churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
"""Fairness analysis for model predictions."""
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import Dict, List, Optional
|
|
5
|
+
|
|
6
|
+
from customer_retention.core.compat import Series, pd
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@dataclass
|
|
10
|
+
class GroupMetrics:
|
|
11
|
+
group_name: str
|
|
12
|
+
size: int
|
|
13
|
+
positive_rate: float
|
|
14
|
+
true_positive_rate: Optional[float] = None
|
|
15
|
+
false_positive_rate: Optional[float] = None
|
|
16
|
+
accuracy: Optional[float] = None
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@dataclass
|
|
20
|
+
class FairnessMetric:
|
|
21
|
+
name: str
|
|
22
|
+
values: Dict[str, float]
|
|
23
|
+
ratio: float
|
|
24
|
+
passed: bool
|
|
25
|
+
threshold: float
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@dataclass
|
|
29
|
+
class FairnessResult:
|
|
30
|
+
passed: bool
|
|
31
|
+
metrics: List[FairnessMetric]
|
|
32
|
+
group_metrics: Dict[str, GroupMetrics]
|
|
33
|
+
recommendations: List[str]
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class FairnessAnalyzer:
|
|
37
|
+
def __init__(self, threshold: float = 0.8):
|
|
38
|
+
self.threshold = threshold
|
|
39
|
+
|
|
40
|
+
def analyze(self, y_true: Series, y_pred: Series,
|
|
41
|
+
protected: Series) -> FairnessResult:
|
|
42
|
+
groups = protected.unique()
|
|
43
|
+
group_metrics = {}
|
|
44
|
+
metrics = []
|
|
45
|
+
for group in groups:
|
|
46
|
+
mask = protected == group
|
|
47
|
+
y_t = y_true[mask]
|
|
48
|
+
y_p = y_pred[mask]
|
|
49
|
+
positive_rate = y_p.mean()
|
|
50
|
+
accuracy = (y_t == y_p).mean()
|
|
51
|
+
tp = ((y_t == 1) & (y_p == 1)).sum()
|
|
52
|
+
fn = ((y_t == 1) & (y_p == 0)).sum()
|
|
53
|
+
fp = ((y_t == 0) & (y_p == 1)).sum()
|
|
54
|
+
tn = ((y_t == 0) & (y_p == 0)).sum()
|
|
55
|
+
tpr = tp / (tp + fn) if (tp + fn) > 0 else 0
|
|
56
|
+
fpr = fp / (fp + tn) if (fp + tn) > 0 else 0
|
|
57
|
+
group_metrics[group] = GroupMetrics(
|
|
58
|
+
group_name=group,
|
|
59
|
+
size=int(mask.sum()),
|
|
60
|
+
positive_rate=float(positive_rate),
|
|
61
|
+
true_positive_rate=float(tpr),
|
|
62
|
+
false_positive_rate=float(fpr),
|
|
63
|
+
accuracy=float(accuracy)
|
|
64
|
+
)
|
|
65
|
+
positive_rates = {g: m.positive_rate for g, m in group_metrics.items()}
|
|
66
|
+
if positive_rates:
|
|
67
|
+
min_rate = min(positive_rates.values())
|
|
68
|
+
max_rate = max(positive_rates.values())
|
|
69
|
+
dp_ratio = min_rate / max_rate if max_rate > 0 else 1.0
|
|
70
|
+
metrics.append(FairnessMetric(
|
|
71
|
+
name="demographic_parity",
|
|
72
|
+
values=positive_rates,
|
|
73
|
+
ratio=dp_ratio,
|
|
74
|
+
passed=dp_ratio >= self.threshold,
|
|
75
|
+
threshold=self.threshold
|
|
76
|
+
))
|
|
77
|
+
metrics.append(FairnessMetric(
|
|
78
|
+
name="disparate_impact",
|
|
79
|
+
values=positive_rates,
|
|
80
|
+
ratio=dp_ratio,
|
|
81
|
+
passed=dp_ratio >= self.threshold,
|
|
82
|
+
threshold=self.threshold
|
|
83
|
+
))
|
|
84
|
+
tprs = {g: m.true_positive_rate for g, m in group_metrics.items()}
|
|
85
|
+
fprs = {g: m.false_positive_rate for g, m in group_metrics.items()}
|
|
86
|
+
if tprs:
|
|
87
|
+
min_tpr = min(tprs.values())
|
|
88
|
+
max_tpr = max(tprs.values())
|
|
89
|
+
tpr_ratio = min_tpr / max_tpr if max_tpr > 0 else 1.0
|
|
90
|
+
min_fpr = min(fprs.values())
|
|
91
|
+
max_fpr = max(fprs.values())
|
|
92
|
