churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,274 @@
|
|
|
1
|
+
from dataclasses import dataclass, field
|
|
2
|
+
from typing import Dict, List
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from scipy.stats import chi2_contingency
|
|
7
|
+
|
|
8
|
+
from customer_retention.core.compat import DataFrame, to_pandas
|
|
9
|
+
|
|
10
|
+
CARDINALITY_THRESHOLD = 0.5
|
|
11
|
+
MIN_CATEGORIES_FOR_ANALYSIS = 2
|
|
12
|
+
MAX_CATEGORIES_FOR_ANALYSIS = 50
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@dataclass
|
|
16
|
+
class CategoricalFeatureInsight:
|
|
17
|
+
feature_name: str
|
|
18
|
+
cramers_v: float
|
|
19
|
+
effect_strength: str
|
|
20
|
+
p_value: float
|
|
21
|
+
n_categories: int
|
|
22
|
+
high_risk_categories: List[str]
|
|
23
|
+
low_risk_categories: List[str]
|
|
24
|
+
interpretation: str
|
|
25
|
+
category_stats: pd.DataFrame
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@dataclass
|
|
29
|
+
class CategoricalAnalysisResult:
|
|
30
|
+
feature_insights: List[CategoricalFeatureInsight]
|
|
31
|
+
filtered_columns: List[str]
|
|
32
|
+
filter_reasons: Dict[str, str]
|
|
33
|
+
overall_target_rate: float
|
|
34
|
+
recommendations: List[Dict]
|
|
35
|
+
key_findings: List[str] = field(default_factory=list)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def _validate_categorical_column(col: str, df: DataFrame, entity_column: str, target_column: str, n_entities: int, cardinality_threshold: float) -> tuple:
|
|
39
|
+
if col in [entity_column, target_column]:
|
|
40
|
+
return False, "entity or target column"
|
|
41
|
+
if pd.api.types.is_datetime64_any_dtype(df[col]):
|
|
42
|
+
return False, "datetime column"
|
|
43
|
+
n_unique = df[col].nunique()
|
|
44
|
+
ratio = n_unique / n_entities
|
|
45
|
+
if ratio > cardinality_threshold:
|
|
46
|
+
return False, f"high cardinality identifier ({n_unique} unique values, {ratio:.0%} of entities)"
|
|
47
|
+
if n_unique < MIN_CATEGORIES_FOR_ANALYSIS:
|
|
48
|
+
return False, f"too few categories ({n_unique})"
|
|
49
|
+
if n_unique > MAX_CATEGORIES_FOR_ANALYSIS:
|
|
50
|
+
return False, f"too many categories ({n_unique})"
|
|
51
|
+
return True, None
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def filter_categorical_columns(df: DataFrame, entity_column: str, target_column: str, cardinality_threshold: float = CARDINALITY_THRESHOLD) -> List[str]:
|
|
55
|
+
n_entities = df[entity_column].nunique() if entity_column in df.columns else len(df)
|
|
56
|
+
return [
|
|
57
|
+
col for col in df.select_dtypes(include=["object", "category"]).columns
|
|
58
|
+
if _validate_categorical_column(col, df, entity_column, target_column, n_entities, cardinality_threshold)[0]
|
|
59
|
+
]
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _get_filter_reasons(df: DataFrame, entity_column: str, target_column: str, cardinality_threshold: float = CARDINALITY_THRESHOLD) -> Dict[str, str]:
|
|
63
|
+
n_entities = df[entity_column].nunique() if entity_column in df.columns else len(df)
|
|
64
|
+
reasons = {}
|
|
65
|
+
for col in df.select_dtypes(include=["object", "category"]).columns:
|
|
66
|
+
is_valid, reason = _validate_categorical_column(
|
|
67
|
+
col, df, entity_column, target_column, n_entities, cardinality_threshold
|
|
68
|
+
)
|
|
69
|
+
if not is_valid and reason:
|
|
70
|
+
reasons[col] = reason
|
|
71
|
+
return reasons
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _generate_interpretation(result: "CategoricalTargetResult") -> str:
|
|
75
|
+
if result.cramers_v >= 0.3:
|
|
76
|
+
strength_desc = "strongly associated"
|
|
77
|
+
elif result.cramers_v >= 0.1:
|
|
78
|
+
strength_desc = "moderately associated"
|
|
79
|
+
else:
|
|
80
|
+
strength_desc = "weakly associated"
|
|
81
|
+
parts = [f"{result.categorical_col} is {strength_desc} with target (V={result.cramers_v:.2f})"]
|
|
82
|
+
if result.high_risk_categories:
|
|
83
|
+
parts.append(f"High-risk: {', '.join(result.high_risk_categories[:3])}")
|
|
84
|
+
if result.low_risk_categories:
|
|
85
|
+
parts.append(f"Low-risk: {', '.join(result.low_risk_categories[:3])}")
|
|
86
|
+
return ". ".join(parts)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def _generate_categorical_recommendations(insights: List[CategoricalFeatureInsight]) -> List[Dict]:
|
|
90
|
+
recommendations = []
|
|
91
|
+
strong = [i for i in insights if i.cramers_v >= 0.3]
|
|
92
|
+
moderate = [i for i in insights if 0.1 <= i.cramers_v < 0.3]
|
|
93
|
+
if strong:
|
|
94
|
+
recommendations.append({
|
|
95
|
+
"action": "add_categorical_features", "priority": "high",
|
|
96
|
+
"reason": f"Strong predictors: {', '.join(i.feature_name for i in strong[:3])}",
|
|
97
|
+
"features": [i.feature_name for i in strong]
|
|
98
|
+
})
|
|
99
|
+
if moderate:
|
|
100
|
+
recommendations.append({
|
|
101
|
+
"action": "consider_categorical_features", "priority": "medium",
|
|
102
|
+
"reason": f"Moderate predictors: {', '.join(i.feature_name for i in moderate[:3])}",
|
|
103
|
+
"features": [i.feature_name for i in moderate]
|
|
104
|
+
})
|
|
105
|
+
with_high_risk = [i for i in insights if i.high_risk_categories]
|
|
106
|
+
if with_high_risk:
|
|
107
|
+
recommendations.append({
|
|
108
|
+
"action": "create_risk_flags", "priority": "medium",
|
|
109
|
+
"reason": f"Features with high-risk segments: {', '.join(i.feature_name for i in with_high_risk[:3])}",
|
|
110
|
+
"features": [f"{i.feature_name}_is_high_risk" for i in with_high_risk[:3]]
|
|
111
|
+
})
|
|
112
|
+
return recommendations[:3]
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
def analyze_categorical_features(df: DataFrame, entity_column: str, target_column: str, cardinality_threshold: float = CARDINALITY_THRESHOLD) -> CategoricalAnalysisResult:
|
|
116
|
+
df = to_pandas(df)
|
|
117
|
+
valid_cols = filter_categorical_columns(df, entity_column, target_column, cardinality_threshold)
|
|
118
|
+
filter_reasons = _get_filter_reasons(df, entity_column, target_column, cardinality_threshold)
|
|
119
|
+
filtered_cols = [c for c in filter_reasons if c not in valid_cols and c not in [entity_column, target_column]]
|
|
120
|
+
overall_rate = float(df[target_column].mean()) if target_column in df.columns else 0.0
|
|
121
|
+
analyzer = CategoricalTargetAnalyzer()
|
|
122
|
+
insights = []
|
|
123
|
+
for col in valid_cols:
|
|
124
|
+
result = analyzer.analyze(df, col, target_column)
|
|
125
|
+
interpretation = _generate_interpretation(result)
|
|
126
|
+
insights.append(CategoricalFeatureInsight(
|
|
127
|
+
feature_name=col, cramers_v=result.cramers_v, effect_strength=result.effect_strength,
|
|
128
|
+
p_value=result.p_value, n_categories=result.n_categories,
|
|
129
|
+
high_risk_categories=result.high_risk_categories, low_risk_categories=result.low_risk_categories,
|
|
130
|
+
interpretation=interpretation, category_stats=result.category_stats
|
|
131
|
+
))
|
|
132
|
+
