churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,488 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import Dict, List, Optional
|
|
3
|
+
|
|
4
|
+
import pandas as pd
|
|
5
|
+
|
|
6
|
+
from .window_recommendation import WINDOW_DAYS_MAP
|
|
7
|
+
|
|
8
|
+
DEFAULT_CANDIDATE_WINDOWS = ["7d", "30d", "90d", "180d", "365d", "all_time"]
|
|
9
|
+
GAP_THRESHOLD_MULTIPLIER = 3.0
|
|
10
|
+
VOLUME_CHANGE_GROWING = 0.25
|
|
11
|
+
VOLUME_CHANGE_DECLINING = -0.25
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@dataclass
|
|
15
|
+
class FeatureAvailability:
|
|
16
|
+
column: str
|
|
17
|
+
first_valid_date: Optional[pd.Timestamp]
|
|
18
|
+
last_valid_date: Optional[pd.Timestamp]
|
|
19
|
+
valid_count: int
|
|
20
|
+
total_count: int
|
|
21
|
+
coverage_pct: float
|
|
22
|
+
availability_type: str
|
|
23
|
+
days_from_start: Optional[int]
|
|
24
|
+
days_before_end: Optional[int]
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@dataclass
|
|
28
|
+
class FeatureAvailabilityResult:
|
|
29
|
+
data_start: pd.Timestamp
|
|
30
|
+
data_end: pd.Timestamp
|
|
31
|
+
time_span_days: int
|
|
32
|
+
features: List[FeatureAvailability]
|
|
33
|
+
new_tracking: List[str]
|
|
34
|
+
retired_tracking: List[str]
|
|
35
|
+
partial_window: List[str]
|
|
36
|
+
recommendations: List[Dict]
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
@dataclass
|
|
40
|
+
class TemporalGap:
|
|
41
|
+
start: pd.Timestamp
|
|
42
|
+
end: pd.Timestamp
|
|
43
|
+
duration_days: float
|
|
44
|
+
severity: str
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@dataclass
|
|
48
|
+
class EntityWindowCoverage:
|
|
49
|
+
window: str
|
|
50
|
+
window_days: Optional[float]
|
|
51
|
+
active_entities: int
|
|
52
|
+
coverage_pct: float
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@dataclass
|
|
56
|
+
class DriftImplication:
|
|
57
|
+
risk_level: str
|
|
58
|
+
volume_drift_risk: str
|
|
59
|
+
population_stability: float
|
|
60
|
+
regime_count: int
|
|
61
|
+
regime_boundaries: List[pd.Timestamp]
|
|
62
|
+
recommended_training_start: Optional[pd.Timestamp]
|
|
63
|
+
rationale: List[str]
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
@dataclass
|
|
67
|
+
class TemporalCoverageResult:
|
|
68
|
+
time_span_days: int
|
|
69
|
+
first_event: pd.Timestamp
|
|
70
|
+
last_event: pd.Timestamp
|
|
71
|
+
gaps: List[TemporalGap]
|
|
72
|
+
entity_window_coverage: List[EntityWindowCoverage]
|
|
73
|
+
volume_trend: str
|
|
74
|
+
volume_change_pct: float
|
|
75
|
+
recommendations: List[str]
|
|
76
|
+
events_over_time: pd.Series
|
|
77
|
+
new_entities_over_time: pd.Series
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def analyze_temporal_coverage(
|
|
81
|
+
df: pd.DataFrame, entity_column: str, time_column: str,
|
|
82
|
+
candidate_windows: Optional[List[str]] = None,
|
|
83
|
+
reference_date: Optional[pd.Timestamp] = None,
|
|
84
|
+
) -> TemporalCoverageResult:
|
|
85
|
+
times = pd.to_datetime(df[time_column])
|
|
86
|
+
first_event = times.min()
|
|
87
|
+
last_event = times.max()
|
|
88
|
+
time_span_days = max(0, (last_event - first_event).days)
|
|
89
|
+
