churnkit 0.75.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (302) hide show
  1. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
  2. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
  3. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
  4. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
  5. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
  6. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
  7. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
  8. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
  9. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
  10. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
  11. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
  12. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
  13. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
  14. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
  15. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
  16. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
  17. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
  18. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
  19. churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
  20. churnkit-0.75.0a1.dist-info/METADATA +229 -0
  21. churnkit-0.75.0a1.dist-info/RECORD +302 -0
  22. churnkit-0.75.0a1.dist-info/WHEEL +4 -0
  23. churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
  24. churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
  25. customer_retention/__init__.py +37 -0
  26. customer_retention/analysis/__init__.py +0 -0
  27. customer_retention/analysis/auto_explorer/__init__.py +62 -0
  28. customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
  29. customer_retention/analysis/auto_explorer/explorer.py +258 -0
  30. customer_retention/analysis/auto_explorer/findings.py +291 -0
  31. customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
  32. customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
  33. customer_retention/analysis/auto_explorer/recommendations.py +418 -0
  34. customer_retention/analysis/business/__init__.py +26 -0
  35. customer_retention/analysis/business/ab_test_designer.py +144 -0
  36. customer_retention/analysis/business/fairness_analyzer.py +166 -0
  37. customer_retention/analysis/business/intervention_matcher.py +121 -0
  38. customer_retention/analysis/business/report_generator.py +222 -0
  39. customer_retention/analysis/business/risk_profile.py +199 -0
  40. customer_retention/analysis/business/roi_analyzer.py +139 -0
  41. customer_retention/analysis/diagnostics/__init__.py +20 -0
  42. customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
  43. customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
  44. customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
  45. customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
  46. customer_retention/analysis/diagnostics/noise_tester.py +140 -0
  47. customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
  48. customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
  49. customer_retention/analysis/discovery/__init__.py +8 -0
  50. customer_retention/analysis/discovery/config_generator.py +49 -0
  51. customer_retention/analysis/discovery/discovery_flow.py +19 -0
  52. customer_retention/analysis/discovery/type_inferencer.py +147 -0
  53. customer_retention/analysis/interpretability/__init__.py +13 -0
  54. customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
  55. customer_retention/analysis/interpretability/counterfactual.py +175 -0
  56. customer_retention/analysis/interpretability/individual_explainer.py +141 -0
  57. customer_retention/analysis/interpretability/pdp_generator.py +103 -0
  58. customer_retention/analysis/interpretability/shap_explainer.py +106 -0
  59. customer_retention/analysis/jupyter_save_hook.py +28 -0
  60. customer_retention/analysis/notebook_html_exporter.py +136 -0
  61. customer_retention/analysis/notebook_progress.py +60 -0
  62. customer_retention/analysis/plotly_preprocessor.py +154 -0
  63. customer_retention/analysis/recommendations/__init__.py +54 -0
  64. customer_retention/analysis/recommendations/base.py +158 -0
  65. customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
  66. customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
  67. customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
  68. customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
  69. customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
  70. customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
  71. customer_retention/analysis/recommendations/datetime/extract.py +149 -0
  72. customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
  73. customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
