churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,513 @@
|
|
|
1
|
+
from dataclasses import dataclass, field
|
|
2
|
+
from typing import Any, Dict, List, Optional, Tuple
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import pandas as pd
|
|
6
|
+
|
|
7
|
+
from customer_retention.core.compat import DataFrame
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@dataclass
|
|
11
|
+
class PatternAnalysisConfig:
|
|
12
|
+
entity_column: str
|
|
13
|
+
time_column: str
|
|
14
|
+
target_column: Optional[str] = None
|
|
15
|
+
aggregation_windows: List[str] = field(default_factory=list)
|
|
16
|
+
velocity_window_days: int = 7
|
|
17
|
+
short_momentum_window: int = 7
|
|
18
|
+
long_momentum_window: int = 30
|
|
19
|
+
rolling_window: int = 7
|
|
20
|
+
sparkline_columns: List[str] = field(default_factory=list)
|
|
21
|
+
sparkline_freq: str = "W"
|
|
22
|
+
sparkline_agg: str = "mean"
|
|
23
|
+
has_target: bool = False
|
|
24
|
+
is_event_level: bool = True
|
|
25
|
+
|
|
26
|
+
@classmethod
|
|
27
|
+
def from_findings(cls, findings: Any, target_column: Optional[str] = None, window_override: Optional[List[str]] = None) -> "PatternAnalysisConfig":
|
|
28
|
+
ts_meta = findings.time_series_metadata
|
|
29
|
+
if ts_meta is None:
|
|
30
|
+
raise ValueError("Findings do not contain time series metadata. Run notebook 01a first.")
|
|
31
|
+
|
|
32
|
+
windows = window_override or ts_meta.suggested_aggregations or ["7d", "30d", "90d"]
|
|
33
|
+
target_col = target_column or findings.target_column
|
|
34
|
+
|
|
35
|
+
config = cls(
|
|
36
|
+
entity_column=ts_meta.entity_column, time_column=ts_meta.time_column,
|
|
37
|
+
target_column=target_col, aggregation_windows=windows,
|
|
38
|
+
has_target=target_col is not None, is_event_level=True)
|
|
39
|
+
config._derive_window_settings()
|
|
40
|
+
return config
|
|
41
|
+
|
|
42
|
+
def _derive_window_settings(self):
|
|
43
|
+
if not self.aggregation_windows:
|
|
44
|
+
return
|
|
45
|
+
parsed = [self._parse_window_to_days(w) for w in self.aggregation_windows]
|
|
46
|
+
window_days = sorted([d for d in parsed if d is not None])
|
|
47
|
+
if not window_days:
|
|
48
|
+
return
|
|
49
|
+
shortest = window_days[0]
|
|
50
|
+
self.velocity_window_days = shortest
|
|
51
|
+
self.rolling_window = shortest
|
|
52
|
+
self.short_momentum_window = shortest
|
|
53
|
+
self.long_momentum_window = window_days[1] if len(window_days) >= 2 else shortest * 4
|
|
54
|
+
|
|
55
|
+
def _parse_window_to_days(self, window: str) -> Optional[int]:
|
|
56
|
+
if not window:
|
|
57
|
+
return None
|
|
58
|
+
w = window.lower().strip()
|
|
59
|
+
multipliers = {"d": 1, "w": 7, "m": 30}
|
|
60
|
+
for suffix, mult in multipliers.items():
|
|
61
|
+
if w.endswith(suffix):
|
|
62
|
+
try:
|
|
63
|
+
return int(w[:-1]) * mult
|
