churnkit 0.75.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (302) hide show
  1. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
  2. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
  3. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
  4. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
  5. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
  6. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
  7. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
  8. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
  9. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
  10. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
  11. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
  12. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
  13. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
  14. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
  15. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
  16. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
  17. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
  18. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
  19. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
  20. churnkit-0.75.0a1.dist-info/METADATA +229 -0
  21. churnkit-0.75.0a1.dist-info/RECORD +302 -0
  22. churnkit-0.75.0a1.dist-info/WHEEL +4 -0
  23. churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
  24. churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
  25. customer_retention/__init__.py +37 -0
  26. customer_retention/analysis/__init__.py +0 -0
  27. customer_retention/analysis/auto_explorer/__init__.py +62 -0
  28. customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
  29. customer_retention/analysis/auto_explorer/explorer.py +258 -0
  30. customer_retention/analysis/auto_explorer/findings.py +291 -0
  31. customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
  32. customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
  33. customer_retention/analysis/auto_explorer/recommendations.py +418 -0
  34. customer_retention/analysis/business/__init__.py +26 -0
  35. customer_retention/analysis/business/ab_test_designer.py +144 -0
  36. customer_retention/analysis/business/fairness_analyzer.py +166 -0
  37. customer_retention/analysis/business/intervention_matcher.py +121 -0
  38. customer_retention/analysis/business/report_generator.py +222 -0
  39. customer_retention/analysis/business/risk_profile.py +199 -0
  40. customer_retention/analysis/business/roi_analyzer.py +139 -0
  41. customer_retention/analysis/diagnostics/__init__.py +20 -0
  42. customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
  43. customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
  44. customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
  45. customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
  46. customer_retention/analysis/diagnostics/noise_tester.py +140 -0
  47. customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
  48. customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
  49. customer_retention/analysis/discovery/__init__.py +8 -0
  50. customer_retention/analysis/discovery/config_generator.py +49 -0
  51. customer_retention/analysis/discovery/discovery_flow.py +19 -0
  52. customer_retention/analysis/discovery/type_inferencer.py +147 -0
  53. customer_retention/analysis/interpretability/__init__.py +13 -0
  54. customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
  55. customer_retention/analysis/interpretability/counterfactual.py +175 -0
  56. customer_retention/analysis/interpretability/individual_explainer.py +141 -0
  57. customer_retention/analysis/interpretability/pdp_generator.py +103 -0
  58. customer_retention/analysis/interpretability/shap_explainer.py +106 -0
  59. customer_retention/analysis/jupyter_save_hook.py +28 -0
  60. customer_retention/analysis/notebook_html_exporter.py +136 -0
  61. customer_retention/analysis/notebook_progress.py +60 -0
  62. customer_retention/analysis/plotly_preprocessor.py +154 -0