ref_date = reference_date if reference_date is not None else last_event
|
|
90
|
+
windows = candidate_windows if candidate_windows is not None else DEFAULT_CANDIDATE_WINDOWS
|
|
91
|
+
|
|
92
|
+
grouper_freq, range_freq = _choose_freq(time_span_days)
|
|
93
|
+
df_indexed = pd.DataFrame({"_t": times, "_e": df[entity_column].values})
|
|
94
|
+
df_indexed = df_indexed.set_index("_t").sort_index()
|
|
95
|
+
|
|
96
|
+
events_over_time = df_indexed.resample(grouper_freq).size()
|
|
97
|
+
events_over_time.name = "event_count"
|
|
98
|
+
|
|
99
|
+
first_per_entity = df.assign(_t=times).groupby(entity_column)["_t"].min()
|
|
100
|
+
fpe_indexed = pd.DataFrame({"_count": 1}, index=first_per_entity.values)
|
|
101
|
+
fpe_indexed.index.name = "_t"
|
|
102
|
+
new_entities = fpe_indexed.resample(grouper_freq)["_count"].sum().fillna(0).astype(int)
|
|
103
|
+
new_entities.name = "new_entities"
|
|
104
|
+
|
|
105
|
+
gaps = _detect_gaps(events_over_time, range_freq)
|
|
106
|
+
coverage = _compute_entity_window_coverage(df, entity_column, times, ref_date, windows)
|
|
107
|
+
volume_trend, volume_change = _assess_volume_trend(events_over_time)
|
|
108
|
+
recommendations = _build_recommendations(gaps, volume_trend, volume_change, time_span_days, coverage)
|
|
109
|
+
|
|
110
|
+
return TemporalCoverageResult(
|
|
111
|
+
time_span_days=time_span_days, first_event=first_event, last_event=last_event,
|
|
112
|
+
gaps=gaps, entity_window_coverage=coverage,
|
|
113
|
+
volume_trend=volume_trend, volume_change_pct=volume_change,
|
|
114
|
+
recommendations=recommendations,
|
|
115
|
+
events_over_time=events_over_time, new_entities_over_time=new_entities,
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
def derive_drift_implications(result: TemporalCoverageResult) -> DriftImplication:
|
|
120
|
+
major_gaps = [g for g in result.gaps if g.severity == "major"]
|
|
121
|
+
regime_boundaries = [g.end for g in major_gaps]
|
|
122
|
+
regime_count = len(regime_boundaries) + 1
|
|
123
|
+
recommended_start = regime_boundaries[-1] if regime_boundaries else None
|
|
124
|
+
volume_drift_risk = _volume_to_drift_risk(result.volume_trend)
|
|
125
|
+
population_stability = _compute_population_stability(result.new_entities_over_time)
|
|
126
|
+
risk_level = _assess_overall_drift_risk(
|
|
127
|
+
volume_drift_risk, population_stability, regime_count, result.time_span_days,
|
|
128
|
+
)
|
|
129
|
+
rationale = _build_drift_rationale(
|
|
130
|
+
volume_drift_risk, result.volume_change_pct, population_stability,
|
|
131
|
+
regime_count, result.time_span_days, major_gaps,
|
|
132
|
+
)
|
|
133
|
+
return DriftImplication(
|
|
134
|
+
risk_level=risk_level, volume_drift_risk=volume_drift_risk,
|
|
135
|
+
population_stability=population_stability, regime_count=regime_count,
|
|
136
|
+
regime_boundaries=regime_boundaries, recommended_training_start=recommended_start,
|
|
137
|
+
rationale=rationale,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def _volume_to_drift_risk(volume_trend: str) -> str:
|
|
142
|
+
if volume_trend == "growing":
|
|
143
|
+
return "growing"
|
|
144
|
+
if volume_trend == "declining":
