churnkit 0.75.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (302) hide show
  1. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
  2. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
  3. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
  4. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
  5. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
  6. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
  7. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
  8. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
  9. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
  10. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
  11. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
  12. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
  13. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
  14. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
  15. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
  16. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
  17. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
  18. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
  19. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
  20. churnkit-0.75.0a1.dist-info/METADATA +229 -0
  21. churnkit-0.75.0a1.dist-info/RECORD +302 -0
  22. churnkit-0.75.0a1.dist-info/WHEEL +4 -0
  23. churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
  24. churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
  25. customer_retention/__init__.py +37 -0
  26. customer_retention/analysis/__init__.py +0 -0
  27. customer_retention/analysis/auto_explorer/__init__.py +62 -0
  28. customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
  29. customer_retention/analysis/auto_explorer/explorer.py +258 -0
  30. customer_retention/analysis/auto_explorer/findings.py +291 -0
  31. customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
  32. customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
  33. customer_retention/analysis/auto_explorer/recommendations.py +418 -0
  34. customer_retention/analysis/business/__init__.py +26 -0
  35. customer_retention/analysis/business/ab_test_designer.py +144 -0
  36. customer_retention/analysis/business/fairness_analyzer.py +166 -0
  37. customer_retention/analysis/business/intervention_matcher.py +121 -0
  38. customer_retention/analysis/business/report_generator.py +222 -0
  39. customer_retention/analysis/business/risk_profile.py +199 -0
  40. customer_retention/analysis/business/roi_analyzer.py +139 -0
  41. customer_retention/analysis/diagnostics/__init__.py +20 -0
  42. customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
  43. customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
  44. customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
  45. customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
  46. customer_retention/analysis/diagnostics/noise_tester.py +140 -0
  47. customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
  48. customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
  49. customer_retention/analysis/discovery/__init__.py +8 -0
  50. customer_retention/analysis/discovery/config_generator.py +49 -0
  51. customer_retention/analysis/discovery/discovery_flow.py +19 -0
  52. customer_retention/analysis/discovery/type_inferencer.py +147 -0
  53. customer_retention/analysis/interpretability/__init__.py +13 -0
  54. customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
  55. customer_retention/analysis/interpretability/counterfactual.py +175 -0
  56. customer_retention/analysis/interpretability/individual_explainer.py +141 -0
  57. customer_retention/analysis/interpretability/pdp_generator.py +103 -0
  58. customer_retention/analysis/interpretability/shap_explainer.py +106 -0
  59. customer_retention/analysis/jupyter_save_hook.py +28 -0
  60. customer_retention/analysis/notebook_html_exporter.py +136 -0
  61. customer_retention/analysis/notebook_progress.py +60 -0
  62. customer_retention/analysis/plotly_preprocessor.py +154 -0
  63. customer_retention/analysis/recommendations/__init__.py +54 -0
  64. customer_retention/analysis/recommendations/base.py +158 -0
  65. customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
  66. customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
  67. customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
  68. customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
  69. customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
  70. customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
  71. customer_retention/analysis/recommendations/datetime/extract.py +149 -0
  72. customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
  73. customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
  74. customer_retention/analysis/recommendations/pipeline.py +74 -0
  75. customer_retention/analysis/recommendations/registry.py +76 -0
  76. customer_retention/analysis/recommendations/selection/__init__.py +3 -0
  77. customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
  78. customer_retention/analysis/recommendations/transform/__init__.py +4 -0