  63. customer_retention/analysis/recommendations/__init__.py +54 -0
  64. customer_retention/analysis/recommendations/base.py +158 -0
  65. customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
  66. customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
  67. customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
  68. customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
  69. customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
  70. customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
  71. customer_retention/analysis/recommendations/datetime/extract.py +149 -0
  72. customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
  73. customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
  74. customer_retention/analysis/recommendations/pipeline.py +74 -0
  75. customer_retention/analysis/recommendations/registry.py +76 -0
  76. customer_retention/analysis/recommendations/selection/__init__.py +3 -0
  77. customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
  78. customer_retention/analysis/recommendations/transform/__init__.py +4 -0
  79. customer_retention/analysis/recommendations/transform/power.py +94 -0
  80. customer_retention/analysis/recommendations/transform/scale.py +112 -0
  81. customer_retention/analysis/visualization/__init__.py +15 -0
  82. customer_retention/analysis/visualization/chart_builder.py +2619 -0
  83. customer_retention/analysis/visualization/console.py +122 -0
  84. customer_retention/analysis/visualization/display.py +171 -0
  85. customer_retention/analysis/visualization/number_formatter.py +36 -0
  86. customer_retention/artifacts/__init__.py +3 -0
  87. customer_retention/artifacts/fit_artifact_registry.py +146 -0
  88. customer_retention/cli.py +93 -0
  89. customer_retention/core/__init__.py +0 -0
  90. customer_retention/core/compat/__init__.py +193 -0
  91. customer_retention/core/compat/detection.py +99 -0
  92. customer_retention/core/compat/ops.py +48 -0
  93. customer_retention/core/compat/pandas_backend.py +57 -0
  94. customer_retention/core/compat/spark_backend.py +75 -0
  95. customer_retention/core/components/__init__.py +11 -0
  96. customer_retention/core/components/base.py +79 -0
  97. customer_retention/core/components/components/__init__.py +13 -0
  98. customer_retention/core/components/components/deployer.py +26 -0
  99. customer_retention/core/components/components/explainer.py +26 -0
  100. customer_retention/core/components/components/feature_eng.py +33 -0
  101. customer_retention/core/components/components/ingester.py +34 -0
  102. customer_retention/core/components/components/profiler.py +34 -0
  103. customer_retention/core/components/components/trainer.py +38 -0
  104. customer_retention/core/components/components/transformer.py +36 -0
  105. customer_retention/core/components/components/validator.py +37 -0
  106. customer_retention/core/components/enums.py +33 -0
  107. customer_retention/core/components/orchestrator.py +94 -0
  108. customer_retention/core/components/registry.py +59 -0
  109. customer_retention/core/config/__init__.py +39 -0
  110. customer_retention/core/config/column_config.py +95 -0
  111. customer_retention/core/config/experiments.py +71 -0
  112. customer_retention/core/config/pipeline_config.py +117 -0
  113. customer_retention/core/config/source_config.py +83 -0
  114. customer_retention/core/utils/__init__.py +28 -0
  115. customer_retention/core/utils/leakage.py +85 -0
  116. customer_retention/core/utils/severity.py +53 -0
  117. customer_retention/core/utils/statistics.py +90 -0
  118. customer_retention/generators/__init__.py +0 -0
  119. customer_retention/generators/notebook_generator/__init__.py +167 -0
  120. customer_retention/generators/notebook_generator/base.py +55 -0
  121. customer_retention/generators/notebook_generator/cell_builder.py +49 -0
  122. customer_retention/generators/notebook_generator/config.py +47 -0
  123. customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
  124. customer_retention/generators/notebook_generator/local_generator.py +48 -0
