churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,483 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Distribution analysis module for exploratory data analysis.
|
|
3
|
+
|
|
4
|
+
This module provides functions for analyzing distributions and recommending
|
|
5
|
+
appropriate transformations based on distribution characteristics.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from dataclasses import dataclass, field
|
|
9
|
+
from enum import Enum
|
|
10
|
+
from typing import Any, Dict, List, Optional
|
|
11
|
+
|
|
12
|
+
import numpy as np
|
|
13
|
+
|
|
14
|
+
from customer_retention.core.compat import Series, pd
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class DistributionTransformationType(Enum):
|
|
18
|
+
"""Types of transformations for skewed distributions."""
|
|
19
|
+
NONE = "none"
|
|
20
|
+
LOG_TRANSFORM = "log_transform"
|
|
21
|
+
SQRT_TRANSFORM = "sqrt_transform"
|
|
22
|
+
BOX_COX = "box_cox"
|
|
23
|
+
YERO_JOHNSON = "yeo_johnson"
|
|
24
|
+
CAP_OUTLIERS = "cap_outliers"
|
|
25
|
+
CAP_THEN_LOG = "cap_then_log"
|
|
26
|
+
ZERO_INFLATION_HANDLING = "zero_inflation_handling"
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@dataclass
|
|
30
|
+
class DistributionAnalysis:
|
|
31
|
+
"""Result of distribution analysis for a numeric column."""
|
|
32
|
+
column_name: str
|
|
33
|
+
count: int
|
|
34
|
+
mean: float
|
|
35
|
+
std: float
|
|
36
|
+
min_value: float
|
|
37
|
+
max_value: float
|
|
38
|
+
median: float
|
|
39
|
+
q1: float
|
|
40
|
+
q3: float
|
|
41
|
+
iqr: float
|
|
42
|
+
skewness: float
|
|
43
|
+
kurtosis: float
|
|
44
|
+
zero_count: int
|
|
45
|
+
zero_percentage: float
|
|
46
|
+
negative_count: int
|
|
47
|
+
negative_percentage: float
|
|
48
|
+
outlier_count_iqr: int
|
|
49
|
+
outlier_percentage: float
|
|
50
|
+
percentiles: Dict[str, float] = field(default_factory=dict)
|
|
51
|
+
|
|
52
|
+
@property
|
|
53
|
+
def is_highly_skewed(self) -> bool:
|
|
54
|
+
"""Check if distribution is highly skewed."""
|
|
55
|
+
return abs(self.skewness) > 2.0
|
|
56
|
+
|
|
57
|
+
@property
|
|
58
|
+
def is_moderately_skewed(self) -> bool:
|
|
59
|
+
"""Check if distribution is moderately skewed."""
|
|
60
|
+
return 1.0 < abs(self.skewness) <= 2.0
|
|
61
|
+
|
|
62
|
+
@property
|
|
63
|
+
def has_zero_inflation(self) -> bool:
|
|
64
|
+
"""Check if distribution has significant zero inflation."""
|
|
65
|
+
return self.zero_percentage > 30.0
|
|
66
|
+
|
|
67
|
+
@property
|
|
68
|
+
def has_heavy_tails(self) -> bool:
|
|
69
|
+
"""Check if distribution has heavy tails (high kurtosis)."""
|
|
70
|
+
return self.kurtosis > 3.0
|
|
71
|
+
|
|
72
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
73
|
+
"""Convert to dictionary for display."""
|
|
74
|
+
return {
|
|
75
|
+
"column": self.column_name,
|
|
76
|
+
"count": self.count,
|
|
77
|
+
"mean": round(self.mean, 4),
|
|
78
|
+
"std": round(self.std, 4),
|
|
79
|
+
"min": round(self.min_value, 4),
|
|
80
|
+
"max": round(self.max_value, 4),
|
|
81
|
+
"median": round(self.median, 4),
|
|
82
|
+
"skewness": round(self.skewness, 4),
|
|
83
|
+
"kurtosis": round(self.kurtosis, 4),
|
|
84
|
+
"zero_pct": round(self.zero_percentage, 2),
|
|
85
|
+
"outlier_pct": round(self.outlier_percentage, 2),
|
|
86
|
+
"is_highly_skewed": self.is_highly_skewed,
|
|
87
|
+
"has_zero_inflation": self.has_zero_inflation
|
|
88
|
+
}
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
@dataclass
|
|
92
|
+
class TransformationRecommendation:
|
|
93
|
+
"""Recommendation for transforming a column."""