  79. customer_retention/analysis/recommendations/transform/power.py +94 -0
  80. customer_retention/analysis/recommendations/transform/scale.py +112 -0
  81. customer_retention/analysis/visualization/__init__.py +15 -0
  82. customer_retention/analysis/visualization/chart_builder.py +2619 -0
  83. customer_retention/analysis/visualization/console.py +122 -0
  84. customer_retention/analysis/visualization/display.py +171 -0
  85. customer_retention/analysis/visualization/number_formatter.py +36 -0
  86. customer_retention/artifacts/__init__.py +3 -0
  87. customer_retention/artifacts/fit_artifact_registry.py +146 -0
  88. customer_retention/cli.py +93 -0
  89. customer_retention/core/__init__.py +0 -0
  90. customer_retention/core/compat/__init__.py +193 -0
  91. customer_retention/core/compat/detection.py +99 -0
  92. customer_retention/core/compat/ops.py +48 -0
  93. customer_retention/core/compat/pandas_backend.py +57 -0
  94. customer_retention/core/compat/spark_backend.py +75 -0
  95. customer_retention/core/components/__init__.py +11 -0
  96. customer_retention/core/components/base.py +79 -0
  97. customer_retention/core/components/components/__init__.py +13 -0
  98. customer_retention/core/components/components/deployer.py +26 -0
  99. customer_retention/core/components/components/explainer.py +26 -0
  100. customer_retention/core/components/components/feature_eng.py +33 -0
  101. customer_retention/core/components/components/ingester.py +34 -0
  102. customer_retention/core/components/components/profiler.py +34 -0
  103. customer_retention/core/components/components/trainer.py +38 -0
  104. customer_retention/core/components/components/transformer.py +36 -0
  105. customer_retention/core/components/components/validator.py +37 -0
  106. customer_retention/core/components/enums.py +33 -0
  107. customer_retention/core/components/orchestrator.py +94 -0
  108. customer_retention/core/components/registry.py +59 -0
  109. customer_retention/core/config/__init__.py +39 -0
  110. customer_retention/core/config/column_config.py +95 -0
  111. customer_retention/core/config/experiments.py +71 -0
  112. customer_retention/core/config/pipeline_config.py +117 -0
  113. customer_retention/core/config/source_config.py +83 -0
  114. customer_retention/core/utils/__init__.py +28 -0
  115. customer_retention/core/utils/leakage.py +85 -0
  116. customer_retention/core/utils/severity.py +53 -0
  117. customer_retention/core/utils/statistics.py +90 -0
  118. customer_retention/generators/__init__.py +0 -0
  119. customer_retention/generators/notebook_generator/__init__.py +167 -0
  120. customer_retention/generators/notebook_generator/base.py +55 -0
  121. customer_retention/generators/notebook_generator/cell_builder.py +49 -0
  122. customer_retention/generators/notebook_generator/config.py +47 -0
  123. customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
  124. customer_retention/generators/notebook_generator/local_generator.py +48 -0
  125. customer_retention/generators/notebook_generator/project_init.py +174 -0
  126. customer_retention/generators/notebook_generator/runner.py +150 -0
  127. customer_retention/generators/notebook_generator/script_generator.py +110 -0
  128. customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
  129. customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
  130. customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
  131. customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
  132. customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
  133. customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
  134. customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
  135. customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
  136. customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
  137. customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
  138. customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
  139. customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
  140. customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
  141. customer_retention/generators/orchestration/__init__.py +23 -0
  142. customer_retention/generators/orchestration/code_generator.py +196 -0
  143. customer_retention/generators/orchestration/context.py +147 -0
  144. customer_retention/generators/orchestration/data_materializer.py +188 -0
  145. customer_retention/generators/orchestration/databricks_exporter.py +411 -0
  146. customer_retention/generators/orchestration/doc_generator.py +311 -0
  147. customer_retention/generators/pipeline_generator/__init__.py +26 -0
  148. customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
  149. customer_retention/generators/pipeline_generator/generator.py +142 -0
  150. customer_retention/generators/pipeline_generator/models.py +166 -0
  151. customer_retention/generators/pipeline_generator/renderer.py +2125 -0
  152. customer_retention/generators/spec_generator/__init__.py +37 -0
  153. customer_retention/generators/spec_generator/databricks_generator.py +433 -0
  154. customer_retention/generators/spec_generator/generic_generator.py +373 -0