  125. customer_retention/generators/notebook_generator/project_init.py +174 -0
  126. customer_retention/generators/notebook_generator/runner.py +150 -0
  127. customer_retention/generators/notebook_generator/script_generator.py +110 -0
  128. customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
  129. customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
  130. customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
  131. customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
  132. customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
  133. customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
  134. customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
  135. customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
  136. customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
  137. customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
  138. customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
  139. customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
  140. customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
  141. customer_retention/generators/orchestration/__init__.py +23 -0
  142. customer_retention/generators/orchestration/code_generator.py +196 -0
  143. customer_retention/generators/orchestration/context.py +147 -0
  144. customer_retention/generators/orchestration/data_materializer.py +188 -0
  145. customer_retention/generators/orchestration/databricks_exporter.py +411 -0
  146. customer_retention/generators/orchestration/doc_generator.py +311 -0
  147. customer_retention/generators/pipeline_generator/__init__.py +26 -0
  148. customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
  149. customer_retention/generators/pipeline_generator/generator.py +142 -0
  150. customer_retention/generators/pipeline_generator/models.py +166 -0
  151. customer_retention/generators/pipeline_generator/renderer.py +2125 -0
  152. customer_retention/generators/spec_generator/__init__.py +37 -0
  153. customer_retention/generators/spec_generator/databricks_generator.py +433 -0
  154. customer_retention/generators/spec_generator/generic_generator.py +373 -0
  155. customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
  156. customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
  157. customer_retention/integrations/__init__.py +0 -0
  158. customer_retention/integrations/adapters/__init__.py +13 -0
  159. customer_retention/integrations/adapters/base.py +10 -0
  160. customer_retention/integrations/adapters/factory.py +25 -0
  161. customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
  162. customer_retention/integrations/adapters/feature_store/base.py +57 -0
  163. customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
  164. customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
  165. customer_retention/integrations/adapters/feature_store/local.py +75 -0
  166. customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
  167. customer_retention/integrations/adapters/mlflow/base.py +32 -0
  168. customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
  169. customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
  170. customer_retention/integrations/adapters/mlflow/local.py +50 -0
  171. customer_retention/integrations/adapters/storage/__init__.py +5 -0
  172. customer_retention/integrations/adapters/storage/base.py +33 -0
  173. customer_retention/integrations/adapters/storage/databricks.py +76 -0
  174. customer_retention/integrations/adapters/storage/local.py +59 -0
  175. customer_retention/integrations/feature_store/__init__.py +47 -0
  176. customer_retention/integrations/feature_store/definitions.py +215 -0
  177. customer_retention/integrations/feature_store/manager.py +744 -0
  178. customer_retention/integrations/feature_store/registry.py +412 -0
  179. customer_retention/integrations/iteration/__init__.py +28 -0
  180. customer_retention/integrations/iteration/context.py +212 -0
  181. customer_retention/integrations/iteration/feedback_collector.py +184 -0