|
|
94
|
+
column_name: str
|
|
95
|
+
recommended_transform: DistributionTransformationType
|
|
96
|
+
reason: str
|
|
97
|
+
priority: str # "high", "medium", "low"
|
|
98
|
+
parameters: Dict[str, Any] = field(default_factory=dict)
|
|
99
|
+
alternative_transforms: List[DistributionTransformationType] = field(default_factory=list)
|
|
100
|
+
warnings: List[str] = field(default_factory=list)
|
|
101
|
+
|
|
102
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
103
|
+
"""Convert to dictionary for display."""
|
|
104
|
+
return {
|
|
105
|
+
"column": self.column_name,
|
|
106
|
+
"transform": self.recommended_transform.value,
|
|
107
|
+
"reason": self.reason,
|
|
108
|
+
"priority": self.priority,
|
|
109
|
+
"parameters": self.parameters,
|
|
110
|
+
"alternatives": [t.value for t in self.alternative_transforms],
|
|
111
|
+
"warnings": self.warnings
|
|
112
|
+
}
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class DistributionAnalyzer:
|
|
116
|
+
"""
|
|
117
|
+
Analyzer for numeric distribution characteristics.
|
|
118
|
+
|
|
119
|
+
Provides methods for comprehensive distribution analysis and
|
|
120
|
+
transformation recommendations.
|
|
121
|
+
"""
|
|
122
|
+
|
|
123
|
+
# Thresholds
|
|
124
|
+
HIGH_SKEWNESS_THRESHOLD = 2.0
|
|
125
|
+
MODERATE_SKEWNESS_THRESHOLD = 1.0
|
|
126
|
+
ZERO_INFLATION_THRESHOLD = 30.0
|
|
127
|
+
OUTLIER_THRESHOLD = 5.0
|
|
128
|
+
HIGH_KURTOSIS_THRESHOLD = 7.0
|
|
129
|
+
|
|
130
|
+
def analyze_distribution(
|
|
131
|
+
self,
|
|
132
|
+
series: Series,
|
|
133
|
+
column_name: str
|
|
134
|
+
) -> DistributionAnalysis:
|
|
135
|
+
"""
|
|
136
|
+
Comprehensive distribution analysis for a single column.
|
|
137
|
+
|
|
138
|
+
Parameters
|
|
139
|
+
----------
|
|
140
|
+
series : Series
|
|
141
|
+
Numeric data to analyze
|
|
142
|
+
column_name : str
|
|
143
|
+
Name of the column
|
|
144
|
+
|
|
145
|
+
Returns
|
|
146
|
+
-------
|
|
147
|
+
DistributionAnalysis
|
|
148
|
+
Detailed distribution statistics
|
|
149
|
+
"""
|
|
150
|
+
clean_series = series.dropna()
|
|
151
|
+
|
|
152
|
+
if len(clean_series) == 0:
|
|
153
|
+
return DistributionAnalysis(
|
|
154
|
+
column_name=column_name,
|
|
155
|
+
count=0,
|
|
156
|
+
mean=0.0,
|
|
157
|
+
std=0.0,
|
|
158
|
+
min_value=0.0,
|
|
159
|
+
max_value=0.0,
|
|
160
|
+
median=0.0,
|
|
161
|
+
q1=0.0,
|
|
162
|
+
q3=0.0,
|
|
163
|
+
iqr=0.0,
|
|
164
|
+
skewness=0.0,
|
|
165
|
+
kurtosis=0.0,
|
|
166
|
+
zero_count=0,
|
|
167
|
+
zero_percentage=0.0,
|
|
168
|
+
negative_count=0,
|
|
169
|
+
negative_percentage=0.0,
|
|
170
|
+
outlier_count_iqr=0,
|
|
171
|
+
outlier_percentage=0.0
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
count = len(clean_series)
|
|
175
|
+
mean = float(clean_series.mean())