insights.sort(key=lambda x: x.cramers_v, reverse=True)
|
|
133
|
+
recommendations = _generate_categorical_recommendations(insights)
|
|
134
|
+
key_findings = []
|
|
135
|
+
if filtered_cols:
|
|
136
|
+
key_findings.append(f"Filtered {len(filtered_cols)} columns: {', '.join(filtered_cols[:3])}{'...' if len(filtered_cols) > 3 else ''}")
|
|
137
|
+
strong_count = sum(1 for i in insights if i.cramers_v >= 0.3)
|
|
138
|
+
if strong_count > 0:
|
|
139
|
+
key_findings.append(f"{strong_count} feature(s) strongly predict target")
|
|
140
|
+
elif insights:
|
|
141
|
+
key_findings.append("No categorical features strongly predict target")
|
|
142
|
+
return CategoricalAnalysisResult(
|
|
143
|
+
feature_insights=insights, filtered_columns=filtered_cols, filter_reasons=filter_reasons,
|
|
144
|
+
overall_target_rate=overall_rate, recommendations=recommendations, key_findings=key_findings
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
@dataclass
|
|
149
|
+
class CategoricalTargetResult:
|
|
150
|
+
categorical_col: str
|
|
151
|
+
target_col: str
|
|
152
|
+
n_categories: int
|
|
153
|
+
cramers_v: float
|
|
154
|
+
chi2_statistic: float
|
|
155
|
+
p_value: float
|
|
156
|
+
effect_strength: str
|
|
157
|
+
category_stats: pd.DataFrame
|
|
158
|
+
high_risk_categories: List[str]
|
|
159
|
+
low_risk_categories: List[str]
|
|
160
|
+
overall_rate: float
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
class CategoricalTargetAnalyzer:
|
|
164
|
+
EFFECT_THRESHOLDS = {
|
|
165
|
+
'weak': 0.1,
|
|
166
|
+
'moderate': 0.3,
|
|
167
|
+
'strong': 0.5
|
|
168
|
+
}
|
|
169
|
+
|
|
170
|
+
HIGH_RISK_LIFT_THRESHOLD = 0.9
|
|
171
|
+
LOW_RISK_LIFT_THRESHOLD = 1.1
|
|
172
|
+
|
|
173
|
+
def __init__(self, min_samples_per_category: int = 10):
|
|
174
|
+
self.min_samples_per_category = min_samples_per_category
|
|
175
|
+
|
|
176
|
+
def analyze(self, df: DataFrame, categorical_col: str, target_col: str) -> CategoricalTargetResult:
|
|
177
|
+
df = to_pandas(df)
|
|
178
|
+
if len(df) == 0 or categorical_col not in df.columns or target_col not in df.columns:
|
|
179
|
+
return self._empty_result(categorical_col, target_col)
|
|
180
|
+
clean_df = df[[categorical_col, target_col]].dropna()
|
|
181
|
+
if len(clean_df) == 0:
|
|
182
|
+
return self._empty_result(categorical_col, target_col)
|
|
183
|
+
overall_rate = clean_df[target_col].mean()
|
|
184
|
+
category_stats = self._calculate_category_stats(clean_df, categorical_col, target_col, overall_rate)
|
|
185
|
+
cramers_v, chi2_stat, p_value = self._calculate_cramers_v(clean_df, categorical_col, target_col)
|
|
186
|
+
effect_strength = self._determine_effect_strength(cramers_v)
|
|
187
|
+
high_risk = category_stats[category_stats['lift'] < self.HIGH_RISK_LIFT_THRESHOLD]['category'].tolist()
|
|
188
|
+
low_risk = category_stats[category_stats['lift'] > self.LOW_RISK_LIFT_THRESHOLD]['category'].tolist()
|
|
189
|
+
|
|
190
|
+
return CategoricalTargetResult(
|
|
191
|
+
categorical_col=categorical_col,
|
|
192
|
+
target_col=target_col,
|
|
193
|
+
n_categories=len(category_stats),
|
|
194
|
+
cramers_v=cramers_v,
|
|
195
|
+
chi2_statistic=chi2_stat,
|
|
196
|
+
p_value=p_value,
|
|
197
|
+
effect_strength=effect_strength,
|
|
198
|
+
category_stats=category_stats,
|
|
199
|
+
high_risk_categories=high_risk,
|
|
200
|
+
low_risk_categories=low_risk,
|
|
201
|
+
overall_rate=overall_rate
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