+
fpr_ratio = min_fpr / max_fpr if max_fpr > 0 else 1.0
|
|
93
|
+
eo_ratio = min(tpr_ratio, fpr_ratio)
|
|
94
|
+
metrics.append(FairnessMetric(
|
|
95
|
+
name="equalized_odds",
|
|
96
|
+
values={"tpr_ratio": tpr_ratio, "fpr_ratio": fpr_ratio},
|
|
97
|
+
ratio=eo_ratio,
|
|
98
|
+
passed=eo_ratio >= self.threshold,
|
|
99
|
+
threshold=self.threshold
|
|
100
|
+
))
|
|
101
|
+
overall_passed = all(m.passed for m in metrics)
|
|
102
|
+
recommendations = self._generate_recommendations(metrics, group_metrics)
|
|
103
|
+
return FairnessResult(
|
|
104
|
+
passed=overall_passed,
|
|
105
|
+
metrics=metrics,
|
|
106
|
+
group_metrics=group_metrics,
|
|
107
|
+
recommendations=recommendations
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
def _generate_recommendations(self, metrics: List[FairnessMetric],
|
|
111
|
+
group_metrics: Dict[str, GroupMetrics]) -> List[str]:
|
|
112
|
+
recommendations = []
|
|
113
|
+
for metric in metrics:
|
|
114
|
+
if not metric.passed:
|
|
115
|
+
recommendations.append(
|
|
116
|
+
f"Metric '{metric.name}' failed with ratio {metric.ratio:.2f} "
|
|
117
|
+
f"(threshold: {metric.threshold}). Consider rebalancing training data."
|
|
118
|
+
)
|
|
119
|
+
accuracies = {g: m.accuracy for g, m in group_metrics.items()}
|
|
120
|
+
if accuracies:
|
|
121
|
+
max_acc = max(accuracies.values())
|
|
122
|
+
min_acc = min(accuracies.values())
|
|
123
|
+
if max_acc - min_acc > 0.1:
|
|
124
|
+
worst_group = min(accuracies, key=accuracies.get)
|
|
125
|
+
recommendations.append(
|
|
126
|
+
f"Accuracy differs significantly across groups. "
|
|
127
|
+
f"Consider additional features for {worst_group}."
|
|
128
|
+
)
|
|
129
|
+
if not recommendations:
|
|
130
|
+
recommendations.append("No significant bias detected. Model passes fairness checks.")
|
|
131
|
+
return recommendations
|
|
132
|
+
|
|
133
|
+
def analyze_calibration(self, y_true: Series, y_proba: Series,
|
|
134
|
+
protected: Series) -> FairnessResult:
|
|
135
|
+
groups = protected.unique()
|
|
136
|
+
group_metrics = {}
|
|
137
|
+
for group in groups:
|
|
138
|
+
mask = protected == group
|
|
139
|
+
y_t = y_true[mask]
|
|
140
|
+
y_p = y_proba[mask]
|
|
141
|
+
bins = pd.cut(y_p, bins=10, labels=False)
|
|
142
|
+
calibration_error = 0
|
|
143
|
+
for b in range(10):
|
|
144
|
+
bin_mask = bins == b
|
|
145
|
+
if bin_mask.sum() > 0:
|
|
146
|
+
predicted_prob = y_p[bin_mask].mean()
|
|
147
|
+
actual_prob = y_t[bin_mask].mean()
|
|
148
|
+
calibration_error += abs(predicted_prob - actual_prob) * bin_mask.sum()
|
|
149
|
+
calibration_error /= len(y_t) if len(y_t) > 0 else 1
|
|
150
|
+
group_metrics[group] = GroupMetrics(
|
|
151
|
+
group_name=group,
|
|
152
|
+
size=int(mask.sum()),
|
|
153
|
+
positive_rate=float(y_t.mean()),
|
|
154
|
+
accuracy=1 - calibration_error
|
|
155
|
+
)
|
|
156
|
+
return FairnessResult(
|
|
157
|
+
passed=True,
|
|
158
|
+
metrics=[],
|
|
159
|
+
group_metrics=group_metrics,
|
|
160
|
+
recommendations=[]
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
def analyze_multiple(self, y_true: Series, y_pred: Series,
|
|
164
|
+
protected_attributes: Dict[str, Series]) -> Dict[str, FairnessResult]:
|
|
165
|
+
return {name: self.analyze(y_true, y_pred, protected)
|
|
166
|
+
for name, protected in protected_attributes.items()}
|
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
"""Intervention matching and recommendation."""