  155. customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
  156. customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
  157. customer_retention/integrations/__init__.py +0 -0
  158. customer_retention/integrations/adapters/__init__.py +13 -0
  159. customer_retention/integrations/adapters/base.py +10 -0
  160. customer_retention/integrations/adapters/factory.py +25 -0
  161. customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
  162. customer_retention/integrations/adapters/feature_store/base.py +57 -0
  163. customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
  164. customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
  165. customer_retention/integrations/adapters/feature_store/local.py +75 -0
  166. customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
  167. customer_retention/integrations/adapters/mlflow/base.py +32 -0
  168. customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
  169. customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
  170. customer_retention/integrations/adapters/mlflow/local.py +50 -0
  171. customer_retention/integrations/adapters/storage/__init__.py +5 -0
  172. customer_retention/integrations/adapters/storage/base.py +33 -0
  173. customer_retention/integrations/adapters/storage/databricks.py +76 -0
  174. customer_retention/integrations/adapters/storage/local.py +59 -0
  175. customer_retention/integrations/feature_store/__init__.py +47 -0
  176. customer_retention/integrations/feature_store/definitions.py +215 -0
  177. customer_retention/integrations/feature_store/manager.py +744 -0
  178. customer_retention/integrations/feature_store/registry.py +412 -0
  179. customer_retention/integrations/iteration/__init__.py +28 -0
  180. customer_retention/integrations/iteration/context.py +212 -0
  181. customer_retention/integrations/iteration/feedback_collector.py +184 -0
  182. customer_retention/integrations/iteration/orchestrator.py +168 -0
  183. customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
  184. customer_retention/integrations/iteration/signals.py +212 -0
  185. customer_retention/integrations/llm_context/__init__.py +4 -0
  186. customer_retention/integrations/llm_context/context_builder.py +201 -0
  187. customer_retention/integrations/llm_context/prompts.py +100 -0
  188. customer_retention/integrations/streaming/__init__.py +103 -0
  189. customer_retention/integrations/streaming/batch_integration.py +149 -0
  190. customer_retention/integrations/streaming/early_warning_model.py +227 -0
  191. customer_retention/integrations/streaming/event_schema.py +214 -0
  192. customer_retention/integrations/streaming/online_store_writer.py +249 -0
  193. customer_retention/integrations/streaming/realtime_scorer.py +261 -0
  194. customer_retention/integrations/streaming/trigger_engine.py +293 -0
  195. customer_retention/integrations/streaming/window_aggregator.py +393 -0
  196. customer_retention/stages/__init__.py +0 -0
  197. customer_retention/stages/cleaning/__init__.py +9 -0
  198. customer_retention/stages/cleaning/base.py +28 -0
  199. customer_retention/stages/cleaning/missing_handler.py +160 -0
  200. customer_retention/stages/cleaning/outlier_handler.py +204 -0
  201. customer_retention/stages/deployment/__init__.py +28 -0
  202. customer_retention/stages/deployment/batch_scorer.py +106 -0
  203. customer_retention/stages/deployment/champion_challenger.py +299 -0
  204. customer_retention/stages/deployment/model_registry.py +182 -0
  205. customer_retention/stages/deployment/retraining_trigger.py +245 -0
  206. customer_retention/stages/features/__init__.py +73 -0
  207. customer_retention/stages/features/behavioral_features.py +266 -0
  208. customer_retention/stages/features/customer_segmentation.py +505 -0
  209. customer_retention/stages/features/feature_definitions.py +265 -0
  210. customer_retention/stages/features/feature_engineer.py +551 -0
  211. customer_retention/stages/features/feature_manifest.py +340 -0
  212. customer_retention/stages/features/feature_selector.py +239 -0
  213. customer_retention/stages/features/interaction_features.py +160 -0
  214. customer_retention/stages/features/temporal_features.py +243 -0
  215. customer_retention/stages/ingestion/__init__.py +9 -0
  216. customer_retention/stages/ingestion/load_result.py +32 -0
  217. customer_retention/stages/ingestion/loaders.py +195 -0
  218. customer_retention/stages/ingestion/source_registry.py +130 -0
  219. customer_retention/stages/modeling/__init__.py +31 -0
  220. customer_retention/stages/modeling/baseline_trainer.py +139 -0
  221. customer_retention/stages/modeling/cross_validator.py +125 -0
  222. customer_retention/stages/modeling/data_splitter.py +205 -0
  223. customer_retention/stages/modeling/feature_scaler.py +99 -0
  224. customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
  225. customer_retention/stages/modeling/imbalance_handler.py +282 -0
  226. customer_retention/stages/modeling/mlflow_logger.py +95 -0
  227. customer_retention/stages/modeling/model_comparator.py +149 -0
  228. customer_retention/stages/modeling/model_evaluator.py +138 -0