def _calculate_category_stats(self, df: pd.DataFrame, categorical_col: str, target_col: str, overall_rate: float) -> pd.DataFrame:
|
|
205
|
+
stats = df.groupby(categorical_col)[target_col].agg(['sum', 'count', 'mean']).reset_index()
|
|
206
|
+
stats.columns = ['category', 'retained_count', 'total_count', 'retention_rate']
|
|
207
|
+
stats['churned_count'] = stats['total_count'] - stats['retained_count']
|
|
208
|
+
stats['lift'] = stats['retention_rate'] / overall_rate if overall_rate > 0 else 0
|
|
209
|
+
stats['pct_of_total'] = stats['total_count'] / len(df)
|
|
210
|
+
stats = stats[stats['total_count'] >= self.min_samples_per_category]
|
|
211
|
+
return stats.sort_values('retention_rate', ascending=False).reset_index(drop=True)
|
|
212
|
+
|
|
213
|
+
def _calculate_cramers_v(self, df: pd.DataFrame, categorical_col: str, target_col: str) -> tuple:
|
|
214
|
+
contingency = pd.crosstab(df[categorical_col], df[target_col])
|
|
215
|
+
|
|
216
|
+
if contingency.shape[0] < 2 or contingency.shape[1] < 2:
|
|
217
|
+
return 0.0, 0.0, 1.0
|
|
218
|
+
|
|
219
|
+
try:
|
|
220
|
+
chi2, p_value, dof, expected = chi2_contingency(contingency)
|
|
221
|
+
n = contingency.sum().sum()
|
|
222
|
+
min_dim = min(contingency.shape) - 1
|
|
223
|
+
|
|
224
|
+
if min_dim == 0 or n == 0:
|
|
225
|
+
return 0.0, chi2, p_value
|
|
226
|
+
|
|
227
|
+
cramers_v = np.sqrt(chi2 / (n * min_dim))
|
|
228
|
+
return float(cramers_v), float(chi2), float(p_value)
|
|
229
|
+
except (ValueError, ZeroDivisionError):
|
|
230
|
+
return 0.0, 0.0, 1.0
|
|
231
|
+
|
|
232
|
+
def _determine_effect_strength(self, cramers_v: float) -> str:
|
|
233
|
+
if cramers_v >= self.EFFECT_THRESHOLDS['strong']:
|
|
234
|
+
return 'strong'
|
|
235
|
+
elif cramers_v >= self.EFFECT_THRESHOLDS['moderate']:
|
|
236
|
+
return 'moderate'
|
|
237
|
+
elif cramers_v >= self.EFFECT_THRESHOLDS['weak']:
|
|
238
|
+
return 'weak'
|
|
239
|
+
else:
|
|
240
|
+
return 'negligible'
|
|
241
|
+
|
|
242
|
+
def _empty_result(self, categorical_col: str, target_col: str) -> CategoricalTargetResult:
|
|
243
|
+
return CategoricalTargetResult(
|
|
244
|
+
categorical_col=categorical_col,
|
|
245
|
+
target_col=target_col,
|
|
246
|
+
n_categories=0,
|
|
247
|
+
cramers_v=0.0,
|
|
248
|
+
chi2_statistic=0.0,
|
|
249
|
+
p_value=1.0,
|
|
250
|
+
effect_strength='negligible',
|
|
251
|
+
category_stats=pd.DataFrame(columns=[
|
|
252
|
+
'category', 'retained_count', 'total_count', 'retention_rate',
|
|
253
|
+
'churned_count', 'lift', 'pct_of_total'
|
|
254
|
+
]),
|
|
255
|
+
high_risk_categories=[],
|
|
256
|
+
low_risk_categories=[],
|
|
257
|
+
overall_rate=0.0
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
def analyze_multiple(self, df: DataFrame, categorical_cols: List[str], target_col: str) -> pd.DataFrame:
|
|
261
|
+
results = []
|
|
262
|
+
for col in categorical_cols:
|
|
263
|
+
result = self.analyze(df, col, target_col)
|
|
264
|
+
results.append({
|
|
265
|
+
'feature': col,
|
|
266
|
+
'n_categories': result.n_categories,
|
|
267
|
+
'cramers_v': result.cramers_v,
|
|
268
|
+
'p_value': result.p_value,
|
|
269
|
+
'effect_strength': result.effect_strength,
|
|
270
|
+
'high_risk_count': len(result.high_risk_categories),
|
|
271
|
+
'low_risk_count': len(result.low_risk_categories)
|
|
272
|
+
})
|
|
273
|
+
|
|
274
|
+
return pd.DataFrame(results).sort_values('cramers_v', ascending=False).reset_index(drop=True)
|