  182. customer_retention/integrations/iteration/orchestrator.py +168 -0
  183. customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
  184. customer_retention/integrations/iteration/signals.py +212 -0
  185. customer_retention/integrations/llm_context/__init__.py +4 -0
  186. customer_retention/integrations/llm_context/context_builder.py +201 -0
  187. customer_retention/integrations/llm_context/prompts.py +100 -0
  188. customer_retention/integrations/streaming/__init__.py +103 -0
  189. customer_retention/integrations/streaming/batch_integration.py +149 -0
  190. customer_retention/integrations/streaming/early_warning_model.py +227 -0
  191. customer_retention/integrations/streaming/event_schema.py +214 -0
  192. customer_retention/integrations/streaming/online_store_writer.py +249 -0
  193. customer_retention/integrations/streaming/realtime_scorer.py +261 -0
  194. customer_retention/integrations/streaming/trigger_engine.py +293 -0
  195. customer_retention/integrations/streaming/window_aggregator.py +393 -0
  196. customer_retention/stages/__init__.py +0 -0
  197. customer_retention/stages/cleaning/__init__.py +9 -0
  198. customer_retention/stages/cleaning/base.py +28 -0
  199. customer_retention/stages/cleaning/missing_handler.py +160 -0
  200. customer_retention/stages/cleaning/outlier_handler.py +204 -0
  201. customer_retention/stages/deployment/__init__.py +28 -0
  202. customer_retention/stages/deployment/batch_scorer.py +106 -0
  203. customer_retention/stages/deployment/champion_challenger.py +299 -0
  204. customer_retention/stages/deployment/model_registry.py +182 -0
  205. customer_retention/stages/deployment/retraining_trigger.py +245 -0
  206. customer_retention/stages/features/__init__.py +73 -0
  207. customer_retention/stages/features/behavioral_features.py +266 -0
  208. customer_retention/stages/features/customer_segmentation.py +505 -0
  209. customer_retention/stages/features/feature_definitions.py +265 -0
  210. customer_retention/stages/features/feature_engineer.py +551 -0
  211. customer_retention/stages/features/feature_manifest.py +340 -0
  212. customer_retention/stages/features/feature_selector.py +239 -0
  213. customer_retention/stages/features/interaction_features.py +160 -0
  214. customer_retention/stages/features/temporal_features.py +243 -0
  215. customer_retention/stages/ingestion/__init__.py +9 -0
  216. customer_retention/stages/ingestion/load_result.py +32 -0
  217. customer_retention/stages/ingestion/loaders.py +195 -0
  218. customer_retention/stages/ingestion/source_registry.py +130 -0
  219. customer_retention/stages/modeling/__init__.py +31 -0
  220. customer_retention/stages/modeling/baseline_trainer.py +139 -0
  221. customer_retention/stages/modeling/cross_validator.py +125 -0
  222. customer_retention/stages/modeling/data_splitter.py +205 -0
  223. customer_retention/stages/modeling/feature_scaler.py +99 -0
  224. customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
  225. customer_retention/stages/modeling/imbalance_handler.py +282 -0
  226. customer_retention/stages/modeling/mlflow_logger.py +95 -0
  227. customer_retention/stages/modeling/model_comparator.py +149 -0
  228. customer_retention/stages/modeling/model_evaluator.py +138 -0
  229. customer_retention/stages/modeling/threshold_optimizer.py +131 -0
  230. customer_retention/stages/monitoring/__init__.py +37 -0
  231. customer_retention/stages/monitoring/alert_manager.py +328 -0
  232. customer_retention/stages/monitoring/drift_detector.py +201 -0
  233. customer_retention/stages/monitoring/performance_monitor.py +242 -0
  234. customer_retention/stages/preprocessing/__init__.py +5 -0
  235. customer_retention/stages/preprocessing/transformer_manager.py +284 -0
  236. customer_retention/stages/profiling/__init__.py +256 -0
  237. customer_retention/stages/profiling/categorical_distribution.py +269 -0
  238. customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
  239. customer_retention/stages/profiling/column_profiler.py +527 -0
