churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,685 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from dataclasses import dataclass, field
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
from typing import Any, Dict, List, Optional
|
|
5
|
+
|
|
6
|
+
from customer_retention.analysis.auto_explorer.findings import ExplorationFindings
|
|
7
|
+
from customer_retention.core.config.column_config import ColumnType
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@dataclass
|
|
11
|
+
class CleanAction:
|
|
12
|
+
action_type: str
|
|
13
|
+
strategy: str = ""
|
|
14
|
+
params: Dict[str, Any] = field(default_factory=dict)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@dataclass
|
|
18
|
+
class TransformAction:
|
|
19
|
+
action_type: str
|
|
20
|
+
method: str = ""
|
|
21
|
+
params: Dict[str, Any] = field(default_factory=dict)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class RecommendationParser:
|
|
25
|
+
CLEANING_PATTERNS = {
|
|
26
|
+
r"impute_median": ("impute", "median", {}),
|
|
27
|
+
r"impute_mean": ("impute", "mean", {}),
|
|
28
|
+
r"impute_mode": ("impute", "mode", {}),
|
|
29
|
+
r"impute_zero": ("impute", "constant", {"fill_value": 0}),
|
|
30
|
+
r"impute_constant_(.+)": ("impute", "constant", {}),
|
|
31
|
+
r"cap_outliers_(\d+)": ("cap_outliers", "", {}),
|
|
32
|
+
r"remove_outliers_iqr": ("remove_outliers", "iqr", {}),
|
|
33
|
+
r"drop_rare_(\d+)": ("drop_rare", "", {}),
|
|
34
|
+
r"drop_nulls": ("drop_nulls", "", {}),
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
TRANSFORM_PATTERNS = {
|
|
38
|
+
r"standard_scale": ("scale", "standard", {}),
|
|
39
|
+
r"minmax_scale": ("scale", "minmax", {}),
|
|
40
|
+
r"robust_scale": ("scale", "robust", {}),
|
|
41
|
+
r"log_transform": ("transform", "log1p", {}),
|
|
42
|
+
r"sqrt_transform": ("transform", "sqrt", {}),
|
|
43
|
+
r"power_transform": ("transform", "yeo_johnson", {}),
|
|
44
|
+
r"onehot_encode": ("encode", "onehot", {}),
|
|
45
|
+
r"label_encode": ("encode", "label", {}),
|
|
46
|
+
r"ordinal_encode": ("encode", "ordinal", {}),
|
|
47
|
+
r"extract_month": ("datetime_extract", "month", {}),
|
|
48
|
+
r"extract_dayofweek": ("datetime_extract", "dayofweek", {}),
|
|
49
|
+
r"extract_day$": ("datetime_extract", "day", {}),
|
|
50
|
+
r"extract_hour": ("datetime_extract", "hour", {}),
|
|
51
|
+
r"extract_year": ("datetime_extract", "year", {}),
|
|
52
|
+
r"days_since": ("datetime_extract", "days_since", {}),
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
def parse_cleaning(self, recommendation: str) -> Optional[CleanAction]:
|
|
56
|
+
for pattern, (action_type, strategy, params) in self.CLEANING_PATTERNS.items():
|
|
57
|
+
match = re.match(pattern, recommendation)
|
|
58
|
+
if match:
|
|
59
|
+
result_params = params.copy()
|
|
60
|
+
if match.groups():
|
|
61
|
+
if action_type == "cap_outliers":
|
|
62
|
+
result_params["percentile"] = int(match.group(1))
|
|
63
|
+
elif action_type == "drop_rare":
|
|
64
|
+
result_params["threshold_percent"] = int(match.group(1))
|
|
65
|
+
elif strategy == "constant" and "fill_value" not in result_params:
|
|
66
|
+
result_params["fill_value"] = match.group(1)
|
|
67
|
+
return CleanAction(action_type=action_type, strategy=strategy, params=result_params)
|
|
68
|
+
return None
|
|
69
|
+
|
|
70
|
+
def parse_transform(self, recommendation: str) -> Optional[TransformAction]:
|
|
71
|
+
for pattern, (action_type, method, params) in self.TRANSFORM_PATTERNS.items():
|
|
72
|
+
if re.match(pattern, recommendation):
|
|
73
|
+
return TransformAction(action_type=action_type, method=method, params=params.copy())
|
|
74
|
+
return None
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@dataclass