  229. customer_retention/stages/modeling/threshold_optimizer.py +131 -0
  230. customer_retention/stages/monitoring/__init__.py +37 -0
  231. customer_retention/stages/monitoring/alert_manager.py +328 -0
  232. customer_retention/stages/monitoring/drift_detector.py +201 -0
  233. customer_retention/stages/monitoring/performance_monitor.py +242 -0
  234. customer_retention/stages/preprocessing/__init__.py +5 -0
  235. customer_retention/stages/preprocessing/transformer_manager.py +284 -0
  236. customer_retention/stages/profiling/__init__.py +256 -0
  237. customer_retention/stages/profiling/categorical_distribution.py +269 -0
  238. customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
  239. customer_retention/stages/profiling/column_profiler.py +527 -0
  240. customer_retention/stages/profiling/distribution_analysis.py +483 -0
  241. customer_retention/stages/profiling/drift_detector.py +310 -0
  242. customer_retention/stages/profiling/feature_capacity.py +507 -0
  243. customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
  244. customer_retention/stages/profiling/profile_result.py +212 -0
  245. customer_retention/stages/profiling/quality_checks.py +1632 -0
  246. customer_retention/stages/profiling/relationship_detector.py +256 -0
  247. customer_retention/stages/profiling/relationship_recommender.py +454 -0
  248. customer_retention/stages/profiling/report_generator.py +520 -0
  249. customer_retention/stages/profiling/scd_analyzer.py +151 -0
  250. customer_retention/stages/profiling/segment_analyzer.py +632 -0
  251. customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
  252. customer_retention/stages/profiling/target_level_analyzer.py +217 -0
  253. customer_retention/stages/profiling/temporal_analyzer.py +388 -0
  254. customer_retention/stages/profiling/temporal_coverage.py +488 -0
  255. customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
  256. customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
  257. customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
  258. customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
  259. customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
  260. customer_retention/stages/profiling/text_embedder.py +87 -0
  261. customer_retention/stages/profiling/text_processor.py +115 -0
  262. customer_retention/stages/profiling/text_reducer.py +60 -0
  263. customer_retention/stages/profiling/time_series_profiler.py +303 -0
  264. customer_retention/stages/profiling/time_window_aggregator.py +376 -0
  265. customer_retention/stages/profiling/type_detector.py +382 -0
  266. customer_retention/stages/profiling/window_recommendation.py +288 -0
  267. customer_retention/stages/temporal/__init__.py +166 -0
  268. customer_retention/stages/temporal/access_guard.py +180 -0
  269. customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
  270. customer_retention/stages/temporal/data_preparer.py +178 -0
  271. customer_retention/stages/temporal/point_in_time_join.py +134 -0
  272. customer_retention/stages/temporal/point_in_time_registry.py +148 -0
  273. customer_retention/stages/temporal/scenario_detector.py +163 -0
  274. customer_retention/stages/temporal/snapshot_manager.py +259 -0
  275. customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
  276. customer_retention/stages/temporal/timestamp_discovery.py +531 -0
  277. customer_retention/stages/temporal/timestamp_manager.py +255 -0
  278. customer_retention/stages/transformation/__init__.py +13 -0
  279. customer_retention/stages/transformation/binary_handler.py +85 -0
  280. customer_retention/stages/transformation/categorical_encoder.py +245 -0
  281. customer_retention/stages/transformation/datetime_transformer.py +97 -0
  282. customer_retention/stages/transformation/numeric_transformer.py +181 -0
  283. customer_retention/stages/transformation/pipeline.py +257 -0
  284. customer_retention/stages/validation/__init__.py +60 -0
  285. customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
  286. customer_retention/stages/validation/business_sense_gate.py +173 -0
  287. customer_retention/stages/validation/data_quality_gate.py +235 -0
  288. customer_retention/stages/validation/data_validators.py +511 -0
  289. customer_retention/stages/validation/feature_quality_gate.py +183 -0
  290. customer_retention/stages/validation/gates.py +117 -0
  291. customer_retention/stages/validation/leakage_gate.py +352 -0
  292. customer_retention/stages/validation/model_validity_gate.py +213 -0
  293. customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
  294. customer_retention/stages/validation/quality_scorer.py +544 -0
  295. customer_retention/stages/validation/rule_generator.py +57 -0
  296. customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
  297. customer_retention/stages/validation/timeseries_detector.py +769 -0
  298. customer_retention/transforms/__init__.py +47 -0
  299. customer_retention/transforms/artifact_store.py +50 -0
  300. customer_retention/transforms/executor.py +157 -0
  301. customer_retention/transforms/fitted.py +92 -0
  302. customer_retention/transforms/ops.py +148 -0
@@ -0,0 +1,256 @@
1