  240. customer_retention/stages/profiling/distribution_analysis.py +483 -0
  241. customer_retention/stages/profiling/drift_detector.py +310 -0
  242. customer_retention/stages/profiling/feature_capacity.py +507 -0
  243. customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
  244. customer_retention/stages/profiling/profile_result.py +212 -0
  245. customer_retention/stages/profiling/quality_checks.py +1632 -0
  246. customer_retention/stages/profiling/relationship_detector.py +256 -0
  247. customer_retention/stages/profiling/relationship_recommender.py +454 -0
  248. customer_retention/stages/profiling/report_generator.py +520 -0
  249. customer_retention/stages/profiling/scd_analyzer.py +151 -0
  250. customer_retention/stages/profiling/segment_analyzer.py +632 -0
  251. customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
  252. customer_retention/stages/profiling/target_level_analyzer.py +217 -0
  253. customer_retention/stages/profiling/temporal_analyzer.py +388 -0
  254. customer_retention/stages/profiling/temporal_coverage.py +488 -0
  255. customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
  256. customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
  257. customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
  258. customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
  259. customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
  260. customer_retention/stages/profiling/text_embedder.py +87 -0
  261. customer_retention/stages/profiling/text_processor.py +115 -0
  262. customer_retention/stages/profiling/text_reducer.py +60 -0
  263. customer_retention/stages/profiling/time_series_profiler.py +303 -0
  264. customer_retention/stages/profiling/time_window_aggregator.py +376 -0
  265. customer_retention/stages/profiling/type_detector.py +382 -0
  266. customer_retention/stages/profiling/window_recommendation.py +288 -0
  267. customer_retention/stages/temporal/__init__.py +166 -0
  268. customer_retention/stages/temporal/access_guard.py +180 -0
  269. customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
  270. customer_retention/stages/temporal/data_preparer.py +178 -0
  271. customer_retention/stages/temporal/point_in_time_join.py +134 -0
  272. customer_retention/stages/temporal/point_in_time_registry.py +148 -0
  273. customer_retention/stages/temporal/scenario_detector.py +163 -0
  274. customer_retention/stages/temporal/snapshot_manager.py +259 -0
  275. customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
  276. customer_retention/stages/temporal/timestamp_discovery.py +531 -0
  277. customer_retention/stages/temporal/timestamp_manager.py +255 -0
  278. customer_retention/stages/transformation/__init__.py +13 -0
  279. customer_retention/stages/transformation/binary_handler.py +85 -0
  280. customer_retention/stages/transformation/categorical_encoder.py +245 -0
  281. customer_retention/stages/transformation/datetime_transformer.py +97 -0
  282. customer_retention/stages/transformation/numeric_transformer.py +181 -0
  283. customer_retention/stages/transformation/pipeline.py +257 -0
  284. customer_retention/stages/validation/__init__.py +60 -0
  285. customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
  286. customer_retention/stages/validation/business_sense_gate.py +173 -0
  287. customer_retention/stages/validation/data_quality_gate.py +235 -0
  288. customer_retention/stages/validation/data_validators.py +511 -0
  289. customer_retention/stages/validation/feature_quality_gate.py +183 -0
  290. customer_retention/stages/validation/gates.py +117 -0
  291. customer_retention/stages/validation/leakage_gate.py +352 -0
  292. customer_retention/stages/validation/model_validity_gate.py +213 -0
  293. customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
  294. customer_retention/stages/validation/quality_scorer.py +544 -0
  295. customer_retention/stages/validation/rule_generator.py +57 -0
  296. customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
  297. customer_retention/stages/validation/timeseries_detector.py +769 -0
