > 0 else 0
|
|
29
|
+
|
|
30
|
+
value_counts = series.value_counts()
|
|
31
|
+
most_common_value = value_counts.index[0] if len(value_counts) > 0 else None
|
|
32
|
+
most_common_frequency = int(value_counts.iloc[0]) if len(value_counts) > 0 else None
|
|
33
|
+
|
|
34
|
+
memory_size = series.memory_usage(deep=True)
|
|
35
|
+
|
|
36
|
+
return UniversalMetrics(
|
|
37
|
+
total_count=total_count,
|
|
38
|
+
null_count=null_count,
|
|
39
|
+
null_percentage=round(null_percentage, 2),
|
|
40
|
+
distinct_count=distinct_count,
|
|
41
|
+
distinct_percentage=round(distinct_percentage, 2),
|
|
42
|
+
most_common_value=most_common_value,
|
|
43
|
+
most_common_frequency=most_common_frequency,
|
|
44
|
+
memory_size_bytes=int(memory_size)
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
@abstractmethod
|
|
48
|
+
def profile(self, series: pd.Series) -> dict:
|
|
49
|
+
pass
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class IdentifierProfiler(ColumnProfiler):
|
|
53
|
+
def profile(self, series: pd.Series) -> dict:
|
|
54
|
+
is_unique = series.nunique() == len(series.dropna())
|
|
55
|
+
duplicates = series[series.duplicated(keep=False)]
|
|
56
|
+
duplicate_count = len(duplicates.unique())
|
|
57
|
+
duplicate_values = duplicates.unique().tolist()[:10]
|
|
58
|
+
|
|
59
|
+
str_series = series.dropna().astype(str)
|
|
60
|
+
lengths = str_series.str.len()
|
|
61
|
+
|
|
62
|
+
format_pattern, format_consistency = self.detect_format_pattern(str_series)
|
|
63
|
+
|
|
64
|
+
return {
|
|
65
|
+
"identifier_metrics": IdentifierMetrics(
|
|
66
|
+
is_unique=is_unique,
|
|
67
|
+
duplicate_count=duplicate_count,
|
|
68
|
+
duplicate_values=duplicate_values,
|
|
69
|
+
format_pattern=format_pattern,
|
|
70
|
+
format_consistency=format_consistency,
|
|
71
|
+
length_min=int(lengths.min()) if len(lengths) > 0 else None,
|
|
72
|
+
length_max=int(lengths.max()) if len(lengths) > 0 else None,
|
|
73
|
+
length_mode=int(lengths.mode().iloc[0]) if len(lengths.mode()) > 0 else None
|
|
74
|
+
)
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
def detect_format_pattern(self, str_series: pd.Series) -> tuple[Optional[str], Optional[float]]:
|
|
78
|
+
if len(str_series) == 0:
|
|
79
|
+
return None, None
|
|
80
|
+
|
|
81
|
+
str_series.head(min(100, len(str_series)))
|
|
82
|
+
pattern_map = {
|
|
83
|
+
r'^[A-Z]{3}-\d{5}$': 'AAA-99999',
|
|
84
|
+
r'^\d{3}-\d{3}-\d{4}$': '999-999-9999',
|
|
85
|
+
r'^[A-Z]{2}\d{6}$': 'AA999999',
|
|
86
|
+
r'^\d+$': 'numeric_only',
|
|
87
|
+
r'^[A-Za-z]+$': 'alpha_only',
|
|
88
|
+
r'^[A-Z][0-9]{4,}$': 'A9999+',
|
|
89
|
+
r'^\w+-\d+$': 'text-digits',
|
|
90
|
+
r'^[A-Z0-9]+$': 'alphanumeric'
|
|
91
|
+
}
|
|
92
|
+
|
|
93
|
+
for pattern, desc in pattern_map.items():
|
|
94
|
+
matches = str_series.str.match(pattern, na=False)
|
|
95
|
+
match_pct = (matches.sum() / len(str_series)) * 100
|
|
96
|
+
if match_pct > 80:
|
|
97
|
+
return desc, round(match_pct, 2)
|
|
98
|
+
|
|
99
|
+
return 'mixed', 0.0
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