  74. customer_retention/analysis/recommendations/pipeline.py +74 -0
  75. customer_retention/analysis/recommendations/registry.py +76 -0
  76. customer_retention/analysis/recommendations/selection/__init__.py +3 -0
  77. customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
  78. customer_retention/analysis/recommendations/transform/__init__.py +4 -0
  79. customer_retention/analysis/recommendations/transform/power.py +94 -0
  80. customer_retention/analysis/recommendations/transform/scale.py +112 -0
  81. customer_retention/analysis/visualization/__init__.py +15 -0
  82. customer_retention/analysis/visualization/chart_builder.py +2619 -0
  83. customer_retention/analysis/visualization/console.py +122 -0
  84. customer_retention/analysis/visualization/display.py +171 -0
  85. customer_retention/analysis/visualization/number_formatter.py +36 -0
  86. customer_retention/artifacts/__init__.py +3 -0
  87. customer_retention/artifacts/fit_artifact_registry.py +146 -0
  88. customer_retention/cli.py +93 -0
  89. customer_retention/core/__init__.py +0 -0
  90. customer_retention/core/compat/__init__.py +193 -0
  91. customer_retention/core/compat/detection.py +99 -0
  92. customer_retention/core/compat/ops.py +48 -0
  93. customer_retention/core/compat/pandas_backend.py +57 -0
  94. customer_retention/core/compat/spark_backend.py +75 -0
  95. customer_retention/core/components/__init__.py +11 -0
  96. customer_retention/core/components/base.py +79 -0
  97. customer_retention/core/components/components/__init__.py +13 -0
  98. customer_retention/core/components/components/deployer.py +26 -0
  99. customer_retention/core/components/components/explainer.py +26 -0
  100. customer_retention/core/components/components/feature_eng.py +33 -0
  101. customer_retention/core/components/components/ingester.py +34 -0
  102. customer_retention/core/components/components/profiler.py +34 -0
  103. customer_retention/core/components/components/trainer.py +38 -0
  104. customer_retention/core/components/components/transformer.py +36 -0
  105. customer_retention/core/components/components/validator.py +37 -0
  106. customer_retention/core/components/enums.py +33 -0
  107. customer_retention/core/components/orchestrator.py +94 -0
  108. customer_retention/core/components/registry.py +59 -0
  109. customer_retention/core/config/__init__.py +39 -0
  110. customer_retention/core/config/column_config.py +95 -0
  111. customer_retention/core/config/experiments.py +71 -0
  112. customer_retention/core/config/pipeline_config.py +117 -0
  113. customer_retention/core/config/source_config.py +83 -0
  114. customer_retention/core/utils/__init__.py +28 -0
  115. customer_retention/core/utils/leakage.py +85 -0
  116. customer_retention/core/utils/severity.py +53 -0
  117. customer_retention/core/utils/statistics.py +90 -0
  118. customer_retention/generators/__init__.py +0 -0
  119. customer_retention/generators/notebook_generator/__init__.py +167 -0
  120. customer_retention/generators/notebook_generator/base.py +55 -0
  121. customer_retention/generators/notebook_generator/cell_builder.py +49 -0
  122. customer_retention/generators/notebook_generator/config.py +47 -0
  123. customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
  124. customer_retention/generators/notebook_generator/local_generator.py +48 -0
  125. customer_retention/generators/notebook_generator/project_init.py +174 -0
  126. customer_retention/generators/notebook_generator/runner.py +150 -0
  127. customer_retention/generators/notebook_generator/script_generator.py +110 -0
  128. customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
  129. customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
  130. customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
  131. customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
  132. customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
  133. customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
  134. customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
  135. customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
  136. customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
  137. customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
  138. customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
  139. customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
  140. customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
  141. customer_retention/generators/orchestration/__init__.py +23 -0
  142. customer_retention/generators/orchestration/code_generator.py +196 -0
  143. customer_retention/generators/orchestration/context.py +147 -0
  144. customer_retention/generators/orchestration/data_materializer.py +188 -0