  298. customer_retention/transforms/__init__.py +47 -0
  299. customer_retention/transforms/artifact_store.py +50 -0
  300. customer_retention/transforms/executor.py +157 -0
  301. customer_retention/transforms/fitted.py +92 -0
  302. customer_retention/transforms/ops.py +148 -0
@@ -0,0 +1,274 @@
1
+ from dataclasses import dataclass, field
2
+ from typing import Dict, List
3
+
4
+ import numpy as np
5
+ import pandas as pd
6
+ from scipy.stats import chi2_contingency
7
+
8
+ from customer_retention.core.compat import DataFrame, to_pandas
9
+
10
+ CARDINALITY_THRESHOLD = 0.5
11
+ MIN_CATEGORIES_FOR_ANALYSIS = 2
12
+ MAX_CATEGORIES_FOR_ANALYSIS = 50
13
+
14
+
15
+ @dataclass
16
+ class CategoricalFeatureInsight:
17
+ feature_name: str
18
+ cramers_v: float
19
+ effect_strength: str
20
+ p_value: float
21
+ n_categories: int
22
+ high_risk_categories: List[str]
23
+ low_risk_categories: List[str]
24
+ interpretation: str
25
+ category_stats: pd.DataFrame
26
+
27
+
28
+ @dataclass
29
+ class CategoricalAnalysisResult:
30
+ feature_insights: List[CategoricalFeatureInsight]
31
+ filtered_columns: List[str]
32
+ filter_reasons: Dict[str, str]
33
+ overall_target_rate: float
34
+ recommendations: List[Dict]
35
+ key_findings: List[str] = field(default_factory=list)
36
+
37
+
38
+ def _validate_categorical_column(col: str, df: DataFrame, entity_column: str, target_column: str, n_entities: int, cardinality_threshold: float) -> tuple:
39
+ if col in [entity_column, target_column]:
40
+ return False, "entity or target column"
41
+ if pd.api.types.is_datetime64_any_dtype(df[col]):
42
+ return False, "datetime column"
43
+ n_unique = df[col].nunique()
44
+ ratio = n_unique / n_entities
45
+ if ratio > cardinality_threshold:
46
+ return False, f"high cardinality identifier ({n_unique} unique values, {ratio:.0%} of entities)"
47
+ if n_unique < MIN_CATEGORIES_FOR_ANALYSIS:
48
+ return False, f"too few categories ({n_unique})"
49
+ if n_unique > MAX_CATEGORIES_FOR_ANALYSIS:
50
+ return False, f"too many categories ({n_unique})"
51
+ return True, None
52
+
53
+
54
+ def filter_categorical_columns(df: DataFrame, entity_column: str, target_column: str, cardinality_threshold: float = CARDINALITY_THRESHOLD) -> List[str]:
55
+ n_entities = df[entity_column].nunique() if entity_column in df.columns else len(df)
56
+ return [
57
+ col for col in df.select_dtypes(include=["object", "category"]).columns
58
+ if _validate_categorical_column(col, df, entity_column, target_column, n_entities, cardinality_threshold)[0]
59
+ ]
60
+
61
+
62
+ def _get_filter_reasons(df: DataFrame, entity_column: str, target_column: str, cardinality_threshold: float = CARDINALITY_THRESHOLD) -> Dict[str, str]:
63
+ n_entities = df[entity_column].nunique() if entity_column in df.columns else len(df)
64
+ reasons = {}
65
+ for col in df.select_dtypes(include=["object", "category"]).columns:
66
+ is_valid, reason = _validate_categorical_column(
67
+ col, df, entity_column, target_column, n_entities, cardinality_threshold
68
+ )
69
+ if not is_valid and reason:
70
+ reasons[col] = reason
71
+ return reasons
72
+
73
+
74
+ def _generate_interpretation(result: "CategoricalTargetResult") -> str:
75
+ if result.cramers_v >= 0.3:
76
+ strength_desc = "strongly associated"
77
+ elif result.cramers_v >= 0.1:
78
+ strength_desc = "moderately associated"
79
+ else:
80
+ strength_desc = "weakly associated"
81
+ parts = [f"{result.categorical_col} is {strength_desc} with target (V={result.cramers_v:.2f})"]
82
+ if result.high_risk_categories:
83
+ parts.append(f"High-risk: {', '.join(result.high_risk_categories[:3])}")
84
+ if result.low_risk_categories:
85
+ parts.append(f"Low-risk: {', '.join(result.low_risk_categories[:3])}")
86
+ return ". ".join(parts)
87
+
88
+
89
+ def _generate_categorical_recommendations(insights: List[CategoricalFeatureInsight]) -> List[Dict]:
90
+ recommendations = []
91
+ strong = [i for i in insights if i.cramers_v >= 0.3]
92
+ moderate = [i for i in insights if 0.1 <= i.cramers_v < 0.3]
93
+ if strong:
94
+ recommendations.append({