|
|
145
|
+
return "declining"
|
|
146
|
+
return "none"
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
def _compute_population_stability(new_entities: pd.Series) -> float:
|
|
150
|
+
if len(new_entities) < 4:
|
|
151
|
+
return 0.5
|
|
152
|
+
total_new = new_entities.sum()
|
|
153
|
+
if total_new == 0:
|
|
154
|
+
return 1.0
|
|
155
|
+
mid = len(new_entities) // 2
|
|
156
|
+
second_half_new = new_entities.iloc[mid:].sum()
|
|
157
|
+
fresh_fraction = second_half_new / total_new
|
|
158
|
+
positive = new_entities[new_entities > 0]
|
|
159
|
+
burstiness = min(1.0, (positive.std() / positive.mean()) / 2.0) if len(positive) >= 2 and positive.mean() > 0 else 0.5
|
|
160
|
+
return round(max(0.0, min(1.0, 1.0 - fresh_fraction * 0.6 - burstiness * 0.4)), 4)
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
def _assess_overall_drift_risk(
|
|
164
|
+
volume_drift_risk: str, population_stability: float,
|
|
165
|
+
regime_count: int, time_span_days: int,
|
|
166
|
+
) -> str:
|
|
167
|
+
risk_score = 0.0
|
|
168
|
+
if volume_drift_risk != "none":
|
|
169
|
+
risk_score += 0.3 if volume_drift_risk == "growing" else 0.4
|
|
170
|
+
if population_stability < 0.5:
|
|
171
|
+
risk_score += 0.3
|
|
172
|
+
elif population_stability < 0.7:
|
|
173
|
+
risk_score += 0.15
|
|
174
|
+
if regime_count > 1:
|
|
175
|
+
risk_score += 0.2 * min(regime_count - 1, 3)
|
|
176
|
+
if time_span_days < 90:
|
|
177
|
+
risk_score += 0.3
|
|
178
|
+
if risk_score < 0.25:
|
|
179
|
+
return "low"
|
|
180
|
+
if risk_score < 0.5:
|
|
181
|
+
return "moderate"
|
|
182
|
+
return "high"
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
def _build_drift_rationale(
|
|
186
|
+
volume_drift_risk: str, volume_change_pct: float,
|
|
187
|
+
population_stability: float, regime_count: int,
|
|
188
|
+
time_span_days: int, major_gaps: List[TemporalGap],
|
|
189
|
+
) -> List[str]:
|
|
190
|
+
rationale = []
|
|
191
|
+
if volume_drift_risk == "declining":
|
|
192
|
+
rationale.append(
|
|
193
|
+
f"Volume declining ({volume_change_pct:+.0%}) — feature distributions "
|
|
194
|
+
f"computed over recent windows will differ from historical baselines"
|
|
195
|
+
)
|
|
196
|
+
elif volume_drift_risk == "growing":
|
|
197
|
+
rationale.append(
|
|
198
|
+
f"Volume growing ({volume_change_pct:+.0%}) — earlier periods have sparser "
|
|
199
|
+
f"data; model trained on full history may underweight recent patterns"
|
|
200
|
+
)
|
|
201
|
+
if regime_count > 1:
|
|
202
|
+
total_gap_days = sum(g.duration_days for g in major_gaps)
|
|
203
|
+
rationale.append(
|
|
204
|
+
f"{regime_count} distinct data regimes separated by {len(major_gaps)} major "
|
|
205
|
+
f"gap(s) ({total_gap_days:.0f}d total) — training across regime boundaries "
|
|
206
|
+
f"mixes incompatible distributions"
|
|
207
|
+
)
|
|
208
|
+
if population_stability < 0.5:
|
|
209
|
+
rationale.append(
|
|
210
|
+
f"Low population stability ({population_stability:.2f}) — entity influx is "
|
|
211
|
+
f"highly uneven, indicating population composition drift"
|
|
212
|
+
)
|
|
213
|
+
elif population_stability < 0.7:
|
|
214