|
64
|
+
except ValueError:
|
|
65
|
+
return None
|
|
66
|
+
try:
|
|
67
|
+
return int(w)
|
|
68
|
+
except ValueError:
|
|
69
|
+
return None
|
|
70
|
+
|
|
71
|
+
def get_momentum_pairs(self) -> List[Tuple[int, int]]:
|
|
72
|
+
if len(self.aggregation_windows) < 2:
|
|
73
|
+
return [(self.short_momentum_window, self.long_momentum_window)]
|
|
74
|
+
window_days = sorted({d for w in self.aggregation_windows if (d := self._parse_window_to_days(w))})
|
|
75
|
+
pairs = [(window_days[i], window_days[i + 1]) for i in range(len(window_days) - 1)]
|
|
76
|
+
return pairs if pairs else [(self.short_momentum_window, self.long_momentum_window)]
|
|
77
|
+
|
|
78
|
+
def format_config(self) -> str:
|
|
79
|
+
lines = [
|
|
80
|
+
"=" * 70,
|
|
81
|
+
"PATTERN ANALYSIS CONFIGURATION",
|
|
82
|
+
"=" * 70,
|
|
83
|
+
f"\nCore Columns:\n Entity: {self.entity_column}\n Time: {self.time_column}",
|
|
84
|
+
f" Target: {self.target_column or '(none)'}",
|
|
85
|
+
f"\nAggregation Windows (from findings):\n {self.aggregation_windows}",
|
|
86
|
+
f"\nDerived Settings:\n Velocity window: {self.velocity_window_days} days",
|
|
87
|
+
f" Rolling window: {self.rolling_window} days\n Momentum pairs: {self.get_momentum_pairs()}",
|
|
88
|
+
]
|
|
89
|
+
if self.sparkline_columns:
|
|
90
|
+
lines.append(f"\nSparkline Config:\n Columns: {self.sparkline_columns}")
|
|
91
|
+
lines.append(f" Frequency: {self.sparkline_freq}\n Aggregation: {self.sparkline_agg}")
|
|
92
|
+
return "\n".join(lines)
|
|
93
|
+
|
|
94
|
+
def print_config(self):
|
|
95
|
+
print(self.format_config())
|
|
96
|
+
|
|
97
|
+
def configure_sparklines(self, df: DataFrame, columns: Optional[List[str]] = None, max_columns: int = 5):
|
|
98
|
+
if columns:
|
|
99
|
+
self.sparkline_columns = columns[:max_columns]
|
|
100
|
+
return
|
|
101
|
+
exclude = {self.entity_column, self.time_column, self.target_column} - {None}
|
|
102
|
+
candidates = [c for c in df.select_dtypes(include=[np.number]).columns if c not in exclude]
|
|
103
|
+
self.sparkline_columns = candidates[:max_columns]
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
@dataclass
|
|
107
|
+
class PatternAnalysisResult:
|
|
108
|
+
trend_detected: bool = False
|
|
109
|
+
trend_direction: Optional[str] = None
|
|
110
|
+
trend_strength: float = 0.0
|
|
111
|
+
seasonality_detected: bool = False
|
|
112
|
+
seasonality_periods: List[str] = field(default_factory=list)
|
|
113
|
+
recency_effect: bool = False
|
|
114
|
+
recency_correlation: float = 0.0
|
|
115
|
+
cohort_effect: bool = False
|
|
116
|
+
cohort_trend: Optional[str] = None
|
|
117
|
+
velocity_features_recommended: List[str] = field(default_factory=list)
|
|
118
|
+
momentum_features_recommended: List[str] = field(default_factory=list)
|
|
119
|
+
|
|
120
|
+
def format_summary(self) -> str:
|
|
121
|
+
lines = ["\n" + "=" * 70 + "\nPATTERN ANALYSIS SUMMARY\n" + "=" * 70]
|
|
122
|
+
patterns = []
|
|
123
|
+
if self.trend_detected:
|
|
124
|
+
patterns.append(f"Trend: {self.trend_direction} (strength: {self.trend_strength:.2f})")
|
|
125
|
+
if self.seasonality_detected:
|
|
126
|
+
patterns.append(f"Seasonality: {', '.join(self.seasonality_periods)}")
|
|
127
|
+
if self.recency_effect:
|
|
128
|
+
patterns.append(f"Recency effect: r={self.recency_correlation:.2f}")
|
|
129
|
+
if self.cohort_effect:
|
|
130
|
+
patterns.append(f"Cohort effect: {self.cohort_trend}")
|
|
131
|
+
if patterns:
|
|
132
|
+
lines.append("\nDetected Patterns:")
|
|
133
|
+
for p in patterns:
|
|
134
|
+
lines.append(f" - {p}")
|
|
135
|
+
else:
|
|
136
|
+
lines.append("\n No significant patterns detected")
|
|
137
|
+
if self.velocity_features_recommended:
|
|
138
|
+
lines.append(f"\nRecommended velocity features: {self.velocity_features_recommended}")
|
|
139
|
+
if self.momentum_features_recommended:
|
|
140
|
+
lines.append(f"Recommended momentum features: {self.momentum_features_recommended}")
|
|
141
|
+
return "\n".join(lines)
|
|
142
|
+
|
|
143
|
+
def print_summary(self):
|
|
144
|
+
print(self.format_summary())
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def get_sparkline_frequency(time_span_days: int) -> str:
|
|
148
|
+
if time_span_days <= 60:
|
|
149
|
+
return "D"
|
|
150
|
+
return "W" if time_span_days <= 365 else "ME"
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def select_columns_by_variance(df: DataFrame, numeric_cols: List[str], max_cols: int = 6) -> List[str]:
|
|
154
|
+
scores = {}
|
|
155
|
+
for col in numeric_cols:
|
|
156
|
+
if col not in df.columns:
|
|
157
|
+
continue
|
|
158
|
+
col_data = df[col].dropna()
|
|
159
|
+
if len(col_data) == 0:
|
|
160
|
+
continue
|
|
161
|
+
std_val, mean_val = col_data.std(), abs(col_data.mean())
|
|
162
|
+
if std_val == 0 or mean_val < 1e-10:
|
|
163
|
+
continue
|
|
164
|
+
cv = std_val / mean_val
|
|
165
|
+
scores[col] = cv if not np.isnan(cv) else 0
|
|
166
|
+
return sorted(scores, key=scores.get, reverse=True)[:max_cols]
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def validate_not_event_level(
|
|
170
|
+
df: DataFrame, entity_column: str, target_column: Optional[str]
|
|
171
|
+
) -> None:
|
|
172
|
+
if target_column is None:
|
|
173
|
+
return
|
|
174
|
+
n_entities, n_rows = df[entity_column].nunique(), len(df)
|
|
175
|
+
if n_entities < n_rows:
|
|
176
|
+
raise ValueError(
|
|
177
|
+
f"Target comparisons not allowed on event-level data. "
|
|
178
|
+
f"Found {n_rows:,} rows but only {n_entities:,} entities. "
|
|
179
|
+
f"Aggregate to entity level first using TimeWindowAggregator, "
|
|
180
|
+
f"or use select_columns_by_variance() for column selection."