  145. customer_retention/generators/orchestration/databricks_exporter.py +411 -0
  146. customer_retention/generators/orchestration/doc_generator.py +311 -0
  147. customer_retention/generators/pipeline_generator/__init__.py +26 -0
  148. customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
  149. customer_retention/generators/pipeline_generator/generator.py +142 -0
  150. customer_retention/generators/pipeline_generator/models.py +166 -0
  151. customer_retention/generators/pipeline_generator/renderer.py +2125 -0
  152. customer_retention/generators/spec_generator/__init__.py +37 -0
  153. customer_retention/generators/spec_generator/databricks_generator.py +433 -0
  154. customer_retention/generators/spec_generator/generic_generator.py +373 -0
  155. customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
  156. customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
  157. customer_retention/integrations/__init__.py +0 -0
  158. customer_retention/integrations/adapters/__init__.py +13 -0
  159. customer_retention/integrations/adapters/base.py +10 -0
  160. customer_retention/integrations/adapters/factory.py +25 -0
  161. customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
  162. customer_retention/integrations/adapters/feature_store/base.py +57 -0
  163. customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
  164. customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
  165. customer_retention/integrations/adapters/feature_store/local.py +75 -0
  166. customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
  167. customer_retention/integrations/adapters/mlflow/base.py +32 -0
  168. customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
  169. customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
  170. customer_retention/integrations/adapters/mlflow/local.py +50 -0
  171. customer_retention/integrations/adapters/storage/__init__.py +5 -0
  172. customer_retention/integrations/adapters/storage/base.py +33 -0
  173. customer_retention/integrations/adapters/storage/databricks.py +76 -0
  174. customer_retention/integrations/adapters/storage/local.py +59 -0
  175. customer_retention/integrations/feature_store/__init__.py +47 -0
  176. customer_retention/integrations/feature_store/definitions.py +215 -0
  177. customer_retention/integrations/feature_store/manager.py +744 -0
  178. customer_retention/integrations/feature_store/registry.py +412 -0
  179. customer_retention/integrations/iteration/__init__.py +28 -0
  180. customer_retention/integrations/iteration/context.py +212 -0
  181. customer_retention/integrations/iteration/feedback_collector.py +184 -0
  182. customer_retention/integrations/iteration/orchestrator.py +168 -0
  183. customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
  184. customer_retention/integrations/iteration/signals.py +212 -0
  185. customer_retention/integrations/llm_context/__init__.py +4 -0
  186. customer_retention/integrations/llm_context/context_builder.py +201 -0
  187. customer_retention/integrations/llm_context/prompts.py +100 -0
  188. customer_retention/integrations/streaming/__init__.py +103 -0
  189. customer_retention/integrations/streaming/batch_integration.py +149 -0
  190. customer_retention/integrations/streaming/early_warning_model.py +227 -0
  191. customer_retention/integrations/streaming/event_schema.py +214 -0
  192. customer_retention/integrations/streaming/online_store_writer.py +249 -0
  193. customer_retention/integrations/streaming/realtime_scorer.py +261 -0
  194. customer_retention/integrations/streaming/trigger_engine.py +293 -0
  195. customer_retention/integrations/streaming/window_aggregator.py +393 -0
  196. customer_retention/stages/__init__.py +0 -0
  197. customer_retention/stages/cleaning/__init__.py +9 -0
  198. customer_retention/stages/cleaning/base.py +28 -0
  199. customer_retention/stages/cleaning/missing_handler.py +160 -0
  200. customer_retention/stages/cleaning/outlier_handler.py +204 -0
  201. customer_retention/stages/deployment/__init__.py +28 -0
  202. customer_retention/stages/deployment/batch_scorer.py +106 -0
  203. customer_retention/stages/deployment/champion_challenger.py +299 -0
  204. customer_retention/stages/deployment/model_registry.py +182 -0
  205. customer_retention/stages/deployment/retraining_trigger.py +245 -0
  206. customer_retention/stages/features/__init__.py +73 -0
  207. customer_retention/stages/features/behavioral_features.py +266 -0
  208. customer_retention/stages/features/customer_segmentation.py +505 -0
  209. customer_retention/stages/features/feature_definitions.py +265 -0
  210. customer_retention/stages/features/feature_engineer.py +551 -0
  211. customer_retention/stages/features/feature_manifest.py +340 -0
  212. customer_retention/stages/features/feature_selector.py +239 -0