+ from customer_retention.core.components.enums import Severity
2
+ from customer_retention.core.utils import compute_effect_size
3
+
4
+ from .column_profiler import CategoricalProfiler, ColumnProfiler, NumericProfiler, ProfilerFactory
5
+ from .distribution_analysis import (
6
+ DistributionAnalysis,
7
+ DistributionAnalyzer,
8
+ DistributionTransformationType,
9
+ TransformationRecommendation,
10
+ )
11
+ from .drift_detector import BaselineDriftChecker
12
+ from .drift_detector import DriftResult as BaselineDriftResult
13
+ from .profile_result import (
14
+ BinaryMetrics,
15
+ CategoricalMetrics,
16
+ ColumnProfile,
17
+ DatetimeMetrics,
18
+ GranularityResult,
19
+ IdentifierMetrics,
20
+ NumericMetrics,
21
+ ProfileResult,
22
+ TargetMetrics,
23
+ TextMetrics,
24
+ TypeConfidence,
25
+ TypeInference,
26
+ UniversalMetrics,
27
+ )
28
+ from .quality_checks import QualityCheck, QualityCheckRegistry, QualityCheckResult
29
+ from .report_generator import ReportGenerator
30
+ from .scd_analyzer import SCDAnalyzer, SCDResult
31
+ from .type_detector import TypeDetector
32
+
33
+ # Backward compatibility alias
34
+ TransformationType = DistributionTransformationType
35
+ from .categorical_distribution import (
36
+ CategoricalDistributionAnalysis,
37
+ CategoricalDistributionAnalyzer,
38
+ EncodingRecommendation,
39
+ EncodingType,
40
+ )
41
+ from .categorical_target_analyzer import (
42
+ CategoricalAnalysisResult,
43
+ CategoricalFeatureInsight,
44
+ CategoricalTargetAnalyzer,
45
+ CategoricalTargetResult,
46
+ analyze_categorical_features,
47
+ filter_categorical_columns,
48
+ )
49
+ from .feature_capacity import (
50
+ EffectiveFeaturesResult,
51
+ FeatureCapacityAnalyzer,
52
+ FeatureCapacityResult,
53
+ ModelComplexityGuidance,
54
+ SegmentCapacityResult,
55
+ )
56
+ from .pattern_analysis_config import (
57
+ AggregationFeatureConfig,
58
+ FindingsValidationResult,
59
+ PatternAnalysisConfig,
60
+ PatternAnalysisResult,
61
+ SparklineData,
62
+ SparklineDataBuilder,
63
+ create_momentum_ratio_features,
64
+ create_recency_bucket_feature,
65
+ deduplicate_events,
66
+ get_analysis_frequency,
67
+ get_duplicate_event_count,
68
+ get_sparkline_frequency,
69
+ validate_temporal_findings,
70
+ )
71
+ from .relationship_detector import DatasetRelationship, JoinSuggestion, RelationshipDetector, RelationshipType
72
+ from .relationship_recommender import (
73
+ RecommendationCategory,
74
+ RelationshipAnalysisSummary,
75
+ RelationshipRecommendation,
76
+ RelationshipRecommender,
77
+ )
78
+ from .segment_analyzer import (
79
+ ClusterVisualizationResult,
80
+ DimensionReductionMethod,
81
+ FullSegmentationResult,
82
+ SegmentAnalyzer,
83
+ SegmentationDecisionMetrics,
84
+ SegmentationMethod,
85
+ SegmentationResult,
86
+ SegmentProfile,
87
+ )
88
+ from .segment_aware_outlier import SegmentAwareOutlierAnalyzer, SegmentAwareOutlierResult
89
+ from .target_level_analyzer import (
90
+ AggregationMethod,
91
+ TargetColumnDetector,
92
+ TargetDistribution,
93
+ TargetLevel,
94
+ TargetLevelAnalyzer,
95
+ TargetLevelResult,
96
+ )
97
+ from .temporal_analyzer import (
98
+ SeasonalityResult,
99
+ TemporalAnalysis,
100
+ TemporalAnalyzer,
101
+ TemporalGranularity,
102
+ TemporalRecommendation,
103
+ TemporalRecommendationType,
104
+ )
105
+ from .temporal_coverage import (
106
+ DriftImplication,
107
+ EntityWindowCoverage,
108
+ FeatureAvailability,
109
+ FeatureAvailabilityResult,
110
+ TemporalCoverageResult,
111
+ TemporalGap,
112
+ analyze_feature_availability,
113
+ analyze_temporal_coverage,
114
+ derive_drift_implications,
115
+ )
116
+ from .temporal_feature_analyzer import (
117
+ CohortMomentumResult,
118
+ CohortVelocityResult,
119
+ FeatureRecommendation,
120
+ FeatureType,
121
+ LagCorrelationResult,
122
+ MomentumResult,
123
+ PredictivePowerResult,
124
+ TemporalFeatureAnalyzer,
125
+ VelocityRecommendation,
126
+ VelocityResult,
127
+ )
128
+ from .temporal_feature_engineer import (
129
+ FeatureGroup,
130
+ FeatureGroupResult,
131
+ ReferenceMode,
132
+ TemporalAggregationConfig,
133
+ TemporalFeatureEngineer,
134
+ TemporalFeatureResult,
135
+ )
136
+ from .temporal_pattern_analyzer import (
137
+ AnomalyDiagnostics,
138
+ CohortDistribution,
139
+ CohortRecommendation,
140
+ GroupStats,
141
+ RecencyBucketStats,
142
+ RecencyComparisonResult,
143
+ RecencyInsight,
144
+ RecencyResult,
145
+ SeasonalityPeriod,
146
+ TemporalPatternAnalysis,
147
+ TemporalPatternAnalyzer,
148
+ TrendDirection,
149
+ TrendRecommendation,
150
+ TrendResult,
151
+ analyze_cohort_distribution,
152
+ classify_distribution_pattern,
153
+ compare_recency_by_target,
154
+ compute_group_stats,
155
+ compute_recency_buckets,
156
+ detect_inflection_bucket,
157
+ generate_cohort_recommendations,
158
+ generate_recency_insights,
159
+ generate_trend_recommendations,
160
+ )
161
+ from .temporal_quality_checks import (
162
+ DuplicateEventCheck,
163
+ EventOrderCheck,
164
+ FutureDateCheck,
165
+ TemporalGapCheck,
166
+ TemporalQualityCheck,
167
+ TemporalQualityReporter,
168
+ TemporalQualityResult,
169
+ TemporalQualityScore,
170
+ )
171