class TargetProfiler(ColumnProfiler):
|
|
103
|
+
def profile(self, series: pd.Series) -> dict:
|
|
104
|
+
value_counts = series.value_counts()
|
|
105
|
+
class_distribution = {str(k): int(v) for k, v in value_counts.items()}
|
|
106
|
+
|
|
107
|
+
total = len(series.dropna())
|
|
108
|
+
class_percentages = {str(k): round((v / total * 100), 2) for k, v in value_counts.items()}
|
|
109
|
+
|
|
110
|
+
minority_class = value_counts.idxmin()
|
|
111
|
+
minority_count = value_counts.min()
|
|
112
|
+
majority_count = value_counts.max()
|
|
113
|
+
minority_percentage = round((minority_count / total * 100), 2) if total > 0 else 0
|
|
114
|
+
imbalance_ratio = round((majority_count / minority_count), 2) if minority_count > 0 else float('inf')
|
|
115
|
+
|
|
116
|
+
return {
|
|
117
|
+
"target_metrics": TargetMetrics(
|
|
118
|
+
class_distribution=class_distribution,
|
|
119
|
+
class_percentages=class_percentages,
|
|
120
|
+
imbalance_ratio=imbalance_ratio,
|
|
121
|
+
minority_class=minority_class,
|
|
122
|
+
minority_percentage=minority_percentage,
|
|
123
|
+
n_classes=len(value_counts)
|
|
124
|
+
)
|
|
125
|
+
}
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
class NumericProfiler(ColumnProfiler):
|
|
129
|
+
def profile(self, series: pd.Series) -> dict:
|
|
130
|
+
clean_series = series.dropna()
|
|
131
|
+
if len(clean_series) == 0:
|
|
132
|
+
return {"numeric_metrics": None}
|
|
133
|
+
|
|
134
|
+
mean_val = float(clean_series.mean())
|
|
135
|
+
std_val = float(clean_series.std())
|
|
136
|
+
min_val = float(clean_series.min())
|
|
137
|
+
max_val = float(clean_series.max())
|
|
138
|
+
range_val = max_val - min_val
|
|
139
|
+
|
|
140
|
+
median_val = float(clean_series.median())
|
|
141
|
+
q1 = float(clean_series.quantile(0.25))
|
|
142
|
+
q3 = float(clean_series.quantile(0.75))
|
|
143
|
+
iqr = q3 - q1
|
|
144
|
+
|
|
145
|
+
try:
|
|
146
|
+
skewness_val = float(clean_series.skew())
|
|
147
|
+
kurtosis_val = float(clean_series.kurtosis())
|
|
148
|
+
except Exception:
|
|
149
|
+
skewness_val = None
|
|
150
|
+
kurtosis_val = None
|
|
151
|
+
|
|
152
|
+
zero_count = int((clean_series == 0).sum())
|
|
153
|
+
zero_percentage = round((zero_count / len(clean_series) * 100), 2)
|
|
154
|
+
|
|
155
|
+
negative_count = int((clean_series < 0).sum())
|
|
156
|
+
negative_percentage = round((negative_count / len(clean_series) * 100), 2)
|
|
157
|
+
|
|
158
|
+
inf_count = int(np.isinf(clean_series).sum())
|
|
159
|
+
inf_percentage = round((inf_count / len(clean_series) * 100), 2)
|
|
160
|
+
|
|
161
|
+
outliers_iqr = ((clean_series < (q1 - 1.5 * iqr)) | (clean_series > (q3 + 1.5 * iqr)))
|
|
162
|
+
outlier_count_iqr = int(outliers_iqr.sum())
|
|
163
|
+
|
|
164
|
+
if std_val > 0:
|
|
165
|
+
z_scores = np.abs((clean_series - mean_val) / std_val)
|
|
166
|
+
outlier_count_zscore = int((z_scores > 3).sum())
|
|
167
|
+
else:
|
|
168
|
+
outlier_count_zscore = 0
|
|
169
|
+
|
|
170
|
+
outlier_percentage = round((outlier_count_iqr / len(clean_series) * 100), 2)