  213. customer_retention/stages/features/interaction_features.py +160 -0
  214. customer_retention/stages/features/temporal_features.py +243 -0
  215. customer_retention/stages/ingestion/__init__.py +9 -0
  216. customer_retention/stages/ingestion/load_result.py +32 -0
  217. customer_retention/stages/ingestion/loaders.py +195 -0
  218. customer_retention/stages/ingestion/source_registry.py +130 -0
  219. customer_retention/stages/modeling/__init__.py +31 -0
  220. customer_retention/stages/modeling/baseline_trainer.py +139 -0
  221. customer_retention/stages/modeling/cross_validator.py +125 -0
  222. customer_retention/stages/modeling/data_splitter.py +205 -0
  223. customer_retention/stages/modeling/feature_scaler.py +99 -0
  224. customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
  225. customer_retention/stages/modeling/imbalance_handler.py +282 -0
  226. customer_retention/stages/modeling/mlflow_logger.py +95 -0
  227. customer_retention/stages/modeling/model_comparator.py +149 -0
  228. customer_retention/stages/modeling/model_evaluator.py +138 -0
  229. customer_retention/stages/modeling/threshold_optimizer.py +131 -0
  230. customer_retention/stages/monitoring/__init__.py +37 -0
  231. customer_retention/stages/monitoring/alert_manager.py +328 -0
  232. customer_retention/stages/monitoring/drift_detector.py +201 -0
  233. customer_retention/stages/monitoring/performance_monitor.py +242 -0
  234. customer_retention/stages/preprocessing/__init__.py +5 -0
  235. customer_retention/stages/preprocessing/transformer_manager.py +284 -0
  236. customer_retention/stages/profiling/__init__.py +256 -0
  237. customer_retention/stages/profiling/categorical_distribution.py +269 -0
  238. customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
  239. customer_retention/stages/profiling/column_profiler.py +527 -0
  240. customer_retention/stages/profiling/distribution_analysis.py +483 -0
  241. customer_retention/stages/profiling/drift_detector.py +310 -0
  242. customer_retention/stages/profiling/feature_capacity.py +507 -0
  243. customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
  244. customer_retention/stages/profiling/profile_result.py +212 -0
  245. customer_retention/stages/profiling/quality_checks.py +1632 -0
  246. customer_retention/stages/profiling/relationship_detector.py +256 -0
  247. customer_retention/stages/profiling/relationship_recommender.py +454 -0
  248. customer_retention/stages/profiling/report_generator.py +520 -0
  249. customer_retention/stages/profiling/scd_analyzer.py +151 -0
  250. customer_retention/stages/profiling/segment_analyzer.py +632 -0
  251. customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
  252. customer_retention/stages/profiling/target_level_analyzer.py +217 -0
  253. customer_retention/stages/profiling/temporal_analyzer.py +388 -0
  254. customer_retention/stages/profiling/temporal_coverage.py +488 -0
  255. customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
  256. customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
  257. customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
  258. customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
  259. customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
  260. customer_retention/stages/profiling/text_embedder.py +87 -0
  261. customer_retention/stages/profiling/text_processor.py +115 -0
  262. customer_retention/stages/profiling/text_reducer.py +60 -0
  263. customer_retention/stages/profiling/time_series_profiler.py +303 -0
  264. customer_retention/stages/profiling/time_window_aggregator.py +376 -0
  265. customer_retention/stages/profiling/type_detector.py +382 -0
  266. customer_retention/stages/profiling/window_recommendation.py +288 -0
  267. customer_retention/stages/temporal/__init__.py +166 -0
  268. customer_retention/stages/temporal/access_guard.py +180 -0
  269. customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
  270. customer_retention/stages/temporal/data_preparer.py +178 -0
  271. customer_retention/stages/temporal/point_in_time_join.py +134 -0
  272. customer_retention/stages/temporal/point_in_time_registry.py +148 -0
  273. customer_retention/stages/temporal/scenario_detector.py +163 -0
  274. customer_retention/stages/temporal/snapshot_manager.py +259 -0
  275. customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
  276. customer_retention/stages/temporal/timestamp_discovery.py +531 -0
  277. customer_retention/stages/temporal/timestamp_manager.py +255 -0
  278. customer_retention/stages/transformation/__init__.py +13 -0
  279. customer_retention/stages/transformation/binary_handler.py +85 -0
  280. customer_retention/stages/transformation/categorical_encoder.py +245 -0