|
|
78
|
+
class MLflowConfig:
|
|
79
|
+
tracking_uri: str = "./mlruns"
|
|
80
|
+
experiment_name: str = "ml_pipeline"
|
|
81
|
+
run_name: Optional[str] = None
|
|
82
|
+
log_data_quality: bool = True
|
|
83
|
+
log_transformations: bool = True
|
|
84
|
+
log_feature_importance: bool = True
|
|
85
|
+
nested_runs: bool = True
|
|
86
|
+
model_name: Optional[str] = None
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
class MLflowPipelineGenerator:
|
|
90
|
+
def __init__(
|
|
91
|
+
self,
|
|
92
|
+
mlflow_config: Optional[MLflowConfig] = None,
|
|
93
|
+
output_dir: str = "./generated_pipelines",
|
|
94
|
+
):
|
|
95
|
+
self.mlflow_config = mlflow_config or MLflowConfig()
|
|
96
|
+
self.output_dir = output_dir
|
|
97
|
+
self._parser = RecommendationParser()
|
|
98
|
+
|
|
99
|
+
def generate_pipeline(self, findings: ExplorationFindings) -> str:
|
|
100
|
+
sections = [
|
|
101
|
+
self._generate_docstring(findings),
|
|
102
|
+
self._generate_imports(),
|
|
103
|
+
self._generate_mlflow_setup(),
|
|
104
|
+
]
|
|
105
|
+
|
|
106
|
+
if self.mlflow_config.log_data_quality:
|
|
107
|
+
sections.append(self._generate_data_quality_logging())
|
|
108
|
+
|
|
109
|
+
sections.extend([
|
|
110
|
+
self.generate_cleaning_functions(findings),
|
|
111
|
+
self.generate_transform_functions(findings),
|
|
112
|
+
self.generate_feature_engineering(findings),
|
|
113
|
+
self.generate_model_training(findings),
|
|
114
|
+
self.generate_monitoring(findings),
|
|
115
|
+
self._generate_main(findings),
|
|
116
|
+
])
|
|
117
|
+
return "\n\n".join(sections)
|
|
118
|
+
|
|
119
|
+
def _generate_docstring(self, findings: ExplorationFindings) -> str:
|
|
120
|
+
return f'''"""
|
|
121
|
+
MLflow-tracked ML Pipeline
|
|
122
|
+
Generated from exploration findings
|
|
123
|
+
|
|
124
|
+
Source: {findings.source_path}
|
|
125
|
+
Target: {findings.target_column or 'Not specified'}
|
|
126
|
+
Rows: {findings.row_count:,}
|
|
127
|
+
Features: {findings.column_count}
|
|
128
|
+
"""'''
|
|
129
|
+
|
|
130
|
+
def _generate_imports(self) -> str:
|
|
131
|
+
return """import pandas as pd
|
|
132
|
+
import numpy as np
|
|
133
|
+
from datetime import datetime
|
|
134
|
+
from typing import Dict, List, Tuple, Any
|
|
135
|
+
|
|
136
|
+
import mlflow
|
|
137
|
+
import mlflow.sklearn
|
|
138
|
+
from sklearn.model_selection import train_test_split, cross_val_score
|
|
139
|
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder, LabelEncoder
|
|
140
|
+
from sklearn.impute import SimpleImputer
|
|
141
|
+
from sklearn.compose import ColumnTransformer
|
|
142
|
+
from sklearn.pipeline import Pipeline
|
|
143
|
+
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
|
|
144
|
+
from sklearn.linear_model import LogisticRegression
|
|
145
|
+
from sklearn.metrics import (
|
|
146
|
+
accuracy_score, precision_score, recall_score, f1_score,
|
|
147
|
+
roc_auc_score, classification_report, confusion_matrix
|
|
148
|
+
)"""
|
|
149
|
+
|
|
150
|
+
def _generate_mlflow_setup(self) -> str:
|
|
151
|
+
return f'''
|
|
152
|
+
MLFLOW_TRACKING_URI = "{self.mlflow_config.tracking_uri}"
|
|
153
|
+
EXPERIMENT_NAME = "{self.mlflow_config.experiment_name}"
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def setup_mlflow():
|
|
157
|
+
"""Initialize MLflow tracking."""
|
|
158
|
+
mlflow.set_tracking_uri(MLFLOW_TRACKING_URI)
|
|
159
|
+
mlflow.set_experiment(EXPERIMENT_NAME)
|
|
160
|
+
return mlflow.get_experiment_by_name(EXPERIMENT_NAME)'''
|
|
161
|
+
|
|
162
|
+
def _generate_data_quality_logging(self) -> str:
|
|
163
|
+
return '''
|
|
164
|
+
def log_data_quality_metrics(df: pd.DataFrame, prefix: str = "data"):
|
|
165
|
+
"""Log data quality metrics to MLflow."""