|
|
171
|
+
|
|
172
|
+
# Filter out infinite values for histogram calculation
|
|
173
|
+
finite_series = clean_series[np.isfinite(clean_series)]
|
|
174
|
+
if len(finite_series) > 0:
|
|
175
|
+
histogram, bin_edges = np.histogram(finite_series, bins=10)
|
|
176
|
+
histogram_bins = [
|
|
177
|
+
(round(float(bin_edges[i]), 4), round(float(bin_edges[i + 1]), 4), int(histogram[i]))
|
|
178
|
+
for i in range(len(histogram))
|
|
179
|
+
]
|
|
180
|
+
else:
|
|
181
|
+
histogram_bins = []
|
|
182
|
+
|
|
183
|
+
return {
|
|
184
|
+
"numeric_metrics": NumericMetrics(
|
|
185
|
+
mean=round(mean_val, 4),
|
|
186
|
+
std=round(std_val, 4),
|
|
187
|
+
min_value=round(min_val, 4),
|
|
188
|
+
max_value=round(max_val, 4),
|
|
189
|
+
range_value=round(range_val, 4),
|
|
190
|
+
median=round(median_val, 4),
|
|
191
|
+
q1=round(q1, 4),
|
|
192
|
+
q3=round(q3, 4),
|
|
193
|
+
iqr=round(iqr, 4),
|
|
194
|
+
skewness=round(skewness_val, 4) if skewness_val is not None else None,
|
|
195
|
+
kurtosis=round(kurtosis_val, 4) if kurtosis_val is not None else None,
|
|
196
|
+
zero_count=zero_count,
|
|
197
|
+
zero_percentage=zero_percentage,
|
|
198
|
+
negative_count=negative_count,
|
|
199
|
+
negative_percentage=negative_percentage,
|
|
200
|
+
inf_count=inf_count,
|
|
201
|
+
inf_percentage=inf_percentage,
|
|
202
|
+
outlier_count_iqr=outlier_count_iqr,
|
|
203
|
+
outlier_count_zscore=outlier_count_zscore,
|
|
204
|
+
outlier_percentage=outlier_percentage,
|
|
205
|
+
histogram_bins=histogram_bins
|
|
206
|
+
)
|
|
207
|
+
}
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
class CategoricalProfiler(ColumnProfiler):
|
|
211
|
+
def profile(self, series: pd.Series) -> dict:
|
|
212
|
+
clean_series = series.dropna()
|
|
213
|
+
if len(clean_series) == 0:
|
|
214
|
+
return {"categorical_metrics": None}
|
|
215
|
+
|
|
216
|
+
cardinality = int(series.nunique())
|
|
217
|
+
cardinality_ratio = round((cardinality / len(clean_series)), 4)
|
|
218
|
+
|
|
219
|
+
value_counts = clean_series.value_counts()
|
|
220
|
+
value_counts_dict = {str(k): int(v) for k, v in value_counts.items()}
|
|
221
|
+
|
|
222
|
+
top_categories = [(str(k), int(v)) for k, v in value_counts.head(10).items()]
|
|
223
|
+
|
|
224
|
+
rare_threshold = len(clean_series) * 0.01
|
|
225
|
+
rare_categories = [str(k) for k, v in value_counts.items() if v < rare_threshold]
|
|
226
|
+
rare_category_count = len(rare_categories)
|
|
227
|
+
|
|
228
|
+
rare_rows = sum(v for k, v in value_counts.items() if v < rare_threshold)
|
|
229
|
+
rare_category_percentage = round((rare_rows / len(clean_series) * 100), 2)
|
|
230
|
+
|
|
231
|
+
unknown_values = {"unknown", "other", "n/a", "na", "none", "null", "missing"}
|
|
232
|
+
contains_unknown = any(str(v).lower() in unknown_values for v in clean_series.unique()[:100])
|
|
233
|
+
|
|
234
|
+
case_variations = self.detect_case_variations(clean_series)
|
|
235
|
+
whitespace_issues = self.detect_whitespace_issues(clean_series)
|
|
236
|
+
|
|
237
|
+