+ from .temporal_target_analyzer import TemporalTargetAnalyzer, TemporalTargetResult
172
+ from .text_embedder import EMBEDDING_MODELS, TextEmbedder, get_model_info, list_available_models
173
+ from .text_processor import TextColumnProcessor, TextColumnResult, TextProcessingConfig
174
+ from .text_reducer import ReductionResult, TextDimensionalityReducer
175
+ from .time_series_profiler import (
176
+ ActivitySegmentResult,
177
+ DistributionStats,
178
+ EntityLifecycle,
179
+ LifecycleQuadrantResult,
180
+ TimeSeriesProfile,
181
+ TimeSeriesProfiler,
182
+ classify_activity_segments,
183
+ classify_lifecycle_quadrants,
184
+ )
185
+ from .time_window_aggregator import AggregationPlan, AggregationType, TimeWindow, TimeWindowAggregator
186
+ from .window_recommendation import (
187
+ TemporalHeterogeneityResult,
188
+ WindowRecommendationCollector,
189
+ WindowUnionResult,
190
+ )
191
+
192
+ __all__ = [
193
+ "Severity",
194
+ "ProfileResult", "ColumnProfile", "TypeInference", "TypeConfidence",
195
+ "UniversalMetrics", "NumericMetrics", "CategoricalMetrics",
196
+ "DatetimeMetrics", "BinaryMetrics", "IdentifierMetrics", "TargetMetrics", "TextMetrics",
197
+ "GranularityResult",
198
+ "TypeDetector",
199
+ "ColumnProfiler", "ProfilerFactory", "NumericProfiler", "CategoricalProfiler",
200
+ "QualityCheck", "QualityCheckResult", "QualityCheckRegistry",
201
+ "BaselineDriftChecker", "BaselineDriftResult",
202
+ "ReportGenerator",
203
+ "SCDAnalyzer", "SCDResult",
204
+ "DistributionAnalyzer", "DistributionAnalysis",
205
+ "TransformationRecommendation", "DistributionTransformationType", "TransformationType",
206
+ "CategoricalDistributionAnalyzer", "CategoricalDistributionAnalysis",
207
+ "EncodingRecommendation", "EncodingType",
208
+ "TemporalAnalyzer", "TemporalAnalysis", "TemporalGranularity", "SeasonalityResult",
209
+ "TemporalRecommendation", "TemporalRecommendationType",
210
+ "SegmentAnalyzer", "SegmentationResult", "SegmentProfile", "SegmentationMethod",
211
+ "DimensionReductionMethod", "ClusterVisualizationResult",
212
+ "SegmentationDecisionMetrics", "FullSegmentationResult",
213
+ "SegmentAwareOutlierAnalyzer", "SegmentAwareOutlierResult",
214
+ "CategoricalTargetAnalyzer", "CategoricalTargetResult",
215
+ "CategoricalAnalysisResult", "CategoricalFeatureInsight",
216
+ "analyze_categorical_features", "filter_categorical_columns",
217
+ "TemporalTargetAnalyzer", "TemporalTargetResult",
218
+ "TargetLevelAnalyzer", "TargetLevelResult", "TargetLevel", "AggregationMethod",
219
+ "TargetDistribution", "TargetColumnDetector",
220
+ "PatternAnalysisConfig", "PatternAnalysisResult",
221
+ "SparklineData", "SparklineDataBuilder",
222
+ "get_analysis_frequency", "get_sparkline_frequency",
223
+ "AggregationFeatureConfig", "FindingsValidationResult", "validate_temporal_findings",
224
+ "get_duplicate_event_count", "deduplicate_events",
225
+ "create_recency_bucket_feature", "create_momentum_ratio_features",
226
+ "TimeSeriesProfiler", "TimeSeriesProfile", "DistributionStats", "EntityLifecycle",
227
+ "LifecycleQuadrantResult", "classify_lifecycle_quadrants",
228
+ "ActivitySegmentResult", "classify_activity_segments",
229
+ "TemporalQualityCheck", "TemporalQualityReporter", "TemporalQualityResult", "TemporalQualityScore",
230
+ "DuplicateEventCheck", "TemporalGapCheck", "FutureDateCheck", "EventOrderCheck",
231
+ "TemporalPatternAnalyzer", "TemporalPatternAnalysis",
232
+ "TrendResult", "TrendDirection", "TrendRecommendation", "SeasonalityPeriod", "RecencyResult",
233
+ "RecencyComparisonResult", "RecencyBucketStats", "RecencyInsight", "AnomalyDiagnostics",
234
+ "GroupStats", "CohortDistribution", "CohortRecommendation",
235
+ "generate_trend_recommendations", "generate_cohort_recommendations", "generate_recency_insights",
236
+ "analyze_cohort_distribution", "compare_recency_by_target",
237
+ "compute_effect_size", "compute_group_stats", "compute_recency_buckets",
238
+ "detect_inflection_bucket", "classify_distribution_pattern",
239
+ "RelationshipDetector", "DatasetRelationship", "RelationshipType", "JoinSuggestion",
240
+ "TimeWindowAggregator", "AggregationPlan", "TimeWindow", "AggregationType",
241
+ "TemporalFeatureAnalyzer", "VelocityResult", "MomentumResult", "CohortVelocityResult",
242
+ "CohortMomentumResult", "VelocityRecommendation", "LagCorrelationResult", "PredictivePowerResult", "FeatureRecommendation", "FeatureType",
243
+ "RelationshipRecommender", "RelationshipRecommendation",
244
+ "RecommendationCategory", "RelationshipAnalysisSummary",
245
+ "FeatureCapacityAnalyzer", "FeatureCapacityResult",
246
+ "SegmentCapacityResult", "EffectiveFeaturesResult", "ModelComplexityGuidance",
247
+ "TemporalFeatureEngineer", "TemporalAggregationConfig",
248
+ "ReferenceMode", "FeatureGroup", "FeatureGroupResult", "TemporalFeatureResult",
249
+ "TextEmbedder", "EMBEDDING_MODELS", "get_model_info", "list_available_models",
250
+ "TextDimensionalityReducer", "ReductionResult",
251
+ "TextColumnProcessor", "TextProcessingConfig", "TextColumnResult",
252
+ "WindowRecommendationCollector", "WindowUnionResult", "TemporalHeterogeneityResult",
253