95
+ "action": "add_categorical_features", "priority": "high",
96
+ "reason": f"Strong predictors: {', '.join(i.feature_name for i in strong[:3])}",
97
+ "features": [i.feature_name for i in strong]
98
+ })
99
+ if moderate:
100
+ recommendations.append({
101
+ "action": "consider_categorical_features", "priority": "medium",
102
+ "reason": f"Moderate predictors: {', '.join(i.feature_name for i in moderate[:3])}",
103
+ "features": [i.feature_name for i in moderate]
104
+ })
105
+ with_high_risk = [i for i in insights if i.high_risk_categories]
106
+ if with_high_risk:
107
+ recommendations.append({
108
+ "action": "create_risk_flags", "priority": "medium",
109
+ "reason": f"Features with high-risk segments: {', '.join(i.feature_name for i in with_high_risk[:3])}",
110
+ "features": [f"{i.feature_name}_is_high_risk" for i in with_high_risk[:3]]
111
+ })
112
+ return recommendations[:3]
113
+
114
+
115
+ def analyze_categorical_features(df: DataFrame, entity_column: str, target_column: str, cardinality_threshold: float = CARDINALITY_THRESHOLD) -> CategoricalAnalysisResult:
116
+ df = to_pandas(df)
117
+ valid_cols = filter_categorical_columns(df, entity_column, target_column, cardinality_threshold)
118
+ filter_reasons = _get_filter_reasons(df, entity_column, target_column, cardinality_threshold)
119
+ filtered_cols = [c for c in filter_reasons if c not in valid_cols and c not in [entity_column, target_column]]
120
+ overall_rate = float(df[target_column].mean()) if target_column in df.columns else 0.0
121
+ analyzer = CategoricalTargetAnalyzer()
122
+ insights = []
123
+ for col in valid_cols:
124
+ result = analyzer.analyze(df, col, target_column)
125
+ interpretation = _generate_interpretation(result)
126
+ insights.append(CategoricalFeatureInsight(
127
+ feature_name=col, cramers_v=result.cramers_v, effect_strength=result.effect_strength,
128
+ p_value=result.p_value, n_categories=result.n_categories,
129
+ high_risk_categories=result.high_risk_categories, low_risk_categories=result.low_risk_categories,
130
+ interpretation=interpretation, category_stats=result.category_stats
131
+ ))
132
+ insights.sort(key=lambda x: x.cramers_v, reverse=True)
133
+ recommendations = _generate_categorical_recommendations(insights)
134
+ key_findings = []
135
+ if filtered_cols:
136
+ key_findings.append(f"Filtered {len(filtered_cols)} columns: {', '.join(filtered_cols[:3])}{'...' if len(filtered_cols) > 3 else ''}")
137
+ strong_count = sum(1 for i in insights if i.cramers_v >= 0.3)
138
+ if strong_count > 0:
139
+ key_findings.append(f"{strong_count} feature(s) strongly predict target")
140
+ elif insights:
141
+ key_findings.append("No categorical features strongly predict target")
142
+ return CategoricalAnalysisResult(
143
+ feature_insights=insights, filtered_columns=filtered_cols, filter_reasons=filter_reasons,
144
+ overall_target_rate=overall_rate, recommendations=recommendations, key_findings=key_findings
145
+ )
146
+
147
+
148
+ @dataclass
149
+ class CategoricalTargetResult:
150
+ categorical_col: str
151
+ target_col: str
152
+ n_categories: int
153
+ cramers_v: float
154
+ chi2_statistic: float
155
+ p_value: float
156
+ effect_strength: str
157
+ category_stats: pd.DataFrame
158
+ high_risk_categories: List[str]
159
+ low_risk_categories: List[str]
160
+ overall_rate: float
161
+
162
+
163
+ class CategoricalTargetAnalyzer:
164
+ EFFECT_THRESHOLDS = {
165
+ 'weak': 0.1,
166
+ 'moderate': 0.3,
167
+ 'strong': 0.5
168
+ }
169
+
170
+ HIGH_RISK_LIFT_THRESHOLD = 0.9
171
+ LOW_RISK_LIFT_THRESHOLD = 1.1
172
+
173
+ def __init__(self, min_samples_per_category: int = 10):
174
+ self.min_samples_per_category = min_samples_per_category
175
+
176
+ def analyze(self, df: DataFrame, categorical_col: str, target_col: str) -> CategoricalTargetResult:
177
+ df = to_pandas(df)
178
+ if len(df) == 0 or categorical_col not in df.columns or target_col not in df.columns:
179
+ return self._empty_result(categorical_col, target_col)
180
+ clean_df = df[[categorical_col, target_col]].dropna()
181