  281. customer_retention/stages/transformation/datetime_transformer.py +97 -0
  282. customer_retention/stages/transformation/numeric_transformer.py +181 -0
  283. customer_retention/stages/transformation/pipeline.py +257 -0
  284. customer_retention/stages/validation/__init__.py +60 -0
  285. customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
  286. customer_retention/stages/validation/business_sense_gate.py +173 -0
  287. customer_retention/stages/validation/data_quality_gate.py +235 -0
  288. customer_retention/stages/validation/data_validators.py +511 -0
  289. customer_retention/stages/validation/feature_quality_gate.py +183 -0
  290. customer_retention/stages/validation/gates.py +117 -0
  291. customer_retention/stages/validation/leakage_gate.py +352 -0
  292. customer_retention/stages/validation/model_validity_gate.py +213 -0
  293. customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
  294. customer_retention/stages/validation/quality_scorer.py +544 -0
  295. customer_retention/stages/validation/rule_generator.py +57 -0
  296. customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
  297. customer_retention/stages/validation/timeseries_detector.py +769 -0
  298. customer_retention/transforms/__init__.py +47 -0
  299. customer_retention/transforms/artifact_store.py +50 -0
  300. customer_retention/transforms/executor.py +157 -0
  301. customer_retention/transforms/fitted.py +92 -0
  302. customer_retention/transforms/ops.py +148 -0
@@ -0,0 +1,388 @@
1
+ from dataclasses import dataclass, field
2
+ from enum import Enum
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+
8
+ from customer_retention.core.compat import Series, ensure_pandas_series
9
+
10
+
11
+ class TemporalGranularity(Enum):
12
+ DAY = "day"
13
+ WEEK = "week"
14
+ MONTH = "month"
15
+ QUARTER = "quarter"
16
+ YEAR = "year"
17
+
18
+
19
+ @dataclass
20
+ class SeasonalityResult:
21
+ has_seasonality: bool
22
+ dominant_period: Optional[str] = None # 'weekly', 'monthly', 'yearly'
23
+ peak_periods: List[str] = field(default_factory=list)
24
+ trough_periods: List[str] = field(default_factory=list)
25
+ monthly_pattern: Optional[pd.DataFrame] = None # year x month heatmap data
26
+ weekly_pattern: Optional[pd.Series] = None # day of week counts
27
+ confidence: float = 0.0
28
+ seasonal_strength: float = 0.0
29
+
30
+
31
+ class TemporalRecommendationType(Enum):
32
+ FEATURE_ENGINEERING = "feature_engineering" # Create new feature from date
33
+ MODELING_STRATEGY = "modeling_strategy" # How to handle in train/test
34
+ DATA_QUALITY = "data_quality" # Quality issue to address
35
+
36
+
37
+ @dataclass
38
+ class TemporalRecommendation:
39
+ feature_name: str
40
+ recommendation_type: TemporalRecommendationType
41
+ category: str # 'recency', 'duration', 'cyclical', 'extraction', 'tenure', 'split', 'filter'
42
+ reason: str
43
+ priority: str # 'high', 'medium', 'low'
44
+ code_hint: Optional[str] = None
45
+
46
+ @property
47
+ def action_description(self) -> str:
48
+ if self.recommendation_type == TemporalRecommendationType.FEATURE_ENGINEERING:
49
+ return f"Create feature: {self.feature_name}"
50
+ elif self.recommendation_type == TemporalRecommendationType.MODELING_STRATEGY:
51
+ return f"Modeling: {self.feature_name}"
52
+ else:
53
+ return f"Data quality: {self.feature_name}"
54
+
55
+ def to_dict(self) -> Dict[str, Any]:
56
+ return {
57
+ "feature_name": self.feature_name,
58
+ "recommendation_type": self.recommendation_type.value,
59
+ "category": self.category,
60
+ "reason": self.reason,
61
+ "priority": self.priority,
62
+ "code_hint": self.code_hint,
63
+ }
64
+
65
+
66
+ @dataclass
67
+ class TemporalAnalysis:
68
+ granularity: TemporalGranularity
69
+ min_date: pd.Timestamp
70
+ max_date: pd.Timestamp
71
+ span_days: int
72
+ total_count: int
73
+ null_count: int
74
+ period_counts: pd.DataFrame
75
+
76
+ @property
77
+ def null_percentage(self) -> float:
78
+ return (self.null_count / self.total_count * 100) if self.total_count > 0 else 0.0
79
+
80
+
81
+ class TemporalAnalyzer:
82
+ GRANULARITY_THRESHOLDS = {
83
+ 90: TemporalGranularity.DAY, # <= 90 days: daily
84
+ 365: TemporalGranularity.WEEK, # <= 1 year: weekly
85
+ 730: TemporalGranularity.MONTH, # <= 2 years: monthly
86
+ 1825: TemporalGranularity.QUARTER, # <= 5 years: quarterly
87
+ }
88
+
89
+ def detect_granularity(self, dates: Series) -> TemporalGranularity:
90
+ dates = ensure_pandas_series(dates)
91
+ clean_dates = pd.to_datetime(dates, errors="coerce").dropna()
92
+ if len(clean_dates) == 0:
93
+ return TemporalGranularity.MONTH
94
+
95
+ span_days = (clean_dates.max() - clean_dates.min()).days
96
+ for threshold, granularity in self.GRANULARITY_THRESHOLDS.items():
97
+ if span_days <= threshold:
98
+ return granularity
99
+ return TemporalGranularity.YEAR