|
|
166
|
+
metrics = {
|
|
167
|
+
f"{prefix}_rows": len(df),
|
|
168
|
+
f"{prefix}_columns": len(df.columns),
|
|
169
|
+
f"{prefix}_memory_mb": df.memory_usage(deep=True).sum() / 1024 / 1024,
|
|
170
|
+
}
|
|
171
|
+
|
|
172
|
+
for col in df.columns:
|
|
173
|
+
null_pct = df[col].isna().mean() * 100
|
|
174
|
+
metrics[f"{prefix}_null_pct_{col}"] = null_pct
|
|
175
|
+
|
|
176
|
+
mlflow.log_metrics(metrics)
|
|
177
|
+
return metrics'''
|
|
178
|
+
|
|
179
|
+
def generate_cleaning_functions(self, findings: ExplorationFindings) -> str:
|
|
180
|
+
cleaning_steps = self._build_cleaning_steps(findings)
|
|
181
|
+
|
|
182
|
+
code_lines = [
|
|
183
|
+
"def clean_data(df: pd.DataFrame) -> pd.DataFrame:",
|
|
184
|
+
' """Apply cleaning transformations based on exploration findings."""',
|
|
185
|
+
" df = df.copy()",
|
|
186
|
+
" cleaning_stats = {}",
|
|
187
|
+
"",
|
|
188
|
+
]
|
|
189
|
+
|
|
190
|
+
if not cleaning_steps:
|
|
191
|
+
code_lines.append(" # No cleaning recommendations found")
|
|
192
|
+
else:
|
|
193
|
+
for col_name, actions in cleaning_steps.items():
|
|
194
|
+
for action in actions:
|
|
195
|
+
code_lines.extend(self._action_to_cleaning_code(col_name, action))
|
|
196
|
+
|
|
197
|
+
code_lines.extend([
|
|
198
|
+
"",
|
|
199
|
+
" mlflow.log_params({f'cleaned_{k}': v for k, v in cleaning_stats.items()})",
|
|
200
|
+
" return df",
|
|
201
|
+
])
|
|
202
|
+
|
|
203
|
+
return "\n".join(code_lines)
|
|
204
|
+
|
|
205
|
+
def _build_cleaning_steps(self, findings: ExplorationFindings) -> Dict[str, List[CleanAction]]:
|
|
206
|
+
steps = {}
|
|
207
|
+
for col_name, col_finding in findings.columns.items():
|
|
208
|
+
if col_finding.inferred_type in (ColumnType.IDENTIFIER, ColumnType.TARGET):
|
|
209
|
+
continue
|
|
210
|
+
|
|
211
|
+
col_actions = []
|
|
212
|
+
for rec in col_finding.cleaning_recommendations:
|
|
213
|
+
action = self._parser.parse_cleaning(rec)
|
|
214
|
+
if action:
|
|
215
|
+
col_actions.append(action)
|
|
216
|
+
|
|
217
|
+
if col_actions:
|
|
218
|
+
steps[col_name] = col_actions
|
|
219
|
+
|
|
220
|
+
return steps
|
|
221
|
+
|
|
222
|
+
def _action_to_cleaning_code(self, col_name: str, action: CleanAction) -> List[str]:
|
|
223
|
+
lines = []
|
|
224
|
+
|
|
225
|
+
if action.action_type == "impute":
|
|
226
|
+
if action.strategy == "median":
|
|
227
|
+
lines.extend([
|
|
228
|
+
f" # Impute {col_name} with median",
|
|
229
|
+
f" if df['{col_name}'].isna().any():",
|
|
230
|
+
f" median_val = df['{col_name}'].median()",
|
|
231
|
+
f" cleaning_stats['{col_name}_imputed'] = df['{col_name}'].isna().sum()",
|
|
232
|
+
f" df['{col_name}'] = df['{col_name}'].fillna(median_val)",
|
|
233
|
+
"",
|
|
234
|
+
])
|
|
235
|
+
elif action.strategy == "mode":
|
|
236
|
+
lines.extend([
|
|
237
|
+
f" # Impute {col_name} with mode",
|
|
238
|
+
f" if df['{col_name}'].isna().any():",
|
|
239
|
+
f" mode_val = df['{col_name}'].mode().iloc[0] if not df['{col_name}'].mode().empty else None",
|
|
240
|
+
" if mode_val is not None:",
|
|
241
|
+
f" cleaning_stats['{col_name}_imputed'] = df['{col_name}'].isna().sum()",
|
|
242
|
+
f" df['{col_name}'] = df['{col_name}'].fillna(mode_val)",
|
|
243
|
+
"",
|
|
244
|
+
])
|
|
245
|
+
elif action.strategy == "constant":
|
|
246
|
+
fill_value = action.params.get("fill_value", 0)
|
|
247
|
+
lines.extend([
|
|
248
|
+
f" # Impute {col_name} with constant",
|
|
249
|
+
f" if df['{col_name}'].isna().any():",
|
|
250
|
+
f" cleaning_stats['{col_name}_imputed'] = df['{col_name}'].isna().sum()",
|
|
251
|
+
f" df['{col_name}'] = df['{col_name}'].fillna({repr(fill_value)})",
|
|
252
|
+
"",
|
|
253
|
+
])
|
|
254
|
+
|
|
255
|
+
elif action.action_type == "cap_outliers":
|
|
256
|
+
percentile = action.params.get("percentile", 99)
|
|
257
|
+
lines.extend([
|
|
258
|
+