|
+
rationale.append(
|
|
215
|
+
f"Moderate population stability ({population_stability:.2f}) — some variation "
|
|
216
|
+
f"in entity influx rate suggests gradual population shift"
|
|
217
|
+
)
|
|
218
|
+
if time_span_days < 90:
|
|
219
|
+
rationale.append(
|
|
220
|
+
f"Short observation span ({time_span_days}d) — insufficient history to "
|
|
221
|
+
f"establish stable baselines for drift detection"
|
|
222
|
+
)
|
|
223
|
+
if not rationale:
|
|
224
|
+
rationale.append("Stable volume, consistent population influx, no regime breaks detected")
|
|
225
|
+
return rationale
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def _choose_freq(time_span_days: int) -> tuple:
|
|
229
|
+
if time_span_days <= 90:
|
|
230
|
+
return "D", "D"
|
|
231
|
+
if time_span_days <= 730:
|
|
232
|
+
return "W-MON", "W-MON"
|
|
233
|
+
return "ME", "ME"
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
def _detect_gaps(events_over_time: pd.Series, freq: str) -> List[TemporalGap]:
|
|
237
|
+
if len(events_over_time) < 3:
|
|
238
|
+
return []
|
|
239
|
+
series = events_over_time.copy()
|
|
240
|
+
median_volume = series[series > 0].median() if (series > 0).any() else 0
|
|
241
|
+
if median_volume == 0:
|
|
242
|
+
return []
|
|
243
|
+
threshold = max(1, median_volume / GAP_THRESHOLD_MULTIPLIER)
|
|
244
|
+
|
|
245
|
+
gaps: List[TemporalGap] = []
|
|
246
|
+
gap_start = None
|
|
247
|
+
for ts, vol in series.items():
|
|
248
|
+
if vol < threshold:
|
|
249
|
+
if gap_start is None:
|
|
250
|
+
gap_start = ts
|
|
251
|
+
else:
|
|
252
|
+
if gap_start is not None:
|
|
253
|
+
duration = (ts - gap_start).days
|
|
254
|
+
if duration >= 3:
|
|
255
|
+
gaps.append(TemporalGap(
|
|
256
|
+
start=gap_start, end=ts,
|
|
257
|
+
duration_days=float(duration),
|
|
258
|
+
severity=_classify_gap_severity(duration),
|
|
259
|
+
))
|
|
260
|
+
gap_start = None
|
|
261
|
+
if gap_start is not None:
|
|
262
|
+
end = series.index[-1]
|
|
263
|
+
duration = (end - gap_start).days
|
|
264
|
+
if duration >= 3:
|
|
265
|
+
gaps.append(TemporalGap(
|
|
266
|
+
start=gap_start, end=end,
|
|
267
|
+
duration_days=float(duration),
|
|
268
|
+
severity=_classify_gap_severity(duration),
|
|
269
|
+
))
|
|
270
|
+
return gaps
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
def _classify_gap_severity(duration_days: float) -> str:
|
|
274
|
+
if duration_days < 7:
|
|
275
|
+
return "minor"
|
|
276
|
+
if duration_days < 30:
|
|
277
|
+
return "moderate"
|
|
278
|
+
return "major"
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
def _compute_entity_window_coverage(
|
|
282
|
+
df: pd.DataFrame, entity_column: str, times: pd.Series,
|
|
283
|
+
reference_date: pd.Timestamp, windows: List[str],
|
|
284
|
+
) -> List[EntityWindowCoverage]:
|
|
285
|
+
total_entities = df[entity_column].nunique()
|
|
286
|
+
results = []
|
|
287
|
+
for window in windows:
|
|
288
|
+
window_days = WINDOW_DAYS_MAP.get(window)
|
|
289
|
+
if window_days is None:
|
|
290
|
+
results.append(EntityWindowCoverage(
|
|
291
|
+
window=window, window_days=None,
|
|
292
|
+
active_entities=total_entities, coverage_pct=1.0,