encoding_recommendation = self.recommend_encoding(cardinality, rare_category_percentage)
|
|
238
|
+
|
|
239
|
+
return {
|
|
240
|
+
"categorical_metrics": CategoricalMetrics(
|
|
241
|
+
cardinality=cardinality,
|
|
242
|
+
cardinality_ratio=cardinality_ratio,
|
|
243
|
+
value_counts=value_counts_dict,
|
|
244
|
+
top_categories=top_categories,
|
|
245
|
+
rare_categories=rare_categories[:20],
|
|
246
|
+
rare_category_count=rare_category_count,
|
|
247
|
+
rare_category_percentage=rare_category_percentage,
|
|
248
|
+
contains_unknown=contains_unknown,
|
|
249
|
+
case_variations=case_variations,
|
|
250
|
+
whitespace_issues=whitespace_issues,
|
|
251
|
+
encoding_recommendation=encoding_recommendation
|
|
252
|
+
)
|
|
253
|
+
}
|
|
254
|
+
|
|
255
|
+
def detect_case_variations(self, clean_series: pd.Series) -> list[str]:
|
|
256
|
+
str_series = clean_series.astype(str)
|
|
257
|
+
lower_to_originals = {}
|
|
258
|
+
|
|
259
|
+
for value in str_series.unique():
|
|
260
|
+
lower_val = value.lower()
|
|
261
|
+
if lower_val not in lower_to_originals:
|
|
262
|
+
lower_to_originals[lower_val] = []
|
|
263
|
+
lower_to_originals[lower_val].append(value)
|
|
264
|
+
|
|
265
|
+
variations = []
|
|
266
|
+
for lower_val, originals in lower_to_originals.items():
|
|
267
|
+
if len(originals) > 1:
|
|
268
|
+
variations.append(f"{originals[0]} vs {originals[1]}")
|
|
269
|
+
|
|
270
|
+
return variations[:10]
|
|
271
|
+
|
|
272
|
+
def detect_whitespace_issues(self, clean_series: pd.Series) -> list[str]:
|
|
273
|
+
str_series = clean_series.astype(str)
|
|
274
|
+
issues = []
|
|
275
|
+
|
|
276
|
+
for value in str_series.unique()[:100]:
|
|
277
|
+
if value != value.strip():
|
|
278
|
+
issues.append(value)
|
|
279
|
+
|
|
280
|
+
return issues[:10]
|
|
281
|
+
|
|
282
|
+
def recommend_encoding(self, cardinality: int, rare_pct: float) -> str:
|
|
283
|
+
if cardinality <= 5:
|
|
284
|
+
return "one_hot"
|
|
285
|
+
elif cardinality <= 15:
|
|
286
|
+
return "one_hot_or_target"
|
|
287
|
+
elif cardinality <= 50:
|
|
288
|
+
return "target_or_embedding"
|
|
289
|
+
else:
|
|
290
|
+
return "hashing_or_embedding"
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
class DatetimeProfiler(ColumnProfiler):
|
|
294
|
+
def profile(self, series: pd.Series) -> dict:
|
|
295
|
+
clean_series = series.dropna()
|
|
296
|
+
if len(clean_series) == 0:
|
|
297
|
+
return {"datetime_metrics": None}
|
|
298
|
+
|
|
299
|
+
format_detected, format_consistency = self.detect_datetime_format(series)
|
|
300
|
+
|
|
301
|
+
if not is_datetime64_any_dtype(clean_series):
|
|
302
|
+
sample = clean_series.head(10)
|
|
303
|
+
if len(sample) > 0 and all(isinstance(v, (Timestamp, datetime)) for v in sample):
|
|
304
|
+
pass
|
|
305
|
+
else:
|
|
306
|
+
try:
|
|
307
|
+
clean_series = pd.to_datetime(clean_series, errors='coerce', format='mixed')
|
|
308
|
+
except Exception:
|
|
309
|
+
return {"datetime_metrics": None}
|
|
310
|
+
|
|
311
|
+
min_date = clean_series.min()
|
|
312
|
+
max_date = clean_series.max()