100
+
101
+ def aggregate_by_granularity(
102
+ self, dates: Series, granularity: TemporalGranularity
103
+ ) -> pd.DataFrame:
104
+ dates = ensure_pandas_series(dates)
105
+ clean_dates = pd.to_datetime(dates, errors="coerce").dropna()
106
+ if len(clean_dates) == 0:
107
+ return pd.DataFrame({"period": [], "count": []})
108
+
109
+ period_series = self._extract_period(clean_dates, granularity)
110
+ counts = period_series.value_counts().sort_index().reset_index()
111
+ counts.columns = ["period", "count"]
112
+ return counts
113
+
114
+ def _extract_period(
115
+ self, dates: pd.Series, granularity: TemporalGranularity
116
+ ) -> pd.Series:
117
+ if granularity == TemporalGranularity.DAY:
118
+ return dates.dt.strftime("%Y-%m-%d")
119
+ elif granularity == TemporalGranularity.WEEK:
120
+ return dates.dt.to_period("W").astype(str)
121
+ elif granularity == TemporalGranularity.MONTH:
122
+ return dates.dt.to_period("M").astype(str)
123
+ elif granularity == TemporalGranularity.QUARTER:
124
+ return dates.dt.to_period("Q").astype(str)
125
+ else: # YEAR
126
+ return dates.dt.year
127
+
128
+ def analyze(
129
+ self,
130
+ dates: Series,
131
+ granularity: Optional[TemporalGranularity] = None,
132
+ ) -> TemporalAnalysis:
133
+ dates = ensure_pandas_series(dates)
134
+ total_count = len(dates)
135
+ parsed_dates = pd.to_datetime(dates, errors="coerce")
136
+ null_count = parsed_dates.isna().sum()
137
+ clean_dates = parsed_dates.dropna()
138
+
139
+ if len(clean_dates) == 0:
140
+ return TemporalAnalysis(
141
+ granularity=granularity or TemporalGranularity.MONTH,
142
+ min_date=pd.NaT,
143
+ max_date=pd.NaT,
144
+ span_days=0,
145
+ total_count=total_count,
146
+ null_count=null_count,
147
+ period_counts=pd.DataFrame({"period": [], "count": []}),
148
+ )
149
+
150
+ detected_granularity = granularity or self.detect_granularity(clean_dates)
151
+ period_counts = self.aggregate_by_granularity(clean_dates, detected_granularity)
152
+
153
+ return TemporalAnalysis(
154
+ granularity=detected_granularity,
155
+ min_date=clean_dates.min(),
156
+ max_date=clean_dates.max(),
157
+ span_days=(clean_dates.max() - clean_dates.min()).days,
158
+ total_count=total_count,
159
+ null_count=null_count,
160
+ period_counts=period_counts,
161
+ )
162
+
163
+ def analyze_seasonality(self, dates: Series) -> SeasonalityResult:
164
+ """Analyze seasonality patterns in datetime data."""
165
+ dates = ensure_pandas_series(dates)
166
+ parsed = pd.to_datetime(dates, errors="coerce").dropna()
167
+
168
+ if len(parsed) < 30:
169
+ return SeasonalityResult(has_seasonality=False, confidence=0.0)
170
+
171
+ # Weekly pattern (day of week)
172
+ dow_counts = parsed.dt.dayofweek.value_counts().sort_index()
173
+ dow_names = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
174
+ weekly_pattern = pd.Series(
175
+ [dow_counts.get(i, 0) for i in range(7)], index=dow_names
176
+ )
177
+
178
+ # Monthly pattern (year x month heatmap)
179
+ monthly_df = parsed.to_frame(name="date")
180
+ monthly_df["year"] = parsed.dt.year
181
+ monthly_df["month"] = parsed.dt.month
182
+ monthly_pivot = monthly_df.groupby(["year", "month"]).size().unstack(fill_value=0)
183
+ monthly_pivot.columns = [
184
+ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
185
+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
186
+ ][:len(monthly_pivot.columns)]
187
+
188
+ # Detect seasonality strength
189
+ weekly_cv = weekly_pattern.std() / weekly_pattern.mean() if weekly_pattern.mean() > 0 else 0
190
+
191
+ # Find peaks and troughs
192
+ monthly_totals = parsed.dt.month.value_counts().sort_index()
193
+ month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
194
+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
195
+
196
+ if len(monthly_totals) >= 3:
197
+ peak_months = monthly_totals.nlargest(3).index.tolist()
198
+ trough_months = monthly_totals.nsmallest(3).index.tolist()
199
+ peak_periods = [month_names[m - 1] for m in peak_months if m <= 12]
200
+ trough_periods = [month_names[m - 1] for m in trough_months if m <= 12]
201
+ else:
202
+ peak_periods = []
203
+ trough_periods = []
204
+
205
+ # Determine dominant pattern
206
+ has_seasonality = weekly_cv > 0.15
207
+ dominant_period = "weekly" if weekly_cv > 0.2 else None
208
+
209
+ return SeasonalityResult(
210
+ has_seasonality=has_seasonality,
211
+ dominant_period=dominant_period,
212
+ peak_periods=peak_periods,
213
+ trough_periods=trough_periods,
214
+ monthly_pattern=monthly_pivot,
215
+ weekly_pattern=weekly_pattern,
216
+ confidence=min(1.0, weekly_cv * 2) if has_seasonality else 0.0,
217
+ seasonal_strength=float(weekly_cv),
218
+ )
219
+
220
+ def year_over_year_comparison(self, dates: Series) -> pd.DataFrame:
221
+ """Compare record counts year-over-year by month."""