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
def get_analysis_frequency(time_span_days: int) -> Tuple[str, str]:
|
|
185
|
+
if time_span_days <= 90:
|
|
186
|
+
return "D", "Daily"
|
|
187
|
+
return ("W", "Weekly") if time_span_days <= 365 else ("ME", "Monthly")
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
@dataclass
|
|
191
|
+
class SparklineData:
|
|
192
|
+
column: str
|
|
193
|
+
weeks: List
|
|
194
|
+
retained_values: List[float]
|
|
195
|
+
churned_values: Optional[List[float]] = None
|
|
196
|
+
has_target_split: bool = False
|
|
197
|
+
|
|
198
|
+
@property
|
|
199
|
+
def divergence_score(self) -> float:
|
|
200
|
+
if not self.has_target_split or self.churned_values is None:
|
|
201
|
+
return 0.0
|
|
202
|
+
import numpy as np
|
|
203
|
+
ret_arr = np.array([v for v in self.retained_values if v is not None and not np.isnan(v)])
|
|
204
|
+
churn_arr = np.array([v for v in self.churned_values if v is not None and not np.isnan(v)])
|
|
205
|
+
if len(ret_arr) == 0 or len(churn_arr) == 0:
|
|
206
|
+
return 0.0
|
|
207
|
+
return abs(ret_arr.mean() - churn_arr.mean()) / max(ret_arr.std(), churn_arr.std(), 0.001)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
class SparklineDataBuilder:
|
|
211
|
+
def __init__(self, entity_column: str, time_column: str,
|
|
212
|
+
target_column: Optional[str] = None, freq: str = "W"):
|
|
213
|
+
self.entity_column = entity_column
|
|
214
|
+
self.time_column = time_column
|
|
215
|
+
self.target_column = target_column
|
|
216
|
+
self.freq = freq
|
|
217
|
+
|
|
218
|
+
def build(self, df: DataFrame, columns: List[str]) -> Tuple[List[SparklineData], bool]:
|
|
219
|
+
import pandas as pd
|
|
220
|
+
has_target = self.target_column is not None and self.target_column in df.columns
|
|
221
|
+
if has_target:
|
|
222
|
+
validate_not_event_level(df, self.entity_column, self.target_column)
|
|
223
|
+
df_work = self._prepare_working_df(df, has_target)
|
|
224
|
+
df_work['_period'] = pd.to_datetime(df_work[self.time_column]).dt.to_period(self.freq).dt.start_time
|
|
225
|
+
results = [self._build_sparkline_for_column(df_work, col, has_target)
|
|
226
|
+
for col in columns if col in df_work.columns]
|
|
227
|
+
return results, has_target
|
|
228
|
+
|
|
229
|
+
def _prepare_working_df(self, df: DataFrame, has_target: bool) -> DataFrame:
|
|
230
|
+
if has_target:
|
|
231
|
+
entity_target = df.groupby(self.entity_column)[self.target_column].first()
|
|
232
|
+
return df.merge(
|
|
233
|
+
entity_target.reset_index().rename(columns={self.target_column: '_target'}),
|
|
234
|
+
on=self.entity_column)
|
|
235
|
+
df_work = df.copy()
|
|
236
|
+
df_work['_target'] = 1
|
|
237
|
+
return df_work
|
|
238
|
+
|
|
239
|
+
def _build_sparkline_for_column(self, df_work: DataFrame, col: str, has_target: bool) -> SparklineData:
|
|
240
|
+
import numpy as np
|
|
241
|
+
if has_target:
|
|
242
|
+
retained = df_work[df_work['_target'] == 1].groupby('_period')[col].mean()
|
|
243
|
+
churned = df_work[df_work['_target'] == 0].groupby('_period')[col].mean()
|
|
244
|
+
all_periods = sorted(set(retained.index) | set(churned.index))
|
|
245
|
+
retained_vals = [retained.get(p, np.nan) for p in all_periods]
|
|
246
|
+
churned_vals = [churned.get(p, np.nan) for p in all_periods]
|
|
247
|
+
else:
|
|
248
|
+
overall = df_work.groupby('_period')[col].mean()