f" # Cap outliers in {col_name} at {percentile}th percentile",
|
|
259
|
+
f" lower = df['{col_name}'].quantile({(100 - percentile) / 100})",
|
|
260
|
+
f" upper = df['{col_name}'].quantile({percentile / 100})",
|
|
261
|
+
f" outliers = ((df['{col_name}'] < lower) | (df['{col_name}'] > upper)).sum()",
|
|
262
|
+
f" cleaning_stats['{col_name}_outliers_capped'] = outliers",
|
|
263
|
+
f" df['{col_name}'] = df['{col_name}'].clip(lower, upper)",
|
|
264
|
+
"",
|
|
265
|
+
])
|
|
266
|
+
|
|
267
|
+
elif action.action_type == "drop_rare":
|
|
268
|
+
threshold = action.params.get("threshold_percent", 5)
|
|
269
|
+
lines.extend([
|
|
270
|
+
f" # Drop rare categories in {col_name} (< {threshold}%)",
|
|
271
|
+
f" value_counts = df['{col_name}'].value_counts(normalize=True)",
|
|
272
|
+
f" rare_values = value_counts[value_counts < {threshold / 100}].index",
|
|
273
|
+
" if len(rare_values) > 0:",
|
|
274
|
+
f" cleaning_stats['{col_name}_rare_dropped'] = len(rare_values)",
|
|
275
|
+
f" df.loc[df['{col_name}'].isin(rare_values), '{col_name}'] = df['{col_name}'].mode().iloc[0]",
|
|
276
|
+
"",
|
|
277
|
+
])
|
|
278
|
+
|
|
279
|
+
return lines
|
|
280
|
+
|
|
281
|
+
def generate_transform_functions(self, findings: ExplorationFindings) -> str:
|
|
282
|
+
self._get_columns_by_type(findings,
|
|
283
|
+
[ColumnType.NUMERIC_CONTINUOUS, ColumnType.NUMERIC_DISCRETE])
|
|
284
|
+
self._get_columns_by_type(findings,
|
|
285
|
+
[ColumnType.CATEGORICAL_NOMINAL, ColumnType.CATEGORICAL_ORDINAL])
|
|
286
|
+
|
|
287
|
+
transform_actions = self._build_transform_actions(findings)
|
|
288
|
+
|
|
289
|
+
code_lines = [
|
|
290
|
+
"def apply_transforms(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, Any]]:",
|
|
291
|
+
' """Apply transformations based on exploration recommendations."""',
|
|
292
|
+
" df = df.copy()",
|
|
293
|
+
" transformers = {}",
|
|
294
|
+
"",
|
|
295
|
+
]
|
|
296
|
+
|
|
297
|
+
# Log transform for skewed columns
|
|
298
|
+
log_cols = [col for col, actions in transform_actions.items()
|
|
299
|
+
if any(a.method == "log1p" for a in actions)]
|
|
300
|
+
if log_cols:
|
|
301
|
+
for col in log_cols:
|
|
302
|
+
code_lines.extend([
|
|
303
|
+
f" # Log transform {col} (recommended for skewness)",
|
|
304
|
+
f" df['{col}_log'] = np.log1p(df['{col}'].clip(lower=0))",
|
|
305
|
+
f" transformers['{col}_log_transform'] = True",
|
|
306
|
+
"",
|
|
307
|
+
])
|
|
308
|
+
|
|
309
|
+
# Standard scaling
|
|
310
|
+
scale_standard = [col for col, actions in transform_actions.items()
|
|
311
|
+
if any(a.action_type == "scale" and a.method == "standard" for a in actions)]
|
|
312
|
+
if scale_standard:
|
|
313
|
+
code_lines.extend([
|
|
314
|
+
" # Standard scaling",
|
|
315
|
+
f" standard_cols = {scale_standard}",
|
|
316
|
+
" if standard_cols:",
|
|
317
|
+
" scaler = StandardScaler()",
|
|
318
|
+
" df[standard_cols] = scaler.fit_transform(df[standard_cols])",
|
|
319
|
+
" transformers['standard_scaler'] = {'columns': standard_cols}",
|
|
320
|
+
"",
|
|
321
|
+
])
|
|
322
|
+
|
|
323
|
+
# MinMax scaling
|
|
324
|
+
scale_minmax = [col for col, actions in transform_actions.items()
|
|
325
|
+
if any(a.action_type == "scale" and a.method == "minmax" for a in actions)]
|
|
326
|
+
if scale_minmax:
|
|
327
|
+
code_lines.extend([
|
|
328
|
+
" # MinMax scaling",
|
|
329
|
+
f" minmax_cols = {scale_minmax}",
|
|
330
|
+
" if minmax_cols:",
|
|
331
|
+
" minmax_scaler = MinMaxScaler()",
|
|
332
|
+
" df[minmax_cols] = minmax_scaler.fit_transform(df[minmax_cols])",
|
|
333
|
+
" transformers['minmax_scaler'] = {'columns': minmax_cols}",
|
|
334
|
+
"",
|
|
335
|
+
])
|
|
336
|
+
|
|
337
|
+
# One-hot encoding
|
|
338
|
+
onehot_cols = [col for col, actions in transform_actions.items()
|
|
339
|
+
if any(a.action_type == "encode" and a.method == "onehot" for a in actions)]