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass, field
|
|
4
|
+
from typing import Dict, List, Optional
|
|
5
|
+
|
|
6
|
+
from customer_retention.core.components.enums import RiskSegment
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@dataclass
|
|
10
|
+
class Intervention:
|
|
11
|
+
name: str
|
|
12
|
+
cost: float
|
|
13
|
+
success_rate: float
|
|
14
|
+
channel: str
|
|
15
|
+
min_ltv: float = 0
|
|
16
|
+
applicable_segments: List[RiskSegment] = field(default_factory=list)
|
|
17
|
+
timing: str = "Within 1 week"
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@dataclass
|
|
21
|
+
class InterventionRecommendation:
|
|
22
|
+
intervention: Optional[Intervention]
|
|
23
|
+
reasoning: str
|
|
24
|
+
expected_roi: Optional[float] = None
|
|
25
|
+
timing: str = "Within 1 week"
|
|
26
|
+
priority: int = 5
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class InterventionCatalog:
|
|
30
|
+
def __init__(self, interventions: List[Intervention]):
|
|
31
|
+
self.interventions = interventions
|
|
32
|
+
self._by_name = {i.name: i for i in interventions}
|
|
33
|
+
|
|
34
|
+
def get(self, name: str) -> Optional[Intervention]:
|
|
35
|
+
return self._by_name.get(name)
|
|
36
|
+
|
|
37
|
+
def filter_by_segment(self, segment: RiskSegment) -> List[Intervention]:
|
|
38
|
+
return [i for i in self.interventions if segment in i.applicable_segments]
|
|
39
|
+
|
|
40
|
+
def filter_by_ltv(self, min_ltv: float) -> List[Intervention]:
|
|
41
|
+
return [i for i in self.interventions if i.min_ltv <= min_ltv]
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class InterventionMatcher:
|
|
45
|
+
PRIORITY_MAP = {RiskSegment.CRITICAL: 1, RiskSegment.HIGH: 2,
|
|
46
|
+
RiskSegment.MEDIUM: 3, RiskSegment.LOW: 4, RiskSegment.VERY_LOW: 5}
|
|
47
|
+
TIMING_MAP = {
|
|
48
|
+
RiskSegment.CRITICAL: "Within 24 hours",
|
|
49
|
+
RiskSegment.HIGH: "Within 3 days",
|
|
50
|
+
RiskSegment.MEDIUM: "Within 1 week",
|
|
51
|
+
RiskSegment.LOW: "Within 2 weeks",
|
|
52
|
+
RiskSegment.VERY_LOW: "Standard schedule"
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
def __init__(self, catalog: InterventionCatalog, avg_ltv: float = 500):
|
|
56
|
+
self.catalog = catalog
|
|
57
|
+
self.avg_ltv = avg_ltv
|
|
58
|
+
|
|
59
|
+
def match(self, risk_segment: RiskSegment, customer_ltv: float,
|
|
60
|
+
churn_probability: float = 0.5) -> InterventionRecommendation:
|
|
61
|
+
if risk_segment == RiskSegment.VERY_LOW:
|
|
62
|
+
return InterventionRecommendation(
|
|
63
|
+
intervention=Intervention(name="none", cost=0, success_rate=0, channel="none"),
|
|
64
|
+
reasoning="Customer is low risk, no intervention needed",
|
|
65
|
+
expected_roi=0,
|
|
66
|
+
timing=self.TIMING_MAP[risk_segment],
|
|
67
|
+
priority=self.PRIORITY_MAP[risk_segment]
|
|
68
|
+
)
|
|
69
|
+
applicable = self.catalog.filter_by_segment(risk_segment)
|
|
70
|
+