|
|
293
|
+
))
|
|
294
|
+
continue
|
|
295
|
+
cutoff = reference_date - pd.Timedelta(days=window_days)
|
|
296
|
+
mask = (times >= cutoff) & (times <= reference_date)
|
|
297
|
+
active = df.loc[mask, entity_column].nunique()
|
|
298
|
+
results.append(EntityWindowCoverage(
|
|
299
|
+
window=window, window_days=window_days,
|
|
300
|
+
active_entities=active, coverage_pct=active / total_entities if total_entities > 0 else 0.0,
|
|
301
|
+
))
|
|
302
|
+
return results
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
def _assess_volume_trend(events_over_time: pd.Series) -> tuple:
|
|
306
|
+
if len(events_over_time) < 4:
|
|
307
|
+
return "stable", 0.0
|
|
308
|
+
mid = len(events_over_time) // 2
|
|
309
|
+
first_half = events_over_time.iloc[:mid].mean()
|
|
310
|
+
second_half = events_over_time.iloc[mid:].mean()
|
|
311
|
+
if first_half == 0:
|
|
312
|
+
change_pct = 1.0 if second_half > 0 else 0.0
|
|
313
|
+
else:
|
|
314
|
+
change_pct = (second_half - first_half) / first_half
|
|
315
|
+
if change_pct > VOLUME_CHANGE_GROWING:
|
|
316
|
+
return "growing", round(float(change_pct), 4)
|
|
317
|
+
if change_pct < VOLUME_CHANGE_DECLINING:
|
|
318
|
+
return "declining", round(float(change_pct), 4)
|
|
319
|
+
return "stable", round(float(change_pct), 4)
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
def _build_recommendations(
|
|
323
|
+
gaps: List[TemporalGap], volume_trend: str, volume_change: float,
|
|
324
|
+
time_span_days: int, coverage: List[EntityWindowCoverage],
|
|
325
|
+
) -> List[str]:
|
|
326
|
+
recs = []
|
|
327
|
+
major_gaps = [g for g in gaps if g.severity == "major"]
|
|
328
|
+
if major_gaps:
|
|
329
|
+
total_gap_days = sum(g.duration_days for g in major_gaps)
|
|
330
|
+
recs.append(
|
|
331
|
+
f"Data has {len(major_gaps)} major gap(s) totaling {total_gap_days:.0f} days "
|
|
332
|
+
f"— consider excluding gap periods or treating them as separate epochs"
|
|
333
|
+
)
|
|
334
|
+
if volume_trend == "declining":
|
|
335
|
+
recs.append(
|
|
336
|
+
f"Volume declining ({volume_change:+.0%}) — recent data may underrepresent entity activity; "
|
|
337
|
+
f"verify data pipeline completeness"
|
|
338
|
+
)
|
|
339
|
+
if volume_trend == "growing":
|
|
340
|
+
recs.append(
|
|
341
|
+
f"Volume growing ({volume_change:+.0%}) — earlier periods have sparser data; "
|
|
342
|
+
f"longer windows may mix density regimes"
|
|
343
|
+
)
|
|
344
|
+
if time_span_days < 90:
|
|
345
|
+
recs.append(
|
|
346
|
+
f"Limited time span ({time_span_days}d) — only short aggregation windows (7d, 30d) are reliable"
|
|
347
|
+
)
|
|
348
|
+
low_coverage = [c for c in coverage if c.window_days is not None and c.coverage_pct < 0.10]
|
|
349
|
+
if low_coverage:
|
|
350
|
+
windows_str = ", ".join(c.window for c in low_coverage)
|
|
351
|
+
recs.append(f"Very few entities active in windows [{windows_str}] — these may produce mostly zeros")
|
|
352
|
+
return recs
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
def analyze_feature_availability(df: pd.DataFrame, time_column: str, exclude_columns: Optional[List[str]] = None, late_start_threshold_pct: float = 10.0, early_end_threshold_pct: float = 10.0) -> FeatureAvailabilityResult:
|
|
356
|
+
times = pd.to_datetime(df[time_column])
|
|
357
|
+
data_start, data_end = times.min(), times.max()
|
|
358
|
+
time_span_days = max(1, (data_end - data_start).days)
|
|
359
|
+
late_threshold_days = time_span_days * late_start_threshold_pct / 100
|
|
360
|
+
early_threshold_days = time_span_days * early_end_threshold_pct / 100
|
|
361
|
+
|
|
362
|
+
exclude = set(exclude_columns or []) | {time_column}
|
|
363
|
+
columns_to_check = [c for c in df.columns if c not in exclude]
|
|
364
|
+
|
|
365
|
+
features = []
|
|
366
|
+
new_tracking, retired_tracking, partial_window = [], [], []
|
|
367
|
+
|
|
368
|
+
for col in columns_to_check:
|
|
369
|
+
valid_mask = df[col].notna()
|
|
370
|
+
valid_count = valid_mask.sum()
|
|
371
|
+
total_count = len(df)
|
|
372
|
+
coverage_pct = valid_count / total_count * 100 if total_count > 0 else 0
|
|
373
|
+
|
|
374
|
+
if valid_count == 0:
|
|
375
|
+
features.append(FeatureAvailability(
|
|
376
|
+
column=col, first_valid_date=None, last_valid_date=None,
|
|
377
|
+
valid_count=0, total_count=total_count, coverage_pct=0,
|
|
378
|
+
availability_type="empty", days_from_start=None, days_before_end=None
|
|
379
|
+
))
|
|
380
|
+
continue
|
|
381
|
+
|
|
382
|
+
valid_times = times[valid_mask]
|
|
383
|
+
first_valid, last_valid = valid_times.min(), valid_times.max()
|
|
384
|
+
days_from_start = (first_valid - data_start).days
|
|
385
|
+
days_before_end = (data_end - last_valid).days
|
|
386
|
+
|
|
387
|
+
is_late_start = days_from_start > late_threshold_days
|
|
388
|
+
is_early_end = days_before_end > early_threshold_days
|
|
389
|
+
|
|
390
|
+
if is_late_start and is_early_end:
|
|
391
|
+
availability_type = "partial_window"
|
|
392
|
+
partial_window.append(col)
|
|
393
|
+
elif is_late_start:
|
|
394
|
+
availability_type = "new_tracking"
|
|
395
|
+
new_tracking.append(col)
|
|
396
|
+
elif is_early_end:
|
|
397
|
+
availability_type = "retired"
|
|
398
|
+
retired_tracking.append(col)
|
|
399
|
+
else:
|
|
400
|
+
availability_type = "full"
|
|
401
|
+
|
|
402
|
+
features.append(FeatureAvailability(
|
|
403
|
+
column=col, first_valid_date=first_valid, last_valid_date=last_valid,
|
|
404
|
+
valid_count=valid_count, total_count=total_count, coverage_pct=coverage_pct,
|
|
405
|
+
availability_type=availability_type, days_from_start=days_from_start,
|
|
406
|
+
days_before_end=days_before_end
|
|
407
|
+
))
|
|
408
|
+
|
|
409
|
+
recommendations = _build_availability_recommendations(
|
|
410
|
+
features, new_tracking, retired_tracking, partial_window, time_span_days
|
|
411
|
+
)
|
|
412
|
+
|
|
413
|
+
return FeatureAvailabilityResult(
|
|
414
|
+
data_start=data_start, data_end=data_end, time_span_days=time_span_days,
|
|
415
|
+
features=features, new_tracking=new_tracking, retired_tracking=retired_tracking,
|
|
416
|
+
partial_window=partial_window, recommendations=recommendations
|
|
417
|
+
)
|
|
418
|
+
|
|
419
|
+
|
|
420
|
+
def _find_feature(features: List[FeatureAvailability], col: str) -> Optional[FeatureAvailability]:
|
|
421
|