+ "analyze_temporal_coverage", "TemporalCoverageResult", "TemporalGap", "EntityWindowCoverage",
254
+ "derive_drift_implications", "DriftImplication",
255
+ "analyze_feature_availability", "FeatureAvailability", "FeatureAvailabilityResult",
256
+ ]
@@ -0,0 +1,269 @@
1
+ from dataclasses import dataclass, field
2
+ from enum import Enum
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import numpy as np
6
+
7
+ from customer_retention.core.compat import Series, pd
8
+
9
+
10
+ class EncodingType(Enum):
11
+ ONE_HOT = "one_hot"
12
+ TARGET = "target"
13
+ FREQUENCY = "frequency"
14
+ ORDINAL = "ordinal"
15
+ CYCLICAL = "cyclical"
16
+ BINARY = "binary"
17
+
18
+
19
+ @dataclass
20
+ class CategoricalDistributionAnalysis:
21
+ column_name: str
22
+ category_count: int
23
+ total_count: int
24
+ imbalance_ratio: float
25
+ entropy: float
26
+ normalized_entropy: float
27
+ top1_concentration: float
28
+ top3_concentration: float
29
+ rare_category_count: int
30
+ rare_category_names: List[str]
31
+ value_counts: Dict[str, int]
32
+
33
+ IMBALANCE_THRESHOLD = 10.0
34
+ LOW_DIVERSITY_THRESHOLD = 0.5
35
+ HIGH_CONCENTRATION_THRESHOLD = 90.0
36
+
37
+ @property
38
+ def is_imbalanced(self) -> bool:
39
+ return self.imbalance_ratio > self.IMBALANCE_THRESHOLD
40
+
41
+ @property
42
+ def has_low_diversity(self) -> bool:
43
+ return self.normalized_entropy < self.LOW_DIVERSITY_THRESHOLD
44
+
45
+ @property
46
+ def has_rare_categories(self) -> bool:
47
+ return self.rare_category_count > 0
48
+
49
+ @property
50
+ def is_highly_concentrated(self) -> bool:
51
+ return self.top3_concentration > self.HIGH_CONCENTRATION_THRESHOLD
52
+
53
+ def to_dict(self) -> Dict[str, Any]:
54
+ return {
55
+ "column": self.column_name,
56
+ "categories": self.category_count,
57
+ "imbalance_ratio": round(self.imbalance_ratio, 2),
58
+ "entropy": round(self.entropy, 3),
59
+ "normalized_entropy": round(self.normalized_entropy, 3),
60
+ "top1_concentration": round(self.top1_concentration, 1),
61
+ "top3_concentration": round(self.top3_concentration, 1),
62
+ "rare_categories": self.rare_category_count,
63
+ "is_imbalanced": self.is_imbalanced,
64
+ "has_low_diversity": self.has_low_diversity,
65
+ }
66
+
67
+
68
+ @dataclass
69
+ class EncodingRecommendation:
70
+ column_name: str
71
+ encoding_type: EncodingType
72
+ reason: str
73
+ priority: str
74
+ preprocessing_steps: List[str] = field(default_factory=list)
75
+ warnings: List[str] = field(default_factory=list)
76
+
77
+ def to_dict(self) -> Dict[str, Any]:
78
+ return {
79
+ "column": self.column_name,
80
+ "encoding": self.encoding_type.value,
81
+ "reason": self.reason,
82
+ "priority": self.priority,
83
+ "preprocessing_steps": self.preprocessing_steps,
84
+ "warnings": self.warnings,
85
+ }
86
+
87
+
88
+ class CategoricalDistributionAnalyzer:
89
+ LOW_CARDINALITY_THRESHOLD = 5
90
+ MEDIUM_CARDINALITY_THRESHOLD = 20
91
+ RARE_CATEGORY_THRESHOLD = 0.01
92
+
93
+ def analyze(self, series: Series, column_name: str) -> CategoricalDistributionAnalysis:
94
+ clean_series = series.dropna()
95
+ total_count = len(clean_series)
96
+
97
+ if total_count == 0:
98
+ return self._empty_analysis(column_name)
99
+
100
+ value_counts = clean_series.value_counts()
101
+ category_count = len(value_counts)
102
+
103
+ if category_count == 0:
104
+ return self._empty_analysis(column_name)
105
+
106
+ imbalance_ratio = float(value_counts.iloc[0] / value_counts.iloc[-1]) if value_counts.iloc[-1] > 0 else float('inf')
107
+ entropy, normalized_entropy = self._calculate_entropy(value_counts, total_count, category_count)
108
+ top1_concentration = float(value_counts.iloc[0] / total_count * 100)
109
+ top3_concentration = float(value_counts.head(3).sum() / total_count * 100)
110
+ rare_threshold = total_count * self.RARE_CATEGORY_THRESHOLD
111
+ rare_mask = value_counts < rare_threshold
112
+ rare_category_count = int(rare_mask.sum())
113
+ rare_category_names = value_counts[rare_mask].index.tolist()
114
+
115
+ return CategoricalDistributionAnalysis(
116
+ column_name=column_name,
117
+ category_count=category_count,
118
+ total_count=total_count,
119
+ imbalance_ratio=imbalance_ratio,
120
+ entropy=entropy,
121
+ normalized_entropy=normalized_entropy,
122
+ top1_concentration=top1_concentration,
123
+ top3_concentration=top3_concentration,
124
+ rare_category_count=rare_category_count,
125
+ rare_category_names=rare_category_names[:10],
126
+ value_counts=value_counts.head(20).to_dict(),
127
+ )
128
+
129
+ def _empty_analysis(self, column_name: str) -> CategoricalDistributionAnalysis:
130
+ return CategoricalDistributionAnalysis(
131
+ column_name=column_name, category_count=0, total_count=0,
132
+ imbalance_ratio=0.0, entropy=0.0, normalized_entropy=0.0,
133
+ top1_concentration=0.0, top3_concentration=0.0,
134
+ rare_category_count=0, rare_category_names=[], value_counts={},
135
+ )
136
+
137
+ def _calculate_entropy(self, value_counts: Series, total: int, n_categories: int) -> tuple:
138
+ probabilities = value_counts / total
139
+ entropy = float(-np.sum(probabilities * np.log2(probabilities + 1e-10)))
140
+ max_entropy = np.log2(n_categories) if n_categories > 1 else 1.0
141