|
|
249
|
+
all_periods, retained_vals, churned_vals = sorted(overall.index), overall.tolist(), None
|
|
250
|
+
return SparklineData(column=col, weeks=all_periods, retained_values=retained_vals,
|
|
251
|
+
churned_values=churned_vals, has_target_split=has_target)
|
|
252
|
+
|
|
253
|
+
def format_summary(self, sparkline_data: List[SparklineData], has_target: bool) -> str:
|
|
254
|
+
lines = ["=" * 70]
|
|
255
|
+
if has_target:
|
|
256
|
+
lines.append("SPARKLINE COMPARISON: Retained vs Churned Trends\n" + "=" * 70)
|
|
257
|
+
lines.append("\n Retained (target=1) | Churned (target=0)\n")
|
|
258
|
+
else:
|
|
259
|
+
lines.append("SPARKLINE TRENDS: Overall Patterns\n" + "=" * 70)
|
|
260
|
+
for data in sparkline_data:
|
|
261
|
+
if data.has_target_split:
|
|
262
|
+
lines.append(f" {data.column}: divergence={data.divergence_score:.2f}")
|
|
263
|
+
return "\n".join(lines)
|
|
264
|
+
|
|
265
|
+
def print_summary(self, sparkline_data: List[SparklineData], has_target: bool):
|
|
266
|
+
print(self.format_summary(sparkline_data, has_target))
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
@dataclass
|
|
270
|
+
class FindingsValidationResult:
|
|
271
|
+
valid: bool
|
|
272
|
+
missing_sections: List[str] = field(default_factory=list)
|
|
273
|
+
warnings: List[str] = field(default_factory=list)
|
|
274
|
+
|
|
275
|
+
def format_summary(self) -> str:
|
|
276
|
+
lines = []
|
|
277
|
+
if not self.valid:
|
|
278
|
+
lines.append("MISSING REQUIRED ANALYSIS:")
|
|
279
|
+
for m in self.missing_sections:
|
|
280
|
+
lines.append(f" - {m}")
|
|
281
|
+
for w in self.warnings:
|
|
282
|
+
lines.append(f" Warning: {w}")
|
|
283
|
+
return "\n".join(lines)
|
|
284
|
+
|
|
285
|
+
def print_summary(self):
|
|
286
|
+
print(self.format_summary())
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
def validate_temporal_findings(findings: Any) -> FindingsValidationResult:
|
|
290
|
+
missing: List[str] = []
|
|
291
|
+
warnings: List[str] = []
|
|
292
|
+
|
|
293
|
+
if findings.time_series_metadata is None:
|
|
294
|
+
missing.append("time_series_metadata (run 01a first)")
|
|
295
|
+
elif not findings.time_series_metadata.suggested_aggregations:
|
|
296
|
+
warnings.append("No aggregation windows defined - defaults will be used")
|
|
297
|
+
|
|
298
|
+
pattern_meta = findings.metadata.get("temporal_patterns", {}) if findings.metadata else {}
|
|
299
|
+
if not pattern_meta:
|
|
300
|
+
missing.append("temporal_patterns (run 01c first)")
|
|
301
|
+
else:
|
|
302
|
+
for section in ["trend", "recency", "momentum"]:
|
|
303
|
+
if section not in pattern_meta:
|
|
304
|
+
warnings.append(f"No {section} analysis found in 01c")
|
|
305
|
+
|
|
306
|
+
return FindingsValidationResult(
|
|
307
|
+
valid=len(missing) == 0,
|
|
308
|
+
missing_sections=missing,
|
|
309
|
+
warnings=warnings,
|
|
310
|
+
)
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
@dataclass
|
|
314
|
+
class AggregationFeatureConfig:
|
|
315
|
+
trend_features: List[str] = field(default_factory=list)
|
|
316
|
+
seasonality_features: List[str] = field(default_factory=list)
|
|
317
|
+
cohort_features: List[str] = field(default_factory=list)
|
|
318
|
+
recency_features: List[str] = field(default_factory=list)
|
|
319
|
+
categorical_features: List[str] = field(default_factory=list)
|
|
320
|
+