+
return next((f for f in features if f.column == col), None)
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
def _build_new_tracking_rec(feat: FeatureAvailability, col: str) -> Dict:
|
|
425
|
+
return {
|
|
426
|
+
"column": col, "issue": "new_tracking", "priority": "high",
|
|
427
|
+
"reason": f"Tracking started {feat.days_from_start}d after data start ({feat.coverage_pct:.0f}% coverage)",
|
|
428
|
+
"options": [
|
|
429
|
+
f"Filter training data to start from {feat.first_valid_date.date()}",
|
|
430
|
+
f"Create '{col}_available' indicator for models",
|
|
431
|
+
"Exclude from features if coverage too low"
|
|
432
|
+
]
|
|
433
|
+
}
|
|
434
|
+
|
|
435
|
+
|
|
436
|
+
def _build_retired_rec(feat: FeatureAvailability, col: str) -> Dict:
|
|
437
|
+
return {
|
|
438
|
+
"column": col, "issue": "retired", "priority": "high",
|
|
439
|
+
"reason": f"Tracking stopped {feat.days_before_end}d before data end ({feat.coverage_pct:.0f}% coverage)",
|
|
440
|
+
"options": [
|
|
441
|
+
f"Filter data to end at {feat.last_valid_date.date()} for this feature",
|
|
442
|
+
f"Create '{col}_available' indicator",
|
|
443
|
+
"Exclude if feature won't be available for scoring"
|
|
444
|
+
]
|
|
445
|
+
}
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
def _build_partial_window_rec(feat: FeatureAvailability, col: str) -> Dict:
|
|
449
|
+
return {
|
|
450
|
+
"column": col, "issue": "partial_window", "priority": "high",
|
|
451
|
+
"reason": f"Only available {feat.first_valid_date.date()} to {feat.last_valid_date.date()} ({feat.coverage_pct:.0f}% coverage)",
|
|
452
|
+
"options": [
|
|
453
|
+
"Use only within available window",
|
|
454
|
+
"Consider excluding - limited applicability",
|
|
455
|
+
f"Create '{col}_available' indicator if keeping"
|
|
456
|
+
]
|
|
457
|
+
}
|
|
458
|
+
|
|
459
|
+
|
|
460
|
+
def _build_availability_recommendations(
|
|
461
|
+
features: List[FeatureAvailability], new_tracking: List[str],
|
|
462
|
+
retired_tracking: List[str], partial_window: List[str], time_span_days: int,
|
|
463
|
+
) -> List[Dict]:
|
|
464
|
+
recs = []
|
|
465
|
+
builders = [
|
|
466
|
+
(new_tracking, _build_new_tracking_rec),
|
|
467
|
+
(retired_tracking, _build_retired_rec),
|
|
468
|
+
(partial_window, _build_partial_window_rec),
|
|
469
|
+
]
|
|
470
|
+
for tracking_list, build_fn in builders:
|
|
471
|
+
for col in tracking_list:
|
|
472
|
+
feat = _find_feature(features, col)
|
|
473
|
+
if feat is not None:
|
|
474
|
+
recs.append(build_fn(feat, col))
|
|
475
|
+
|
|
476
|
+
problem_cols = new_tracking + retired_tracking + partial_window
|
|
477
|
+
if problem_cols:
|
|
478
|
+
recs.append({
|
|
479
|
+
"column": "_general_", "issue": "train_test_split", "priority": "high",
|
|
480
|
+
"reason": f"{len(problem_cols)} columns have availability boundaries",
|
|
481
|
+
"options": [
|
|
482
|
+
"Ensure train/test split doesn't cross availability boundaries",
|
|
483
|
+
"Use time-based split after latest tracking start date",
|
|
484
|
+
"Document which features are unavailable for which periods"
|
|
485
|
+
]
|
|
486
|
+
})
|
|
487
|
+
|
|
488
|
+
return recs
|