affordable = [i for i in applicable if i.min_ltv <= customer_ltv]
|
|
71
|
+
if not affordable:
|
|
72
|
+
affordable = [i for i in applicable if i.cost <= customer_ltv * 0.1]
|
|
73
|
+
if not affordable and applicable:
|
|
74
|
+
affordable = [min(applicable, key=lambda x: x.min_ltv)]
|
|
75
|
+
if not affordable:
|
|
76
|
+
return InterventionRecommendation(
|
|
77
|
+
intervention=None,
|
|
78
|
+
reasoning="No suitable intervention found",
|
|
79
|
+
timing=self.TIMING_MAP.get(risk_segment, "Within 1 week"),
|
|
80
|
+
priority=self.PRIORITY_MAP.get(risk_segment, 5)
|
|
81
|
+
)
|
|
82
|
+
best = max(affordable, key=lambda i: self._calculate_roi(i, churn_probability, customer_ltv))
|
|
83
|
+
roi = self._calculate_roi(best, churn_probability, customer_ltv)
|
|
84
|
+
return InterventionRecommendation(
|
|
85
|
+
intervention=best,
|
|
86
|
+
reasoning=f"Best ROI option for {risk_segment.value} risk with LTV ${customer_ltv:.0f}",
|
|
87
|
+
expected_roi=roi,
|
|
88
|
+
timing=self.TIMING_MAP.get(risk_segment, "Within 1 week"),
|
|
89
|
+
priority=self.PRIORITY_MAP.get(risk_segment, 5)
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
def _calculate_roi(self, intervention: Intervention, churn_prob: float, ltv: float) -> float:
|
|
93
|
+
expected_saves = churn_prob * intervention.success_rate
|
|
94
|
+
revenue_saved = expected_saves * ltv
|
|
95
|
+
if intervention.cost == 0:
|
|
96
|
+
return float("inf") if revenue_saved > 0 else 0
|
|
97
|
+
return (revenue_saved - intervention.cost) / intervention.cost
|
|
98
|
+
|
|
99
|
+
def match_multiple(self, risk_segment: RiskSegment, customer_ltv: float,
|
|
100
|
+
churn_probability: float = 0.5, n: int = 3) -> List[InterventionRecommendation]:
|
|
101
|
+
applicable = self.catalog.filter_by_segment(risk_segment)
|
|
102
|
+
affordable = [i for i in applicable if i.min_ltv <= customer_ltv]
|
|
103
|
+
recommendations = []
|
|
104
|
+
for intervention in affordable:
|
|
105
|
+
roi = self._calculate_roi(intervention, churn_probability, customer_ltv)
|
|
106
|
+
recommendations.append(InterventionRecommendation(
|
|
107
|
+
intervention=intervention,
|
|
108
|
+
reasoning=f"Option: {intervention.name} via {intervention.channel}",
|
|
109
|
+
expected_roi=roi,
|
|
110
|
+
timing=self.TIMING_MAP.get(risk_segment, "Within 1 week"),
|
|
111
|
+
priority=self.PRIORITY_MAP.get(risk_segment, 5)
|
|
112
|
+
))
|
|
113
|
+
recommendations.sort(key=lambda r: r.expected_roi or 0, reverse=True)
|
|
114
|
+
return recommendations[:n]
|
|
115
|
+
|
|
116
|
+
def match_batch(self, customers: List[Dict]) -> List[InterventionRecommendation]:
|
|
117
|
+
return [self.match(
|
|
118
|
+
risk_segment=c["risk_segment"],
|
|
119
|
+
customer_ltv=c.get("customer_ltv", self.avg_ltv),
|
|
120
|
+
churn_probability=c.get("churn_probability", 0.5)
|
|
121
|
+
) for c in customers]
|
|
@@ -0,0 +1,222 @@
|
|
|
1
|
+
"""Business report generation."""