|
|
340
|
+
if onehot_cols:
|
|
341
|
+
code_lines.extend([
|
|
342
|
+
" # One-hot encoding",
|
|
343
|
+
f" onehot_cols = {onehot_cols}",
|
|
344
|
+
" for col in onehot_cols:",
|
|
345
|
+
" dummies = pd.get_dummies(df[col], prefix=col, drop_first=True)",
|
|
346
|
+
" df = pd.concat([df.drop(columns=[col]), dummies], axis=1)",
|
|
347
|
+
" transformers[f'{col}_onehot'] = list(dummies.columns)",
|
|
348
|
+
"",
|
|
349
|
+
])
|
|
350
|
+
|
|
351
|
+
# Label encoding
|
|
352
|
+
label_cols = [col for col, actions in transform_actions.items()
|
|
353
|
+
if any(a.action_type == "encode" and a.method == "label" for a in actions)]
|
|
354
|
+
if label_cols:
|
|
355
|
+
code_lines.extend([
|
|
356
|
+
" # Label encoding",
|
|
357
|
+
f" label_cols = {label_cols}",
|
|
358
|
+
" label_encoders = {{}}",
|
|
359
|
+
" for col in label_cols:",
|
|
360
|
+
" le = LabelEncoder()",
|
|
361
|
+
" df[col] = le.fit_transform(df[col].astype(str))",
|
|
362
|
+
" label_encoders[col] = le",
|
|
363
|
+
" transformers['label_encoders'] = label_encoders",
|
|
364
|
+
"",
|
|
365
|
+
])
|
|
366
|
+
|
|
367
|
+
code_lines.extend([
|
|
368
|
+
" mlflow.log_params({f'transform_{k}': str(v)[:250] for k, v in transformers.items()})",
|
|
369
|
+
" return df, transformers",
|
|
370
|
+
])
|
|
371
|
+
|
|
372
|
+
return "\n".join(code_lines)
|
|
373
|
+
|
|
374
|
+
def _build_transform_actions(self, findings: ExplorationFindings) -> Dict[str, List[TransformAction]]:
|
|
375
|
+
actions = {}
|
|
376
|
+
for col_name, col_finding in findings.columns.items():
|
|
377
|
+
if col_finding.inferred_type in (ColumnType.IDENTIFIER, ColumnType.TARGET):
|
|
378
|
+
continue
|
|
379
|
+
|
|
380
|
+
col_actions = []
|
|
381
|
+
for rec in col_finding.transformation_recommendations:
|
|
382
|
+
action = self._parser.parse_transform(rec)
|
|
383
|
+
if action:
|
|
384
|
+
col_actions.append(action)
|
|
385
|
+
|
|
386
|
+
if col_actions:
|
|
387
|
+
actions[col_name] = col_actions
|
|
388
|
+
|
|
389
|
+
return actions
|
|
390
|
+
|
|
391
|
+
def generate_feature_engineering(self, findings: ExplorationFindings) -> str:
|
|
392
|
+
datetime_cols = self._get_columns_by_type(findings, [ColumnType.DATETIME])
|
|
393
|
+
transform_actions = self._build_transform_actions(findings)
|
|
394
|
+
|
|
395
|
+
code_lines = [
|
|
396
|
+
"def engineer_features(df: pd.DataFrame) -> pd.DataFrame:",
|
|
397
|
+
' """Engineer features based on exploration findings."""',
|
|
398
|
+
" df = df.copy()",
|
|
399
|
+
" new_features = []",
|
|
400
|
+
"",
|
|
401
|
+
]
|
|
402
|
+
|
|
403
|
+
# Datetime feature extraction
|
|
404
|
+
for col_name in datetime_cols:
|
|
405
|
+
actions = transform_actions.get(col_name, [])
|
|
406
|
+
extract_types = [a.method for a in actions if a.action_type == "datetime_extract"]
|
|
407
|
+
|
|
408
|
+
if not extract_types:
|
|
409
|
+
extract_types = ["month", "dayofweek", "days_since"]
|
|
410
|
+
|
|
411
|
+
code_lines.extend([
|
|
412
|
+
f" # Datetime features from {col_name}",
|
|
413
|
+
f" if '{col_name}' in df.columns:",
|
|
414
|
+
f" df['{col_name}'] = pd.to_datetime(df['{col_name}'], errors='coerce')",
|
|
415
|
+
"",
|
|
416
|
+
])
|
|
417
|
+
|
|
418
|
+
for ext_type in extract_types:
|
|
419
|
+
if ext_type == "month":
|
|
420
|
+
code_lines.append(f" df['{col_name}_month'] = df['{col_name}'].dt.month")
|
|
421
|
+
code_lines.append(f" new_features.append('{col_name}_month')")
|
|
422
|
+
elif ext_type == "day":
|
|
423
|
+
code_lines.append(f" df['{col_name}_day'] = df['{col_name}'].dt.day")
|
|
424
|
+
code_lines.append(f" new_features.append('{col_name}_day')")
|
|
425
|
+
elif ext_type == "dayofweek":
|
|
426
|
+
code_lines.append(f" df['{col_name}_dayofweek'] = df['{col_name}'].dt.dayofweek")
|
|
427
|
+