|
|
176
|
+
std = float(clean_series.std())
|
|
177
|
+
min_value = float(clean_series.min())
|
|
178
|
+
max_value = float(clean_series.max())
|
|
179
|
+
median = float(clean_series.median())
|
|
180
|
+
|
|
181
|
+
q1 = float(clean_series.quantile(0.25))
|
|
182
|
+
q3 = float(clean_series.quantile(0.75))
|
|
183
|
+
iqr = q3 - q1
|
|
184
|
+
|
|
185
|
+
try:
|
|
186
|
+
skewness = float(clean_series.skew())
|
|
187
|
+
kurtosis = float(clean_series.kurtosis())
|
|
188
|
+
except Exception:
|
|
189
|
+
skewness = 0.0
|
|
190
|
+
kurtosis = 0.0
|
|
191
|
+
|
|
192
|
+
# Zero analysis
|
|
193
|
+
zero_count = int((clean_series == 0).sum())
|
|
194
|
+
zero_percentage = (zero_count / count * 100) if count > 0 else 0.0
|
|
195
|
+
|
|
196
|
+
# Negative analysis
|
|
197
|
+
negative_count = int((clean_series < 0).sum())
|
|
198
|
+
negative_percentage = (negative_count / count * 100) if count > 0 else 0.0
|
|
199
|
+
|
|
200
|
+
# Outlier analysis (IQR method)
|
|
201
|
+
lower_bound = q1 - 1.5 * iqr
|
|
202
|
+
upper_bound = q3 + 1.5 * iqr
|
|
203
|
+
outlier_mask = (clean_series < lower_bound) | (clean_series > upper_bound)
|
|
204
|
+
outlier_count_iqr = int(outlier_mask.sum())
|
|
205
|
+
outlier_percentage = (outlier_count_iqr / count * 100) if count > 0 else 0.0
|
|
206
|
+
|
|
207
|
+
# Percentiles
|
|
208
|
+
percentiles = {
|
|
209
|
+
"p1": float(clean_series.quantile(0.01)),
|
|
210
|
+
"p5": float(clean_series.quantile(0.05)),
|
|
211
|
+
"p10": float(clean_series.quantile(0.10)),
|
|
212
|
+
"p25": float(q1),
|
|
213
|
+
"p50": float(median),
|
|
214
|
+
"p75": float(q3),
|
|
215
|
+
"p90": float(clean_series.quantile(0.90)),
|
|
216
|
+
"p95": float(clean_series.quantile(0.95)),
|
|
217
|
+
"p99": float(clean_series.quantile(0.99))
|
|
218
|
+
}
|
|
219
|
+
|
|
220
|
+
return DistributionAnalysis(
|
|
221
|
+
column_name=column_name,
|
|
222
|
+
count=count,
|
|
223
|
+
mean=mean,
|
|
224
|
+
std=std,
|
|
225
|
+
min_value=min_value,
|
|
226
|
+
max_value=max_value,
|
|
227
|
+
median=median,
|
|
228
|
+
q1=q1,
|
|
229
|
+
q3=q3,
|
|
230
|
+
iqr=iqr,
|
|
231
|
+
skewness=skewness,
|
|
232
|
+
kurtosis=kurtosis,
|
|
233
|
+
zero_count=zero_count,
|
|
234
|
+
zero_percentage=zero_percentage,
|
|
235
|
+
negative_count=negative_count,
|
|
236
|
+
negative_percentage=negative_percentage,
|
|
237
|
+
outlier_count_iqr=outlier_count_iqr,
|
|
238
|
+
outlier_percentage=outlier_percentage,
|
|
239
|
+
percentiles=percentiles
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
def recommend_transformation(
|
|
243
|
+
self,
|
|
244
|
+
analysis: DistributionAnalysis
|
|
245
|
+
) -> TransformationRecommendation:
|
|
246
|
+
"""
|
|
247
|
+
Recommend transformation strategy based on distribution analysis.