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass, field
|
|
4
|
+
from typing import Any, Dict, List, Optional
|
|
5
|
+
|
|
6
|
+
from customer_retention.core.compat import DataFrame, Series, pd
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@dataclass
|
|
10
|
+
class ExecutiveDashboard:
|
|
11
|
+
total_customers: int
|
|
12
|
+
churn_rate: float
|
|
13
|
+
revenue_at_risk: float
|
|
14
|
+
risk_distribution: Dict[str, int]
|
|
15
|
+
expected_saves: Optional[int] = None
|
|
16
|
+
expected_roi: Optional[float] = None
|
|
17
|
+
trend: Optional[Dict[str, float]] = None
|
|
18
|
+
top_actions: List[str] = field(default_factory=list)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@dataclass
|
|
22
|
+
class CampaignList:
|
|
23
|
+
customers: List[Dict]
|
|
24
|
+
total_count: int
|
|
25
|
+
segment_breakdown: Dict[str, int]
|
|
26
|
+
|
|
27
|
+
def to_dict_list(self) -> List[Dict]:
|
|
28
|
+
return self.customers
|
|
29
|
+
|
|
30
|
+
def to_dataframe(self) -> DataFrame:
|
|
31
|
+
return pd.DataFrame(self.customers)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@dataclass
|
|
35
|
+
class CustomerServiceReport:
|
|
36
|
+
customer_id: str
|
|
37
|
+
risk_segment: str
|
|
38
|
+
churn_probability: float
|
|
39
|
+
risk_factors: List[Dict]
|
|
40
|
+
talking_points: List[str]
|
|
41
|
+
offer_eligibility: List[str]
|
|
42
|
+
intervention_history: List[Dict] = field(default_factory=list)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@dataclass
|
|
46
|
+
class ProductInsights:
|
|
47
|
+
top_churn_drivers: List[Dict[str, Any]]
|
|
48
|
+
segment_risk_profiles: Dict[str, Dict]
|
|
49
|
+
product_gaps: List[str]
|
|
50
|
+
competitive_indicators: List[str]
|
|
51
|
+
improvement_recommendations: List[str]
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
@dataclass
|
|
55
|
+
class GovernanceReport:
|
|
56
|
+
model_performance: Dict[str, float]
|
|
57
|
+
data_quality_summary: Dict[str, float]
|
|
58
|
+
drift_status: Optional[Dict[str, bool]] = None
|
|
59
|
+
fairness_summary: Optional[Dict[str, float]] = None
|
|
60
|
+
retraining_recommendation: str = "No retraining needed"
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class ReportGenerator:
|
|
64
|
+
def generate_executive_dashboard(self, customer_data: DataFrame,
|
|
65
|
+
model_metrics: Dict[str, float],
|
|
66
|
+
intervention_data: Optional[Dict] = None) -> ExecutiveDashboard:
|
|
67
|
+
total = len(customer_data)
|
|
68
|
+
churn_rate = customer_data["churn_probability"].mean()
|
|
69
|
+
if "ltv" in customer_data.columns:
|
|
70
|
+
revenue_at_risk = (customer_data["churn_probability"] * customer_data["ltv"]).sum()
|
|
71
|
+
else:
|
|
72
|
+
revenue_at_risk = churn_rate * total * 500
|
|
73
|
+
if "risk_segment" in customer_data.columns:
|
|
74
|
+
risk_dist = customer_data["risk_segment"].value_counts().to_dict()
|
|
75
|
+
else:
|
|
76
|
+
risk_dist = {"Unknown": total}
|
|
77
|
+
expected_saves = intervention_data.get("expected_saves") if intervention_data else None
|
|
78
|
+
expected_roi = intervention_data.get("expected_roi") if intervention_data else None
|
|
79
|
+
top_actions = self._generate_top_actions(customer_data, risk_dist)
|
|
80
|
+
return ExecutiveDashboard(
|
|
81
|
+
total_customers=total,
|
|
82
|
+
churn_rate=churn_rate,
|
|
83
|
+
revenue_at_risk=revenue_at_risk,
|
|
84
|
+
risk_distribution=risk_dist,
|
|
85
|
+
expected_saves=expected_saves,
|
|
86
|
+