code_lines.append(f" new_features.append('{col_name}_dayofweek')")
|
|
428
|
+
elif ext_type == "hour":
|
|
429
|
+
code_lines.append(f" df['{col_name}_hour'] = df['{col_name}'].dt.hour")
|
|
430
|
+
code_lines.append(f" new_features.append('{col_name}_hour')")
|
|
431
|
+
elif ext_type == "year":
|
|
432
|
+
code_lines.append(f" df['{col_name}_year'] = df['{col_name}'].dt.year")
|
|
433
|
+
code_lines.append(f" new_features.append('{col_name}_year')")
|
|
434
|
+
elif ext_type == "days_since":
|
|
435
|
+
code_lines.extend([
|
|
436
|
+
f" reference_date = df['{col_name}'].max()",
|
|
437
|
+
f" df['{col_name}_days_since'] = (reference_date - df['{col_name}']).dt.days",
|
|
438
|
+
f" new_features.append('{col_name}_days_since')",
|
|
439
|
+
])
|
|
440
|
+
|
|
441
|
+
code_lines.append("")
|
|
442
|
+
|
|
443
|
+
code_lines.extend([
|
|
444
|
+
" if new_features:",
|
|
445
|
+
" mlflow.log_param('engineered_features', new_features)",
|
|
446
|
+
" return df",
|
|
447
|
+
])
|
|
448
|
+
|
|
449
|
+
return "\n".join(code_lines)
|
|
450
|
+
|
|
451
|
+
def generate_model_training(self, findings: ExplorationFindings) -> str:
|
|
452
|
+
target = findings.target_column or "target"
|
|
453
|
+
identifier_cols = findings.identifier_columns or []
|
|
454
|
+
datetime_cols = findings.datetime_columns or []
|
|
455
|
+
exclude_cols = set(identifier_cols + datetime_cols + [target])
|
|
456
|
+
|
|
457
|
+
return f'''
|
|
458
|
+
def train_model(
|
|
459
|
+
df: pd.DataFrame,
|
|
460
|
+
target_column: str = "{target}",
|
|
461
|
+
test_size: float = 0.2,
|
|
462
|
+
val_size: float = 0.1,
|
|
463
|
+
) -> Dict[str, Any]:
|
|
464
|
+
"""Train model with comprehensive MLflow tracking."""
|
|
465
|
+
|
|
466
|
+
# Exclude non-feature columns
|
|
467
|
+
exclude_cols = {exclude_cols}
|
|
468
|
+
feature_cols = [col for col in df.columns if col not in exclude_cols and col != target_column]
|
|
469
|
+
|
|
470
|
+
# Handle non-numeric columns
|
|
471
|
+
X = df[feature_cols].copy()
|
|
472
|
+
for col in X.select_dtypes(include=['object', 'category']).columns:
|
|
473
|
+
X[col] = pd.factorize(X[col])[0]
|
|
474
|
+
X = X.fillna(0)
|
|
475
|
+
|
|
476
|
+
y = df[target_column]
|
|
477
|
+
|
|
478
|
+
# Split: train/validation/test
|
|
479
|
+
X_temp, X_test, y_temp, y_test = train_test_split(
|
|
480
|
+
X, y, test_size=test_size, random_state=42, stratify=y
|
|
481
|
+
)
|
|
482
|
+
X_train, X_val, y_train, y_val = train_test_split(
|
|
483
|
+
X_temp, y_temp, test_size=val_size/(1-test_size), random_state=42, stratify=y_temp
|
|
484
|
+
)
|
|
485
|
+
|
|
486
|
+
mlflow.log_params({{
|
|
487
|
+
"train_samples": len(X_train),
|
|
488
|
+
"validation_samples": len(X_val),
|
|
489
|
+
"test_samples": len(X_test),
|
|
490
|
+
"feature_count": len(feature_cols),
|
|
491
|
+
"test_size": test_size,
|
|
492
|
+
"val_size": val_size,
|
|
493
|
+
}})
|
|
494
|
+
|
|
495
|
+
# Train models
|
|
496
|
+
models = {{
|
|
497
|
+
"logistic_regression": LogisticRegression(max_iter=1000, random_state=42),
|
|
498
|
+
"random_forest": RandomForestClassifier(n_estimators=100, random_state=42),
|
|
499
|
+
"gradient_boosting": GradientBoostingClassifier(n_estimators=100, random_state=42),
|
|
500
|
+
}}
|
|
501
|
+
|
|
502
|
+
results = {{}}
|
|
503
|
+
best_model = None
|
|
504
|
+
best_auc = 0
|
|
505
|
+
|
|
506
|
+
for name, model in models.items():
|
|
507
|
+
with mlflow.start_run(run_name=name, nested=True):
|
|
508
|
+
# Train
|
|
509
|
+
model.fit(X_train, y_train)
|
|
510
|
+
|
|
511
|
+
# Validation predictions
|
|
512
|
+
y_val_pred = model.predict(X_val)
|
|
513
|
+
y_val_proba = model.predict_proba(X_val)[:, 1] if hasattr(model, "predict_proba") else y_val_pred
|
|
514
|
+
|
|
515
|
+
# Test predictions
|
|
516
|
+
y_test_pred = model.predict(X_test)
|
|
517
|
+