|
|
248
|
+
|
|
249
|
+
Parameters
|
|
250
|
+
----------
|
|
251
|
+
analysis : DistributionAnalysis
|
|
252
|
+
Distribution analysis results
|
|
253
|
+
|
|
254
|
+
Returns
|
|
255
|
+
-------
|
|
256
|
+
TransformationRecommendation
|
|
257
|
+
Recommended transformation with rationale
|
|
258
|
+
"""
|
|
259
|
+
warnings = []
|
|
260
|
+
alternatives = []
|
|
261
|
+
|
|
262
|
+
# Decision tree for transformation recommendation
|
|
263
|
+
if analysis.has_zero_inflation and analysis.is_highly_skewed:
|
|
264
|
+
# Zero-inflated and highly skewed
|
|
265
|
+
recommended = DistributionTransformationType.ZERO_INFLATION_HANDLING
|
|
266
|
+
reason = f"Zero-inflation ({analysis.zero_percentage:.1f}%) combined with high skewness ({analysis.skewness:.2f})"
|
|
267
|
+
priority = "high"
|
|
268
|
+
parameters = {
|
|
269
|
+
"strategy": "separate_indicator",
|
|
270
|
+
"transform_non_zero": "log"
|
|
271
|
+
}
|
|
272
|
+
alternatives = [DistributionTransformationType.CAP_THEN_LOG]
|
|
273
|
+
warnings.append("Consider creating a binary indicator for zeros plus log transform of non-zero values")
|
|
274
|
+
|
|
275
|
+
elif analysis.has_zero_inflation:
|
|
276
|
+
# Zero-inflated but not highly skewed
|
|
277
|
+
recommended = DistributionTransformationType.ZERO_INFLATION_HANDLING
|
|
278
|
+
reason = f"Significant zero-inflation ({analysis.zero_percentage:.1f}%)"
|
|
279
|
+
priority = "medium"
|
|
280
|
+
parameters = {"strategy": "binary_indicator"}
|
|
281
|
+
alternatives = [DistributionTransformationType.SQRT_TRANSFORM]
|
|
282
|
+
warnings.append("Many zero values may indicate a mixture distribution")
|
|
283
|
+
|
|
284
|
+
elif analysis.negative_count > 0 and analysis.is_highly_skewed:
|
|
285
|
+
# Has negatives and highly skewed - use Yeo-Johnson
|
|
286
|
+
recommended = DistributionTransformationType.YERO_JOHNSON
|
|
287
|
+
reason = f"High skewness ({analysis.skewness:.2f}) with negative values present"
|
|
288
|
+
priority = "high"
|
|
289
|
+
parameters = {}
|
|
290
|
+
alternatives = [DistributionTransformationType.CAP_OUTLIERS]
|
|
291
|
+
warnings.append("Yeo-Johnson handles negative values unlike log/sqrt")
|
|
292
|
+
|
|
293
|
+
elif analysis.is_highly_skewed and analysis.outlier_percentage > self.OUTLIER_THRESHOLD:
|
|
294
|
+
# Highly skewed with many outliers
|
|
295
|
+
recommended = DistributionTransformationType.CAP_THEN_LOG
|
|
296
|
+
reason = f"High skewness ({analysis.skewness:.2f}) with significant outliers ({analysis.outlier_percentage:.1f}%)"
|
|
297
|
+
priority = "high"
|
|
298
|
+
parameters = {
|
|
299
|
+
"cap_method": "iqr",
|
|
300
|
+
"cap_multiplier": 1.5
|
|
301
|
+
}
|
|
302
|
+
alternatives = [DistributionTransformationType.LOG_TRANSFORM, DistributionTransformationType.BOX_COX]
|
|
303
|
+
|
|
304
|
+
elif analysis.is_highly_skewed:
|
|
305
|
+
# Highly skewed without major outliers
|
|
306
|
+
if analysis.min_value > 0:
|
|
307
|
+
recommended = DistributionTransformationType.LOG_TRANSFORM
|
|
308
|
+
reason = f"High positive skewness ({analysis.skewness:.2f}) with all positive values"
|
|
309
|
+
priority = "high"
|
|
310
|
+
parameters = {"base": "natural", "offset": 0}
|
|
311
|
+
alternatives = [DistributionTransformationType.BOX_COX, DistributionTransformationType.SQRT_TRANSFORM]
|
|
312
|
+
else:
|
|
313
|
+
recommended = DistributionTransformationType.YERO_JOHNSON
|
|
314
|
+