velocity_features: List[str] = field(default_factory=list)
|
|
321
|
+
momentum_features: List[str] = field(default_factory=list)
|
|
322
|
+
lag_features: List[str] = field(default_factory=list)
|
|
323
|
+
sparkline_features: List[str] = field(default_factory=list)
|
|
324
|
+
priority_features: List[str] = field(default_factory=list)
|
|
325
|
+
text_pca_columns: List[str] = field(default_factory=list)
|
|
326
|
+
scaling_recommendations: List[Dict[str, Any]] = field(default_factory=list)
|
|
327
|
+
divergent_columns: List[str] = field(default_factory=list)
|
|
328
|
+
feature_flags: Dict[str, Any] = field(default_factory=dict)
|
|
329
|
+
|
|
330
|
+
@classmethod
|
|
331
|
+
def from_findings(cls, findings: Any) -> "AggregationFeatureConfig":
|
|
332
|
+
pattern_meta = findings.metadata.get("temporal_patterns", {}) if findings.metadata else {}
|
|
333
|
+
|
|
334
|
+
def extract_features(section: str) -> List[str]:
|
|
335
|
+
features = []
|
|
336
|
+
for rec in pattern_meta.get(section, {}).get("recommendations", []):
|
|
337
|
+
features.extend(rec.get("features", []))
|
|
338
|
+
return features
|
|
339
|
+
|
|
340
|
+
def extract_priority_features(section: str, priority_values: tuple = ("high",)) -> List[str]:
|
|
341
|
+
features = []
|
|
342
|
+
for rec in pattern_meta.get(section, {}).get("recommendations", []):
|
|
343
|
+
if rec.get("priority") in priority_values or rec.get("priority") == 1:
|
|
344
|
+
features.extend(rec.get("features", []))
|
|
345
|
+
if rec.get("feature"):
|
|
346
|
+
features.append(rec["feature"])
|
|
347
|
+
return features
|
|
348
|
+
|
|
349
|
+
cohort_features = [f for rec in pattern_meta.get("cohort", {}).get("recommendations", []) if rec.get("action") != "skip_cohort_features" for f in rec.get("features", [])]
|
|
350
|
+
sparkline_features = extract_features("sparkline")
|
|
351
|
+
scaling_recs = [rec for rec in pattern_meta.get("sparkline", {}).get("recommendations", []) if rec.get("action") in ("robust_scale", "normalize")]
|
|
352
|
+
priority_set: set = set()
|
|
353
|
+
for section in ["effect_size", "predictive_power", "velocity", "momentum"]:
|
|
354
|
+
priority_set.update(extract_priority_features(section))
|
|
355
|
+
for rec in pattern_meta.get("effect_size", {}).get("recommendations", []):
|
|
356
|
+
if rec.get("action") == "prioritize_feature" and rec.get("feature"):
|
|
357
|
+
priority_set.add(rec["feature"])
|
|
358
|
+
for rec in pattern_meta.get("predictive_power", {}).get("recommendations", []):
|
|
359
|
+
if rec.get("action") == "include_feature" and rec.get("feature"):
|
|
360
|
+
priority_set.add(rec["feature"])
|
|
361
|
+
|
|
362
|
+
text_pca_cols = _extract_text_pca_columns(findings)
|
|
363
|
+
|
|
364
|
+
return cls(
|
|
365
|
+
trend_features=extract_features("trend"),
|
|
366
|
+
seasonality_features=extract_features("seasonality"),
|
|
367
|
+
cohort_features=cohort_features,
|
|
368
|
+
recency_features=extract_features("recency"),
|
|
369
|
+
categorical_features=extract_features("categorical"),
|
|
370
|
+
velocity_features=extract_features("velocity"),
|
|
371
|
+
momentum_features=extract_features("momentum"),
|
|
372
|
+
lag_features=extract_features("lag"),
|
|
373
|
+
sparkline_features=sparkline_features,
|
|
374
|
+
text_pca_columns=text_pca_cols,
|
|
375
|
+
priority_features=list(priority_set),
|
|
376
|
+