y_test_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else y_test_pred
|
|
518
|
+
|
|
519
|
+
# Calculate metrics
|
|
520
|
+
val_metrics = {{
|
|
521
|
+
"val_accuracy": accuracy_score(y_val, y_val_pred),
|
|
522
|
+
"val_precision": precision_score(y_val, y_val_pred, average="weighted", zero_division=0),
|
|
523
|
+
"val_recall": recall_score(y_val, y_val_pred, average="weighted", zero_division=0),
|
|
524
|
+
"val_f1": f1_score(y_val, y_val_pred, average="weighted", zero_division=0),
|
|
525
|
+
"val_roc_auc": roc_auc_score(y_val, y_val_proba) if len(np.unique(y_val)) > 1 else 0,
|
|
526
|
+
}}
|
|
527
|
+
|
|
528
|
+
test_metrics = {{
|
|
529
|
+
"test_accuracy": accuracy_score(y_test, y_test_pred),
|
|
530
|
+
"test_precision": precision_score(y_test, y_test_pred, average="weighted", zero_division=0),
|
|
531
|
+
"test_recall": recall_score(y_test, y_test_pred, average="weighted", zero_division=0),
|
|
532
|
+
"test_f1": f1_score(y_test, y_test_pred, average="weighted", zero_division=0),
|
|
533
|
+
"test_roc_auc": roc_auc_score(y_test, y_test_proba) if len(np.unique(y_test)) > 1 else 0,
|
|
534
|
+
}}
|
|
535
|
+
|
|
536
|
+
# Cross-validation
|
|
537
|
+
cv_scores = cross_val_score(model, X_train, y_train, cv=5, scoring="roc_auc")
|
|
538
|
+
cv_metrics = {{
|
|
539
|
+
"cv_roc_auc_mean": cv_scores.mean(),
|
|
540
|
+
"cv_roc_auc_std": cv_scores.std(),
|
|
541
|
+
}}
|
|
542
|
+
|
|
543
|
+
# Log everything
|
|
544
|
+
mlflow.log_params(model.get_params())
|
|
545
|
+
mlflow.log_metrics({{**val_metrics, **test_metrics, **cv_metrics}})
|
|
546
|
+
mlflow.sklearn.log_model(model, f"model_{{name}}")
|
|
547
|
+
|
|
548
|
+
results[name] = {{
|
|
549
|
+
"model": model,
|
|
550
|
+
"val_metrics": val_metrics,
|
|
551
|
+
"test_metrics": test_metrics,
|
|
552
|
+
"cv_metrics": cv_metrics,
|
|
553
|
+
}}
|
|
554
|
+
|
|
555
|
+
if val_metrics["val_roc_auc"] > best_auc:
|
|
556
|
+
best_auc = val_metrics["val_roc_auc"]
|
|
557
|
+
best_model = name
|
|
558
|
+
|
|
559
|
+
mlflow.log_param("best_model", best_model)
|
|
560
|
+
mlflow.log_metric("best_val_roc_auc", best_auc)
|
|
561
|
+
|
|
562
|
+
return {{"results": results, "best_model": best_model}}'''
|
|
563
|
+
|
|
564
|
+
def generate_monitoring(self, findings: ExplorationFindings) -> str:
|
|
565
|
+
return '''
|
|
566
|
+
def evaluate_model(model, X_test: pd.DataFrame, y_test: pd.Series) -> Dict[str, float]:
|
|
567
|
+
"""Evaluate model and log monitoring metrics."""
|
|
568
|
+
y_pred = model.predict(X_test)
|
|
569
|
+
y_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else y_pred
|
|
570
|
+
|
|
571
|
+
metrics = {
|
|
572
|
+
"accuracy": accuracy_score(y_test, y_pred),
|
|
573
|
+
"precision": precision_score(y_test, y_pred, average="weighted", zero_division=0),
|
|
574
|
+
"recall": recall_score(y_test, y_pred, average="weighted", zero_division=0),
|
|
575
|
+
"f1": f1_score(y_test, y_pred, average="weighted", zero_division=0),
|
|
576
|
+
"roc_auc": roc_auc_score(y_test, y_proba) if len(np.unique(y_test)) > 1 else 0,
|
|
577
|
+
}
|
|
578
|
+
|
|
579
|
+
mlflow.log_metrics({f"monitor_{k}": v for k, v in metrics.items()})
|
|
580
|
+
|
|
581
|
+
return metrics'''
|
|
582
|
+
|
|
583
|
+
def _generate_main(self, findings: ExplorationFindings) -> str:
|
|
584
|
+
source_path = findings.source_path
|
|
585
|
+
if findings.source_format == "csv":
|
|
586
|
+
load_expr = f'pd.read_csv("{source_path}")'
|
|
587
|
+
else:
|
|
588
|
+
load_expr = (
|
|
589
|
+
f'get_delta(force_local=True).read("{source_path}") '
|
|
590
|
+
f'if Path("{source_path}").is_dir() and (Path("{source_path}") / "_delta_log").is_dir() '
|
|
591
|
+
f'else pd.read_parquet("{source_path}")'
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
main_body = f'''
|
|
595
|
+
def main():
|
|
596
|
+
"""Run the complete ML pipeline with MLflow tracking."""