reason = f"High skewness ({analysis.skewness:.2f}) with non-positive values"
|
|
315
|
+
priority = "high"
|
|
316
|
+
parameters = {}
|
|
317
|
+
alternatives = [DistributionTransformationType.BOX_COX]
|
|
318
|
+
|
|
319
|
+
elif analysis.is_moderately_skewed:
|
|
320
|
+
# Moderately skewed
|
|
321
|
+
if analysis.min_value >= 0:
|
|
322
|
+
recommended = DistributionTransformationType.SQRT_TRANSFORM
|
|
323
|
+
reason = f"Moderate skewness ({analysis.skewness:.2f})"
|
|
324
|
+
priority = "medium"
|
|
325
|
+
parameters = {}
|
|
326
|
+
alternatives = [DistributionTransformationType.LOG_TRANSFORM]
|
|
327
|
+
else:
|
|
328
|
+
recommended = DistributionTransformationType.YERO_JOHNSON
|
|
329
|
+
reason = f"Moderate skewness ({analysis.skewness:.2f}) with negative values"
|
|
330
|
+
priority = "medium"
|
|
331
|
+
parameters = {}
|
|
332
|
+
alternatives = []
|
|
333
|
+
|
|
334
|
+
elif analysis.outlier_percentage > self.OUTLIER_THRESHOLD:
|
|
335
|
+
# Not skewed but has outliers
|
|
336
|
+
recommended = DistributionTransformationType.CAP_OUTLIERS
|
|
337
|
+
reason = f"Significant outliers ({analysis.outlier_percentage:.1f}%) despite low skewness"
|
|
338
|
+
priority = "medium"
|
|
339
|
+
parameters = {
|
|
340
|
+
"method": "iqr",
|
|
341
|
+
"multiplier": 1.5
|
|
342
|
+
}
|
|
343
|
+
alternatives = []
|
|
344
|
+
warnings.append("Consider investigating outlier causes before capping")
|
|
345
|
+
|
|
346
|
+
else:
|
|
347
|
+
# Distribution is relatively normal
|
|
348
|
+
recommended = DistributionTransformationType.NONE
|
|
349
|
+
reason = f"Distribution is approximately normal (skewness: {analysis.skewness:.2f})"
|
|
350
|
+
priority = "low"
|
|
351
|
+
parameters = {}
|
|
352
|
+
alternatives = []
|
|
353
|
+
|
|
354
|
+
return TransformationRecommendation(
|
|
355
|
+
column_name=analysis.column_name,
|
|
356
|
+
recommended_transform=recommended,
|
|
357
|
+
reason=reason,
|
|
358
|
+
priority=priority,
|
|
359
|
+
parameters=parameters,
|
|
360
|
+
alternative_transforms=alternatives,
|
|
361
|
+
warnings=warnings
|
|
362
|
+
)
|
|
363
|
+
|
|
364
|
+
def analyze_dataframe(
|
|
365
|
+
self,
|
|
366
|
+
df: pd.DataFrame,
|
|
367
|
+
numeric_columns: Optional[List[str]] = None
|
|
368
|
+
) -> Dict[str, DistributionAnalysis]:
|
|
369
|
+
"""
|
|
370
|
+
Analyze distributions for all numeric columns in a DataFrame.
|
|
371
|
+
|
|
372
|
+
Parameters
|
|
373
|
+
----------
|
|
374
|
+
df : DataFrame
|
|
375
|
+
Data to analyze
|
|
376
|
+
numeric_columns : List[str], optional
|
|
377
|
+
Columns to analyze. If None, analyzes all numeric columns.
|
|
378
|
+
|
|
379
|
+
Returns
|
|
380
|
+
-------
|
|
381
|
+
Dict[str, DistributionAnalysis]
|
|
382
|
+
Analysis results keyed by column name
|
|
383
|
+
"""
|
|
384
|
+
if numeric_columns is None:
|
|
385
|
+
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
|
|
386
|
+
|
|
387
|
+
results = {}
|
|
388
|
+
for col in numeric_columns:
|
|
389
|
+
if col in df.columns:
|
|
390
|
+
results[col] = self.analyze_distribution(df[col], col)
|
|
391
|
+
|
|
392
|
+
return results
|
|
393
|
+
|
|
394
|
+
def get_all_recommendations(
|
|
395
|
+
self,
|
|
396
|
+
df: pd.DataFrame,
|
|
397
|
+
numeric_columns: Optional[List[str]] = None
|
|
398
|
+
) -> List[TransformationRecommendation]:
|
|
399
|
+
"""
|
|
400
|
+
Get transformation recommendations for all numeric columns.