scaling_recommendations=scaling_recs,
|
|
377
|
+
divergent_columns=pattern_meta.get("momentum", {}).get("_divergent_columns", []),
|
|
378
|
+
feature_flags=pattern_meta.get("feature_flags", {}),
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
def get_all_features(self) -> List[str]:
|
|
382
|
+
all_feats = (
|
|
383
|
+
self.trend_features + self.seasonality_features + self.cohort_features
|
|
384
|
+
+ self.recency_features + self.categorical_features + self.velocity_features
|
|
385
|
+
+ self.momentum_features + self.lag_features + self.sparkline_features
|
|
386
|
+
+ self.text_pca_columns
|
|
387
|
+
)
|
|
388
|
+
return list(dict.fromkeys(all_feats))
|
|
389
|
+
|
|
390
|
+
def get_priority_features(self) -> List[str]:
|
|
391
|
+
return self.priority_features
|
|
392
|
+
|
|
393
|
+
def format_summary(self) -> str:
|
|
394
|
+
lines = ["=" * 70, "AGGREGATION FEATURE CONFIG", "=" * 70]
|
|
395
|
+
if self.trend_features:
|
|
396
|
+
lines.append(f"\nTrend features: {self.trend_features}")
|
|
397
|
+
if self.seasonality_features:
|
|
398
|
+
lines.append(f"Seasonality features: {self.seasonality_features}")
|
|
399
|
+
if self.cohort_features:
|
|
400
|
+
lines.append(f"Cohort features: {self.cohort_features}")
|
|
401
|
+
if self.recency_features:
|
|
402
|
+
lines.append(f"Recency features: {self.recency_features}")
|
|
403
|
+
if self.categorical_features:
|
|
404
|
+
lines.append(f"Categorical features: {self.categorical_features}")
|
|
405
|
+
if self.velocity_features:
|
|
406
|
+
lines.append(f"Velocity features: {self.velocity_features}")
|
|
407
|
+
if self.momentum_features:
|
|
408
|
+
lines.append(f"Momentum features: {self.momentum_features}")
|
|
409
|
+
if self.lag_features:
|
|
410
|
+
lines.append(f"Lag features: {self.lag_features}")
|
|
411
|
+
if self.sparkline_features:
|
|
412
|
+
lines.append(f"Sparkline features: {self.sparkline_features}")
|
|
413
|
+
if self.priority_features:
|
|
414
|
+
lines.append(f"\nPriority features (from effect size/IV): {self.priority_features}")
|
|
415
|
+
if self.scaling_recommendations:
|
|
416
|
+
lines.append(f"Scaling recommendations: {len(self.scaling_recommendations)} features")
|
|
417
|
+
if self.divergent_columns:
|
|
418
|
+
lines.append(f"\nDivergent columns: {self.divergent_columns}")
|
|
419
|
+
if self.text_pca_columns:
|
|
420
|
+
lines.append(f"Text PCA columns: {self.text_pca_columns}")
|
|
421
|
+
if self.feature_flags:
|
|
422
|
+
lines.append(f"\nFeature flags: {self.feature_flags}")
|
|
423
|
+
return "\n".join(lines)
|
|
424
|
+
|
|
425
|
+
def format_recommendation_summary(self) -> str:
|
|
426
|
+
sections = [
|
|
427
|
+
("trend", self.trend_features),
|
|
428
|
+
("seasonality", self.seasonality_features),
|
|
429
|
+
("recency", self.recency_features),
|
|
430
|
+
("cohort", self.cohort_features),
|
|
431
|
+
("velocity", self.velocity_features),
|
|
432
|
+
("momentum", self.momentum_features),
|
|
433
|
+
("lag", self.lag_features),
|
|
434
|
+
("sparkline", self.sparkline_features),
|
|
435
|
+
("effect_size", self.priority_features),
|
|
436
|
+
("predictive_power", self.priority_features),
|
|
437
|
+
("text_pca", self.text_pca_columns),
|
|
438
|
+
]
|
|
439
|
+
lines = ["RECOMMENDATION APPLICATION SUMMARY", "=" * 50]
|
|
440
|
+
lines.append(f"{'Section':<20} {'Features':>8}")
|
|
441
|
+