|
|
597
|
+
from pathlib import Path
|
|
598
|
+
from customer_retention.integrations.adapters.factory import get_delta
|
|
599
|
+
setup_mlflow()
|
|
600
|
+
|
|
601
|
+
with mlflow.start_run(run_name="full_pipeline"):
|
|
602
|
+
# Load data
|
|
603
|
+
print("Loading data...")
|
|
604
|
+
df = {load_expr}'''
|
|
605
|
+
|
|
606
|
+
if self.mlflow_config.log_data_quality:
|
|
607
|
+
main_body += "\n log_data_quality_metrics(df, prefix='raw')"
|
|
608
|
+
|
|
609
|
+
main_body += '''
|
|
610
|
+
|
|
611
|
+
# Clean data
|
|
612
|
+
print("Cleaning data...")
|
|
613
|
+
df = clean_data(df)'''
|
|
614
|
+
|
|
615
|
+
if self.mlflow_config.log_data_quality:
|
|
616
|
+
main_body += "\n log_data_quality_metrics(df, prefix='cleaned')"
|
|
617
|
+
|
|
618
|
+
main_body += '''
|
|
619
|
+
|
|
620
|
+
# Apply transformations
|
|
621
|
+
print("Applying transformations...")
|
|
622
|
+
df, transformers = apply_transforms(df)
|
|
623
|
+
|
|
624
|
+
# Engineer features
|
|
625
|
+
print("Engineering features...")
|
|
626
|
+
df = engineer_features(df)'''
|
|
627
|
+
|
|
628
|
+
if self.mlflow_config.log_data_quality:
|
|
629
|
+
main_body += "\n log_data_quality_metrics(df, prefix='final')"
|
|
630
|
+
|
|
631
|
+
main_body += '''
|
|
632
|
+
|
|
633
|
+
# Train models
|
|
634
|
+
print("Training models...")
|
|
635
|
+
results = train_model(df)
|
|
636
|
+
|
|
637
|
+
print(f"\\nBest model: {results['best_model']}")
|
|
638
|
+
print("Pipeline complete! Check MLflow UI for results.")
|
|
639
|
+
|
|
640
|
+
return results
|
|
641
|
+
|
|
642
|
+
|
|
643
|
+
if __name__ == "__main__":
|
|
644
|
+
main()'''
|
|
645
|
+
|
|
646
|
+
return main_body
|
|
647
|
+
|
|
648
|
+
def _get_columns_by_type(
|
|
649
|
+
self,
|
|
650
|
+
findings: ExplorationFindings,
|
|
651
|
+
col_types: List[ColumnType],
|
|
652
|
+
) -> List[str]:
|
|
653
|
+
return [
|
|
654
|
+
name for name, col in findings.columns.items()
|
|
655
|
+
if col.inferred_type in col_types
|
|
656
|
+
]
|
|
657
|
+
|
|
658
|
+
def generate_all(self, findings: ExplorationFindings) -> Dict[str, str]:
|
|
659
|
+
return {
|
|
660
|
+
"pipeline.py": self.generate_pipeline(findings),
|
|
661
|
+
"requirements.txt": self._generate_requirements(),
|
|
662
|
+
}
|
|
663
|
+
|
|
664
|
+
def _generate_requirements(self) -> str:
|
|
665
|
+
return """pandas>=2.0.0
|
|
666
|
+
numpy>=1.24.0
|
|
667
|
+
scikit-learn>=1.3.0
|
|
668
|
+
mlflow>=2.10.0
|
|
669
|
+
scipy>=1.11.0
|
|
670
|
+
matplotlib>=3.7.0
|
|
671
|
+
seaborn>=0.12.0
|
|
672
|
+
"""
|
|
673
|
+
|
|
674
|
+
def save_all(self, findings: ExplorationFindings) -> List[str]:
|
|
675
|
+
files = self.generate_all(findings)
|
|
676
|
+
output_path = Path(self.output_dir)
|
|
677
|
+
output_path.mkdir(parents=True, exist_ok=True)
|
|
678
|
+
|
|
679
|
+
saved = []
|
|
680
|
+
for filename, content in files.items():
|
|
681
|
+
file_path = output_path / filename
|
|
682
|
+
file_path.write_text(content)
|
|
683
|
+
saved.append(filename)
|
|
684
|
+
|
|
685
|
+
return saved
|