|
|
401
|
+
|
|
402
|
+
Parameters
|
|
403
|
+
----------
|
|
404
|
+
df : DataFrame
|
|
405
|
+
Data to analyze
|
|
406
|
+
numeric_columns : List[str], optional
|
|
407
|
+
Columns to analyze. If None, analyzes all numeric columns.
|
|
408
|
+
|
|
409
|
+
Returns
|
|
410
|
+
-------
|
|
411
|
+
List[TransformationRecommendation]
|
|
412
|
+
Recommendations sorted by priority
|
|
413
|
+
"""
|
|
414
|
+
analyses = self.analyze_dataframe(df, numeric_columns)
|
|
415
|
+
recommendations = []
|
|
416
|
+
|
|
417
|
+
for col_name, analysis in analyses.items():
|
|
418
|
+
rec = self.recommend_transformation(analysis)
|
|
419
|
+
if rec.recommended_transform != DistributionTransformationType.NONE:
|
|
420
|
+
recommendations.append(rec)
|
|
421
|
+
|
|
422
|
+
# Sort by priority
|
|
423
|
+
priority_order = {"high": 0, "medium": 1, "low": 2}
|
|
424
|
+
recommendations.sort(key=lambda r: priority_order.get(r.priority, 3))
|
|
425
|
+
|
|
426
|
+
return recommendations
|
|
427
|
+
|
|
428
|
+
def generate_report(
|
|
429
|
+
self,
|
|
430
|
+
df: pd.DataFrame,
|
|
431
|
+
numeric_columns: Optional[List[str]] = None
|
|
432
|
+
) -> Dict[str, Any]:
|
|
433
|
+
"""
|
|
434
|
+
Generate comprehensive distribution analysis report.
|
|
435
|
+
|
|
436
|
+
Parameters
|
|
437
|
+
----------
|
|
438
|
+
df : DataFrame
|
|
439
|
+
Data to analyze
|
|
440
|
+
numeric_columns : List[str], optional
|
|
441
|
+
Columns to analyze
|
|
442
|
+
|
|
443
|
+
Returns
|
|
444
|
+
-------
|
|
445
|
+
Dict[str, Any]
|
|
446
|
+
Comprehensive report with analyses and recommendations
|
|
447
|
+
"""
|
|
448
|
+
analyses = self.analyze_dataframe(df, numeric_columns)
|
|
449
|
+
recommendations = self.get_all_recommendations(df, numeric_columns)
|
|
450
|
+
|
|
451
|
+
# Categorize columns by skewness
|
|
452
|
+
highly_skewed = []
|
|
453
|
+
moderately_skewed = []
|
|
454
|
+
normal = []
|
|
455
|
+
zero_inflated = []
|
|
456
|
+
|
|
457
|
+
for col_name, analysis in analyses.items():
|
|
458
|
+
if analysis.has_zero_inflation:
|
|
459
|
+
zero_inflated.append(col_name)
|
|
460
|
+
if analysis.is_highly_skewed:
|
|
461
|
+
highly_skewed.append(col_name)
|
|
462
|
+
elif analysis.is_moderately_skewed:
|
|
463
|
+
moderately_skewed.append(col_name)
|
|
464
|
+
else:
|
|
465
|
+
normal.append(col_name)
|
|
466
|
+
|
|
467
|
+
return {
|
|
468
|
+
"summary": {
|
|
469
|
+
"total_columns": len(analyses),
|
|
470
|
+
"highly_skewed_count": len(highly_skewed),
|
|
471
|
+
"moderately_skewed_count": len(moderately_skewed),
|
|
472
|
+
"normal_count": len(normal),
|
|
473
|
+
"zero_inflated_count": len(zero_inflated)
|
|
474
|
+
},
|
|
475
|
+
"categories": {
|
|
476
|
+
"highly_skewed": highly_skewed,
|
|
477
|
+
"moderately_skewed": moderately_skewed,
|
|
478
|
+
"approximately_normal": normal,
|
|
479
|
+
"zero_inflated": zero_inflated
|
|
480
|
+
},
|
|
481
|
+
"analyses": {k: v.to_dict() for k, v in analyses.items()},
|
|
482
|
+
"recommendations": [r.to_dict() for r in recommendations]
|
|
483
|
+
}
|