lines.append("-" * 30)
|
|
442
|
+
total = 0
|
|
443
|
+
for name, features in sections:
|
|
444
|
+
n = len(features)
|
|
445
|
+
total += n
|
|
446
|
+
lines.append(f"{name:<20} {n:>8}")
|
|
447
|
+
lines.append("-" * 30)
|
|
448
|
+
lines.append(f"{'Total':<20} {total:>8}")
|
|
449
|
+
if self.feature_flags:
|
|
450
|
+
lines.append(f"\nFeature flags: {self.feature_flags}")
|
|
451
|
+
if self.scaling_recommendations:
|
|
452
|
+
lines.append(f"Scaling recs: {len(self.scaling_recommendations)}")
|
|
453
|
+
return "\n".join(lines)
|
|
454
|
+
|
|
455
|
+
def print_recommendation_summary(self):
|
|
456
|
+
print(self.format_recommendation_summary())
|
|
457
|
+
|
|
458
|
+
def print_summary(self):
|
|
459
|
+
print(self.format_summary())
|
|
460
|
+
|
|
461
|
+
|
|
462
|
+
def _extract_text_pca_columns(findings: Any) -> List[str]:
|
|
463
|
+
text_processing = getattr(findings, "text_processing", None)
|
|
464
|
+
if not text_processing:
|
|
465
|
+
return []
|
|
466
|
+
columns = []
|
|
467
|
+
for meta in text_processing.values():
|
|
468
|
+
cols = getattr(meta, "component_columns", None) or []
|
|
469
|
+
columns.extend(cols)
|
|
470
|
+
return columns
|
|
471
|
+
|
|
472
|
+
|
|
473
|
+
def get_duplicate_event_count(findings: Any) -> int:
|
|
474
|
+
metadata = getattr(findings, "metadata", None) or {}
|
|
475
|
+
issues = (metadata.get("temporal_quality") or {}).get("issues") or {}
|
|
476
|
+
return issues.get("duplicate_events", 0)
|
|
477
|
+
|
|
478
|
+
|
|
479
|
+
def deduplicate_events(df: DataFrame, entity_column: str, time_column: str, duplicate_count: int = 0) -> Tuple[DataFrame, int]:
|
|
480
|
+
if duplicate_count <= 0:
|
|
481
|
+
return df, 0
|
|
482
|
+
before = len(df)
|
|
483
|
+
df = df.drop_duplicates(subset=[entity_column, time_column], keep="first")
|
|
484
|
+
return df, before - len(df)
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
def create_recency_bucket_feature(df: DataFrame, recency_column: str = "days_since_last_event") -> DataFrame:
|
|
488
|
+
if recency_column not in df.columns:
|
|
489
|
+
return df
|
|
490
|
+
edges = [0, 7, 30, 90, 180, float("inf")]
|
|
491
|
+
labels = ["0-7d", "8-30d", "31-90d", "91-180d", ">180d"]
|
|
492
|
+
df = df.copy()
|
|
493
|
+
df["recency_bucket"] = pd.cut(df[recency_column], bins=edges, labels=labels, include_lowest=True).astype("object")
|
|
494
|
+
df.loc[df[recency_column].isna(), "recency_bucket"] = np.nan
|
|
495
|
+
return df
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
def create_momentum_ratio_features(df: DataFrame, momentum_recs: List[Dict[str, Any]]) -> DataFrame:
|
|
499
|
+
df = df.copy()
|
|
500
|
+
for rec in momentum_recs:
|
|
501
|
+
params = rec.get("params", {})
|
|
502
|
+
short_w, long_w = params.get("short_window"), params.get("long_window")
|
|
503
|
+
source = rec.get("source_column", "")
|
|
504
|
+
if not (short_w and long_w and source):
|
|
505
|
+
continue
|
|
506
|
+
short_col = f"{source}_mean_{short_w}d"
|
|
507
|
+
long_col = f"{source}_mean_{long_w}d"
|
|
508
|
+
if short_col not in df.columns or long_col not in df.columns:
|
|
509
|
+
continue
|
|
510
|
+
feature_name = f"{source}_momentum_{short_w}_{long_w}"
|
|
511
|
+
df[feature_name] = df[short_col] / df[long_col].replace(0, np.nan)
|
|
512
|
+
df[feature_name] = df[feature_name].fillna(1.0)
|
|
513
|
+
return df
|