|
|
313
|
+
date_range_days = (max_date - min_date).days
|
|
314
|
+
|
|
315
|
+
now = Timestamp.now()
|
|
316
|
+
future_date_count = int((clean_series > now).sum())
|
|
317
|
+
|
|
318
|
+
placeholder_dates = [
|
|
319
|
+
Timestamp('1970-01-01'),
|
|
320
|
+
Timestamp('1900-01-01'),
|
|
321
|
+
Timestamp('9999-12-31')
|
|
322
|
+
]
|
|
323
|
+
placeholder_count = int(sum((clean_series == pd_date).sum() for pd_date in placeholder_dates))
|
|
324
|
+
|
|
325
|
+
if is_datetime64_any_dtype(clean_series):
|
|
326
|
+
weekend_count = int(clean_series.dt.dayofweek.isin([5, 6]).sum())
|
|
327
|
+
else:
|
|
328
|
+
weekend_count = int(sum(1 for v in clean_series if isinstance(v, Timestamp) and v.dayofweek in [5, 6]))
|
|
329
|
+
weekend_percentage = round((weekend_count / len(clean_series) * 100), 2)
|
|
330
|
+
|
|
331
|
+
return {
|
|
332
|
+
"datetime_metrics": DatetimeMetrics(
|
|
333
|
+
min_date=str(min_date),
|
|
334
|
+
max_date=str(max_date),
|
|
335
|
+
date_range_days=date_range_days,
|
|
336
|
+
format_detected=format_detected,
|
|
337
|
+
format_consistency=format_consistency,
|
|
338
|
+
future_date_count=future_date_count,
|
|
339
|
+
placeholder_count=placeholder_count,
|
|
340
|
+
timezone_consistent=True,
|
|
341
|
+
weekend_percentage=weekend_percentage
|
|
342
|
+
)
|
|
343
|
+
}
|
|
344
|
+
|
|
345
|
+
def detect_datetime_format(self, series: pd.Series) -> tuple[Optional[str], Optional[float]]:
|
|
346
|
+
if is_datetime64_any_dtype(series):
|
|
347
|
+
return 'datetime64', 100.0
|
|
348
|
+
|
|
349
|
+
sample = series.dropna().astype(str).head(min(100, len(series)))
|
|
350
|
+
if len(sample) == 0:
|
|
351
|
+
return None, None
|
|
352
|
+
|
|
353
|
+
formats = [
|
|
354
|
+
'%Y-%m-%d',
|
|
355
|
+
'%Y/%m/%d',
|
|
356
|
+
'%d-%m-%Y',
|
|
357
|
+
'%d/%m/%Y',
|
|
358
|
+
'%Y-%m-%d %H:%M:%S',
|
|
359
|
+
'%Y/%m/%d %H:%M:%S',
|
|
360
|
+
'%d-%m-%Y %H:%M:%S',
|
|
361
|
+
'%d/%m/%Y %H:%M:%S',
|
|
362
|
+
'%Y-%m-%dT%H:%M:%S',
|
|
363
|
+
'%m/%d/%Y',
|
|
364
|
+
'%m-%d-%Y',
|
|
365
|
+
]
|
|
366
|
+
|
|
367
|
+
best_format = None
|
|
368
|
+
best_match_pct = 0.0
|
|
369
|
+
|
|
370
|
+
for fmt in formats:
|
|
371
|
+
matches = 0
|
|
372
|
+
for val in sample:
|
|
373
|
+
try:
|
|
374
|
+
datetime.strptime(val, fmt)
|
|
375
|
+
matches += 1
|
|
376
|
+
except Exception:
|
|
377
|
+
pass
|
|
378
|
+
|
|
379
|
+
match_pct = (matches / len(sample)) * 100
|
|
380
|
+
if match_pct > best_match_pct:
|
|
381
|
+
best_match_pct = match_pct
|
|
382
|
+
best_format = fmt
|
|
383
|
+
|
|
384
|
+
if best_format and best_match_pct > 80:
|
|
385
|
+
return best_format, round(best_match_pct, 2)
|
|
386
|
+
|
|
387
|
+
return 'mixed', 0.0
|
|
388
|
+
|
|
389
|
+
|
|
390
|
+
class BinaryProfiler(ColumnProfiler):
|
|
391
|
+
def profile(self, series: pd.Series) -> dict:
|
|
392
|
+
clean_series = series.dropna()
|
|
393
|
+
if len(clean_series) == 0:
|
|
394
|
+
return {"binary_metrics": None}
|
|
395
|
+
|
|
396
|
+
value_counts = clean_series.value_counts()
|
|
397
|
+
values_found = value_counts.index.tolist()