+ if len(clean_df) == 0:
182
+ return self._empty_result(categorical_col, target_col)
183
+ overall_rate = clean_df[target_col].mean()
184
+ category_stats = self._calculate_category_stats(clean_df, categorical_col, target_col, overall_rate)
185
+ cramers_v, chi2_stat, p_value = self._calculate_cramers_v(clean_df, categorical_col, target_col)
186
+ effect_strength = self._determine_effect_strength(cramers_v)
187
+ high_risk = category_stats[category_stats['lift'] < self.HIGH_RISK_LIFT_THRESHOLD]['category'].tolist()
188
+ low_risk = category_stats[category_stats['lift'] > self.LOW_RISK_LIFT_THRESHOLD]['category'].tolist()
189
+
190
+ return CategoricalTargetResult(
191
+ categorical_col=categorical_col,
192
+ target_col=target_col,
193
+ n_categories=len(category_stats),
194
+ cramers_v=cramers_v,
195
+ chi2_statistic=chi2_stat,
196
+ p_value=p_value,
197
+ effect_strength=effect_strength,
198
+ category_stats=category_stats,
199
+ high_risk_categories=high_risk,
200
+ low_risk_categories=low_risk,
201
+ overall_rate=overall_rate
202
+ )
203
+
204
+ def _calculate_category_stats(self, df: pd.DataFrame, categorical_col: str, target_col: str, overall_rate: float) -> pd.DataFrame:
205
+ stats = df.groupby(categorical_col)[target_col].agg(['sum', 'count', 'mean']).reset_index()
206
+ stats.columns = ['category', 'retained_count', 'total_count', 'retention_rate']
207
+ stats['churned_count'] = stats['total_count'] - stats['retained_count']
208
+ stats['lift'] = stats['retention_rate'] / overall_rate if overall_rate > 0 else 0
209
+ stats['pct_of_total'] = stats['total_count'] / len(df)
210
+ stats = stats[stats['total_count'] >= self.min_samples_per_category]
211
+ return stats.sort_values('retention_rate', ascending=False).reset_index(drop=True)
212
+
213
+ def _calculate_cramers_v(self, df: pd.DataFrame, categorical_col: str, target_col: str) -> tuple:
214
+ contingency = pd.crosstab(df[categorical_col], df[target_col])
215
+
216
+ if contingency.shape[0] < 2 or contingency.shape[1] < 2:
217
+ return 0.0, 0.0, 1.0
218
+
219
+ try:
220
+ chi2, p_value, dof, expected = chi2_contingency(contingency)
221
+ n = contingency.sum().sum()
222
+ min_dim = min(contingency.shape) - 1
223
+
224
+ if min_dim == 0 or n == 0:
225
+ return 0.0, chi2, p_value
226
+
227
+ cramers_v = np.sqrt(chi2 / (n * min_dim))
228
+ return float(cramers_v), float(chi2), float(p_value)
229
+ except (ValueError, ZeroDivisionError):
230
+ return 0.0, 0.0, 1.0
231
+
232
+ def _determine_effect_strength(self, cramers_v: float) -> str:
233
+ if cramers_v >= self.EFFECT_THRESHOLDS['strong']:
234
+ return 'strong'
235
+ elif cramers_v >= self.EFFECT_THRESHOLDS['moderate']:
236
+ return 'moderate'
237
+ elif cramers_v >= self.EFFECT_THRESHOLDS['weak']:
238
+ return 'weak'
239
+ else:
240
+ return 'negligible'
241
+
242
+ def _empty_result(self, categorical_col: str, target_col: str) -> CategoricalTargetResult:
243
+ return CategoricalTargetResult(
244
+ categorical_col=categorical_col,
245
+ target_col=target_col,
246
+ n_categories=0,
247
+ cramers_v=0.0,
248
+ chi2_statistic=0.0,
249
+ p_value=1.0,
250
+ effect_strength='negligible',
251
+ category_stats=pd.DataFrame(columns=[
252
+ 'category', 'retained_count', 'total_count', 'retention_rate',
253
+ 'churned_count', 'lift', 'pct_of_total'
254
+ ]),
255
+ high_risk_categories=[],
256
+ low_risk_categories=[],
257
+ overall_rate=0.0
258
+ )
259
+
260
+ def analyze_multiple(self, df: DataFrame, categorical_cols: List[str], target_col: str) -> pd.DataFrame:
261
+ results = []
262
+ for col in categorical_cols:
263
+ result = self.analyze(df, col, target_col)
264
+ results.append({
265
+ 'feature': col,
266
+ 'n_categories': result.n_categories,
267
+ 'cramers_v': result.cramers_v,
268
+ 'p_value': result.p_value,
269
+ 'effect_strength': result.effect_strength,
270
+ 'high_risk_count': len(result.high_risk_categories),
271
+ 'low_risk_count': len(result.low_risk_categories)
272
+ })
273
+
274
+ return pd.DataFrame(results).sort_values('cramers_v', ascending=False).reset_index(drop=True)