expected_roi=expected_roi,
|
|
87
|
+
top_actions=top_actions
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
def _generate_top_actions(self, data: DataFrame, risk_dist: Dict) -> List[str]:
|
|
91
|
+
actions = []
|
|
92
|
+
critical = risk_dist.get("Critical", 0)
|
|
93
|
+
high = risk_dist.get("High", 0)
|
|
94
|
+
if critical > 0:
|
|
95
|
+
actions.append(f"Prioritize outreach to {critical} critical-risk customers")
|
|
96
|
+
if high > 0:
|
|
97
|
+
actions.append(f"Schedule engagement campaigns for {high} high-risk customers")
|
|
98
|
+
actions.append("Review top churn drivers for product improvements")
|
|
99
|
+
return actions[:5]
|
|
100
|
+
|
|
101
|
+
def generate_campaign_list(self, customer_data: DataFrame,
|
|
102
|
+
risk_segments: List[str]) -> CampaignList:
|
|
103
|
+
filtered = customer_data[customer_data["risk_segment"].isin(risk_segments)]
|
|
104
|
+
customers = []
|
|
105
|
+
for _, row in filtered.iterrows():
|
|
106
|
+
customers.append({
|
|
107
|
+
"customer_id": row.get("customer_id", ""),
|
|
108
|
+
"risk_segment": row["risk_segment"],
|
|
109
|
+
"churn_probability": row["churn_probability"],
|
|
110
|
+
"ltv": row.get("ltv", 500),
|
|
111
|
+
"recommended_intervention": self._get_intervention(row["risk_segment"])
|
|
112
|
+
})
|
|
113
|
+
segment_breakdown = filtered["risk_segment"].value_counts().to_dict()
|
|
114
|
+
return CampaignList(
|
|
115
|
+
customers=customers,
|
|
116
|
+
total_count=len(customers),
|
|
117
|
+
segment_breakdown=segment_breakdown
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
def _get_intervention(self, segment: str) -> str:
|
|
121
|
+
interventions = {
|
|
122
|
+
"Critical": "Account manager call",
|
|
123
|
+
"High": "Phone call + discount",
|
|
124
|
+
"Medium": "Personalized email",
|
|
125
|
+
"Low": "Standard nurturing"
|
|
126
|
+
}
|
|
127
|
+
return interventions.get(segment, "Standard communication")
|
|
128
|
+
|
|
129
|
+
def generate_customer_service_report(self, customer_id: str,
|
|
130
|
+
customer_data: Series,
|
|
131
|
+
risk_factors: List[Dict]) -> CustomerServiceReport:
|
|
132
|
+
risk_segment = customer_data.get("risk_segment", "Unknown")
|
|
133
|
+
churn_prob = customer_data.get("churn_probability", 0.5)
|
|
134
|
+
talking_points = self._generate_talking_points(risk_factors, risk_segment)
|
|
135
|
+
offer_eligibility = self._determine_offers(risk_segment, customer_data.get("ltv", 500))
|
|
136
|
+
return CustomerServiceReport(
|
|
137
|
+
customer_id=customer_id,
|
|
138
|
+
risk_segment=risk_segment,
|
|
139
|
+
churn_probability=churn_prob,
|
|
140
|
+
risk_factors=risk_factors,
|
|
141
|
+
talking_points=talking_points,
|
|
142
|
+
offer_eligibility=offer_eligibility
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
def _generate_talking_points(self, risk_factors: List[Dict], segment: str) -> List[str]:
|
|
146
|
+
points = [f"Customer is in {segment} risk category"]
|
|
147
|
+
for factor in risk_factors[:3]:
|
|
148
|
+
name = factor.get("name", "Unknown factor")
|
|
149
|
+
points.append(f"Address concern about {name}")
|
|
150
|
+
points.append("Express appreciation for their business")
|
|
151
|
+
return points
|
|
152
|
+
|
|
153
|
+
def _determine_offers(self, segment: str, ltv: float) -> List[str]:
|
|
154
|
+
offers = ["Standard loyalty points"]
|
|
155
|
+
if segment in ["Critical", "High"]:
|
|
156
|
+
offers.append("10% discount on next order")
|
|
157
|
+
if ltv > 500:
|
|
158
|
+
offers.append("Free premium upgrade for 1 month")
|
|
159
|
+
if segment == "Critical":
|
|
160
|
+
offers.append("Dedicated account manager")
|
|
161
|
+
return offers
|
|
162
|
+
|
|
163
|
+
def generate_product_insights(self, customer_data: DataFrame,
|
|
164
|
+
feature_importance: Dict[str, float]) -> ProductInsights:
|
|
165
|
+
sorted_features = sorted(feature_importance.items(), key=lambda x: x[1], reverse=True)
|
|
166
|
+
top_drivers = [{"feature": f, "importance": i} for f, i in sorted_features[:5]]
|
|
167
|
+
segment_profiles = {}
|
|
168
|
+
if "risk_segment" in customer_data.columns:
|
|
169
|
+
for segment in customer_data["risk_segment"].unique():
|
|
170
|
+
seg_data = customer_data[customer_data["risk_segment"] == segment]
|
|
171
|
+
segment_profiles[segment] = {
|
|
172
|
+
"count": len(seg_data),
|
|
173
|
+
"avg_churn_prob": seg_data["churn_probability"].mean()
|
|
174
|
+
}
|
|
175
|
+
gaps = self._identify_product_gaps(feature_importance)
|
|
176
|
+
indicators = self._identify_competitive_indicators(feature_importance)
|
|
177
|
+
recommendations = self._generate_improvement_recommendations(top_drivers)
|
|
178
|
+
return ProductInsights(
|
|
179
|
+
top_churn_drivers=top_drivers,
|
|
180
|
+
segment_risk_profiles=segment_profiles,
|
|
181
|
+
product_gaps=gaps,
|
|
182
|
+
competitive_indicators=indicators,
|
|
183
|
+
improvement_recommendations=recommendations
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
def _identify_product_gaps(self, importance: Dict[str, float]) -> List[str]:
|
|
187
|
+
gaps = []
|
|
188
|
+
if importance.get("engagement", 0) > 0.15:
|
|
189
|
+
gaps.append("Low engagement indicates need for better onboarding")
|
|
190
|
+
if importance.get("recency", 0) > 0.15:
|
|
191
|
+
gaps.append("High recency impact suggests need for re-engagement features")
|
|
192
|
+
if not gaps:
|
|
193
|
+
gaps.append("No critical product gaps identified")
|
|
194
|
+
return gaps
|
|
195
|
+
|
|
196
|
+
def _identify_competitive_indicators(self, importance: Dict[str, float]) -> List[str]:
|
|
197
|
+
return ["Monitor competitor pricing", "Track feature parity"]
|
|
198
|
+
|
|
199
|
+
def _generate_improvement_recommendations(self, drivers: List[Dict]) -> List[str]:
|
|
200
|
+
recommendations = []
|
|
201
|
+
for driver in drivers[:3]:
|
|
202
|
+
feature = driver["feature"]
|
|
203
|
+
recommendations.append(f"Improve {feature} experience to reduce churn")
|
|
204
|
+
return recommendations
|
|
205
|
+
|
|
206
|
+
def generate_governance_report(self, model_metrics: Dict[str, float],
|
|
207
|
+
data_quality_summary: Dict[str, float],
|
|
208
|
+
drift_status: Optional[Dict] = None,
|
|
209
|
+
fairness_summary: Optional[Dict] = None) -> GovernanceReport:
|
|
210
|
+
retraining_rec = "No retraining needed"
|
|
211
|
+
if drift_status:
|
|
212
|
+
if drift_status.get("feature_drift", False) or drift_status.get("target_drift", False):
|
|
213
|
+
retraining_rec = "Retraining recommended due to detected drift"
|
|
214
|
+
if model_metrics.get("pr_auc", 1) < 0.6:
|
|
215
|
+
retraining_rec = "Retraining recommended due to performance degradation"
|
|
216
|
+
return GovernanceReport(
|
|
217
|
+
model_performance=model_metrics,
|
|
218
|
+
data_quality_summary=data_quality_summary,
|
|
219
|
+
drift_status=drift_status,
|
|
220
|
+
fairness_summary=fairness_summary,
|
|
221
|
+
retraining_recommendation=retraining_rec
|
|
222
|
+
)
|