|
|
398
|
+
|
|
399
|
+
true_values = {1, 1.0, True, "1", "yes", "Yes", "YES", "true", "True", "TRUE", "y", "Y"}
|
|
400
|
+
false_values = {0, 0.0, False, "0", "no", "No", "NO", "false", "False", "FALSE", "n", "N"}
|
|
401
|
+
|
|
402
|
+
true_count = int(sum(value_counts.get(v, 0) for v in values_found if v in true_values))
|
|
403
|
+
false_count = int(sum(value_counts.get(v, 0) for v in values_found if v in false_values))
|
|
404
|
+
|
|
405
|
+
if true_count == 0 and false_count == 0:
|
|
406
|
+
true_count = int(value_counts.iloc[0]) if len(value_counts) > 0 else 0
|
|
407
|
+
false_count = int(value_counts.iloc[1]) if len(value_counts) > 1 else 0
|
|
408
|
+
|
|
409
|
+
total = true_count + false_count
|
|
410
|
+
true_percentage = round((true_count / total * 100), 2) if total > 0 else 0
|
|
411
|
+
|
|
412
|
+
balance_ratio = round((max(true_count, false_count) / min(true_count, false_count)), 2) \
|
|
413
|
+
if min(true_count, false_count) > 0 else float('inf')
|
|
414
|
+
|
|
415
|
+
is_boolean = is_bool_dtype(series)
|
|
416
|
+
|
|
417
|
+
return {
|
|
418
|
+
"binary_metrics": BinaryMetrics(
|
|
419
|
+
true_count=true_count,
|
|
420
|
+
false_count=false_count,
|
|
421
|
+
true_percentage=true_percentage,
|
|
422
|
+
balance_ratio=balance_ratio,
|
|
423
|
+
values_found=values_found,
|
|
424
|
+
is_boolean=is_boolean
|
|
425
|
+
)
|
|
426
|
+
}
|
|
427
|
+
|
|
428
|
+
|
|
429
|
+
class TextProfiler(ColumnProfiler):
|
|
430
|
+
"""Profile text columns with PII detection."""
|
|
431
|
+
|
|
432
|
+
def profile(self, series: pd.Series) -> dict:
|
|
433
|
+
"""Profile text column."""
|
|
434
|
+
|
|
435
|
+
clean_series = series.dropna()
|
|
436
|
+
|
|
437
|
+
# Calculate text lengths
|
|
438
|
+
lengths = clean_series.astype(str).str.len()
|
|
439
|
+
length_min = int(lengths.min()) if len(lengths) > 0 else 0
|
|
440
|
+
length_max = int(lengths.max()) if len(lengths) > 0 else 0
|
|
441
|
+
length_mean = float(lengths.mean()) if len(lengths) > 0 else 0.0
|
|
442
|
+
length_median = float(lengths.median()) if len(lengths) > 0 else 0.0
|
|
443
|
+
|
|
444
|
+
# Empty text detection
|
|
445
|
+
empty_count = int((clean_series.astype(str) == "").sum())
|
|
446
|
+
empty_percentage = (empty_count / len(series) * 100) if len(series) > 0 else 0.0
|
|
447
|
+
|
|
448
|
+
# Word count
|
|
449
|
+
word_counts = clean_series.astype(str).str.split().str.len()
|
|
450
|
+
word_count_mean = float(word_counts.mean()) if len(word_counts) > 0 else 0.0
|
|
451
|
+
|
|
452
|
+
# Contains digits
|
|
453
|
+
contains_digits = clean_series.astype(str).str.contains(r'\d', regex=True, na=False)
|
|
454
|
+
contains_digits_pct = float(contains_digits.sum() / len(clean_series) * 100) if len(clean_series) > 0 else 0.0
|
|
455
|
+
|
|
456
|
+
# Contains special characters
|
|
457
|
+
contains_special = clean_series.astype(str).str.contains(r'[!@#$%^&*(),.?":{}|<>]', regex=True, na=False)
|
|
458
|
+
contains_special_pct = float(contains_special.sum() / len(clean_series) * 100) if len(clean_series) > 0 else 0.0