+ normalized = entropy / max_entropy if max_entropy > 0 else 0.0
142
+ return entropy, normalized
143
+
144
+ def recommend_encoding(
145
+ self, analysis: CategoricalDistributionAnalysis, is_cyclical: bool = False, is_ordinal: bool = False
146
+ ) -> EncodingRecommendation:
147
+ preprocessing = []
148
+ warnings = []
149
+
150
+ if is_cyclical:
151
+ return EncodingRecommendation(
152
+ column_name=analysis.column_name,
153
+ encoding_type=EncodingType.CYCLICAL,
154
+ reason="Cyclical data benefits from sin/cos encoding to preserve circular relationships",
155
+ priority="medium",
156
+ )
157
+
158
+ if is_ordinal:
159
+ return EncodingRecommendation(
160
+ column_name=analysis.column_name,
161
+ encoding_type=EncodingType.ORDINAL,
162
+ reason="Ordinal data should preserve category order",
163
+ priority="medium",
164
+ )
165
+
166
+ if analysis.category_count == 2:
167
+ return EncodingRecommendation(
168
+ column_name=analysis.column_name,
169
+ encoding_type=EncodingType.BINARY,
170
+ reason="Binary categorical - simple 0/1 encoding",
171
+ priority="low",
172
+ )
173
+
174
+ if analysis.has_rare_categories:
175
+ preprocessing.append(f"Group {analysis.rare_category_count} rare categories into 'Other'")
176
+
177
+ if analysis.is_imbalanced:
178
+ warnings.append("Use stratified sampling to preserve rare category representation")
179
+
180
+ if analysis.category_count <= self.LOW_CARDINALITY_THRESHOLD:
181
+ return EncodingRecommendation(
182
+ column_name=analysis.column_name,
183
+ encoding_type=EncodingType.ONE_HOT,
184
+ reason=f"Low cardinality ({analysis.category_count} categories) - safe feature expansion",
185
+ priority="low",
186
+ preprocessing_steps=preprocessing,
187
+ warnings=warnings,
188
+ )
189
+
190
+ if analysis.category_count <= self.MEDIUM_CARDINALITY_THRESHOLD:
191
+ if analysis.has_rare_categories:
192
+ encoding = EncodingType.TARGET
193
+ reason = f"Medium cardinality ({analysis.category_count}) with rare categories - target encoding preferred"
194
+ priority = "medium"
195
+ else:
196
+ encoding = EncodingType.ONE_HOT
197
+ reason = f"Medium cardinality ({analysis.category_count}) without rare categories"
198
+ priority = "low"
199
+ return EncodingRecommendation(
200
+ column_name=analysis.column_name,
201
+ encoding_type=encoding,
202
+ reason=reason,
203
+ priority=priority,
204
+ preprocessing_steps=preprocessing,
205
+ warnings=warnings,
206
+ )
207
+
208
+ warnings.append("High cardinality may require regularization with target encoding")
209
+ return EncodingRecommendation(
210
+ column_name=analysis.column_name,
211
+ encoding_type=EncodingType.TARGET,
212
+ reason=f"High cardinality ({analysis.category_count} categories) - target or frequency encoding",
213
+ priority="high",
214
+ preprocessing_steps=preprocessing,
215
+ warnings=warnings,
216
+ )
217
+
218
+ def analyze_dataframe(
219
+ self, df: pd.DataFrame, categorical_columns: Optional[List[str]] = None
220
+ ) -> Dict[str, CategoricalDistributionAnalysis]:
221
+ if categorical_columns is None:
222
+ categorical_columns = df.select_dtypes(include=["object", "category"]).columns.tolist()
223
+
224
+ return {col: self.analyze(df[col], col) for col in categorical_columns if col in df.columns}
225
+
226
+ def get_all_recommendations(
227
+ self, df: pd.DataFrame, categorical_columns: Optional[List[str]] = None,
228
+ cyclical_columns: Optional[List[str]] = None, ordinal_columns: Optional[List[str]] = None
229
+ ) -> List[EncodingRecommendation]:
230
+ cyclical_columns = cyclical_columns or []
231
+ ordinal_columns = ordinal_columns or []
232
+ analyses = self.analyze_dataframe(df, categorical_columns)
233
+
234
+ recommendations = []
235
+ for col_name, analysis in analyses.items():
236
+ is_cyclical = col_name in cyclical_columns
237
+ is_ordinal = col_name in ordinal_columns
238
+ rec = self.recommend_encoding(analysis, is_cyclical=is_cyclical, is_ordinal=is_ordinal)
239
+ recommendations.append(rec)
240
+
241
+ priority_order = {"high": 0, "medium": 1, "low": 2}
242
+ recommendations.sort(key=lambda r: priority_order.get(r.priority, 3))
243
+ return recommendations
244
+
245
+ def generate_summary(
246
+ self, df: pd.DataFrame, categorical_columns: Optional[List[str]] = None
247
+ ) -> Dict[str, Any]:
248
+ analyses = self.analyze_dataframe(df, categorical_columns)
249
+ recommendations = self.get_all_recommendations(df, categorical_columns)
250
+
251
+ imbalanced = [n for n, a in analyses.items() if a.is_imbalanced]
252
+ low_diversity = [n for n, a in analyses.items() if a.has_low_diversity]
253
+ with_rare = [n for n, a in analyses.items() if a.has_rare_categories]
254
+
255
+ return {
256
+ "summary": {
257
+ "total_columns": len(analyses),
258
+ "imbalanced_count": len(imbalanced),
259
+ "low_diversity_count": len(low_diversity),
260
+ "with_rare_categories_count": len(with_rare),
261
+ },
262
+ "categories": {
263
+ "imbalanced": imbalanced,
264
+ "low_diversity": low_diversity,
265
+ "with_rare_categories": with_rare,
266
+ },
267
+ "analyses": {k: v.to_dict() for k, v in analyses.items()},
268
+ "recommendations": [r.to_dict() for r in recommendations],
269
+ }