|
|
459
|
+
|
|
460
|
+
# PII Detection
|
|
461
|
+
pii_detected = False
|
|
462
|
+
pii_types = []
|
|
463
|
+
|
|
464
|
+
# Email pattern
|
|
465
|
+
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
|
|
466
|
+
if clean_series.astype(str).str.contains(email_pattern, regex=True, na=False).any():
|
|
467
|
+
pii_detected = True
|
|
468
|
+
pii_types.append("email")
|
|
469
|
+
|
|
470
|
+
# Phone pattern (US format)
|
|
471
|
+
phone_pattern = r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b'
|
|
472
|
+
if clean_series.astype(str).str.contains(phone_pattern, regex=True, na=False).any():
|
|
473
|
+
pii_detected = True
|
|
474
|
+
pii_types.append("phone")
|
|
475
|
+
|
|
476
|
+
# SSN pattern
|
|
477
|
+
ssn_pattern = r'\b\d{3}-\d{2}-\d{4}\b'
|
|
478
|
+
if clean_series.astype(str).str.contains(ssn_pattern, regex=True, na=False).any():
|
|
479
|
+
pii_detected = True
|
|
480
|
+
pii_types.append("ssn")
|
|
481
|
+
|
|
482
|
+
# Credit card pattern (basic)
|
|
483
|
+
cc_pattern = r'\b\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}\b'
|
|
484
|
+
if clean_series.astype(str).str.contains(cc_pattern, regex=True, na=False).any():
|
|
485
|
+
pii_detected = True
|
|
486
|
+
pii_types.append("credit_card")
|
|
487
|
+
|
|
488
|
+
from .profile_result import TextMetrics
|
|
489
|
+
|
|
490
|
+
return {
|
|
491
|
+
"text_metrics": TextMetrics(
|
|
492
|
+
length_min=length_min,
|
|
493
|
+
length_max=length_max,
|
|
494
|
+
length_mean=length_mean,
|
|
495
|
+
length_median=length_median,
|
|
496
|
+
empty_count=empty_count,
|
|
497
|
+
empty_percentage=round(empty_percentage, 2),
|
|
498
|
+
word_count_mean=round(word_count_mean, 2),
|
|
499
|
+
contains_digits_pct=round(contains_digits_pct, 2),
|
|
500
|
+
contains_special_pct=round(contains_special_pct, 2),
|
|
501
|
+
pii_detected=pii_detected,
|
|
502
|
+
pii_types=pii_types,
|
|
503
|
+
language_detected=None # TODO: Can add language detection later
|
|
504
|
+
)
|
|
505
|
+
}
|
|
506
|
+
|
|
507
|
+
|
|
508
|
+
class ProfilerFactory:
|
|
509
|
+
_profilers = {
|
|
510
|
+
ColumnType.IDENTIFIER: IdentifierProfiler,
|
|
511
|
+
ColumnType.TARGET: TargetProfiler,
|
|
512
|
+
ColumnType.FEATURE_TIMESTAMP: DatetimeProfiler,
|
|
513
|
+
ColumnType.LABEL_TIMESTAMP: DatetimeProfiler,
|
|
514
|
+
ColumnType.NUMERIC_CONTINUOUS: NumericProfiler,
|
|
515
|
+
ColumnType.NUMERIC_DISCRETE: NumericProfiler,
|
|
516
|
+
ColumnType.CATEGORICAL_NOMINAL: CategoricalProfiler,
|
|
517
|
+
ColumnType.CATEGORICAL_ORDINAL: CategoricalProfiler,
|
|
518
|
+
ColumnType.CATEGORICAL_CYCLICAL: CategoricalProfiler,
|
|
519
|
+
ColumnType.DATETIME: DatetimeProfiler,
|
|
520
|
+
ColumnType.BINARY: BinaryProfiler,
|
|
521
|
+
ColumnType.TEXT: TextProfiler,
|
|
522
|
+
}
|
|
523
|
+
|
|
524
|
+
@classmethod
|
|
525
|
+
def get_profiler(cls, column_type: ColumnType) -> Optional[ColumnProfiler]:
|
|
526
|
+
profiler_class = cls._profilers.get(column_type)
|
|
527
|
+
return profiler_class() if profiler_class else None
|