222
+ dates = ensure_pandas_series(dates)
223
+ parsed = pd.to_datetime(dates, errors="coerce").dropna()
224
+
225
+ if len(parsed) == 0:
226
+ return pd.DataFrame()
227
+
228
+ df = parsed.to_frame(name="date")
229
+ df["year"] = parsed.dt.year
230
+ df["month"] = parsed.dt.month
231
+
232
+ pivot = df.groupby(["year", "month"]).size().unstack(fill_value=0)
233
+ pivot.columns = [
234
+ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
235
+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
236
+ ][:len(pivot.columns)]
237
+
238
+ return pivot
239
+
240
+ def calculate_growth_rate(self, dates: Series) -> Dict[str, Any]:
241
+ """Calculate growth metrics over time."""
242
+ dates = ensure_pandas_series(dates)
243
+ parsed = pd.to_datetime(dates, errors="coerce").dropna()
244
+
245
+ if len(parsed) < 2:
246
+ return {"has_data": False}
247
+
248
+ # Monthly counts
249
+ monthly = parsed.dt.to_period("M").value_counts().sort_index()
250
+
251
+ if len(monthly) < 2:
252
+ return {"has_data": False}
253
+
254
+ # Calculate month-over-month growth
255
+ mom_growth = monthly.pct_change().dropna()
256
+
257
+ # Calculate cumulative
258
+ cumulative = monthly.cumsum()
259
+
260
+ # Linear trend
261
+ x = np.arange(len(monthly))
262
+ y = monthly.values
263
+ slope, intercept = np.polyfit(x, y, 1)
264
+ trend_direction = "growing" if slope > 0 else "declining"
265
+
266
+ # Overall growth rate
267
+ overall_growth = ((monthly.iloc[-1] - monthly.iloc[0]) / monthly.iloc[0] * 100) if monthly.iloc[0] > 0 else 0
268
+
269
+ return {
270
+ "has_data": True,
271
+ "monthly_counts": monthly,
272
+ "cumulative": cumulative,
273
+ "avg_monthly_growth": float(mom_growth.mean() * 100),
274
+ "overall_growth_pct": float(overall_growth),
275
+ "trend_direction": trend_direction,
276
+ "trend_slope": float(slope),
277
+ }
278
+
279
+ def recommend_features(
280
+ self, dates: Series, column_name: str, other_date_columns: Optional[List[str]] = None
281
+ ) -> List[TemporalRecommendation]:
282
+ dates = ensure_pandas_series(dates)
283
+ parsed = pd.to_datetime(dates, errors="coerce")
284
+ valid_dates = parsed.dropna()
285
+ recommendations = []
286
+
287
+ if len(valid_dates) == 0:
288
+ return recommendations
289
+
290
+ analysis = self.analyze(dates)
291
+ seasonality = self.analyze_seasonality(dates)
292
+ growth = self.calculate_growth_rate(dates)
293
+
294
+ # FEATURE ENGINEERING: Recency - always useful for dates
295
+ recommendations.append(TemporalRecommendation(
296
+ feature_name=f"days_since_{column_name}",
297
+ recommendation_type=TemporalRecommendationType.FEATURE_ENGINEERING,
298
+ category="recency",
299
+ reason="Recency captures how recent an event occurred - useful for predicting behavior",
300
+ priority="medium",
301
+ code_hint=f"(reference_date - df['{column_name}']).dt.days",
302
+ ))
303
+
304
+ # FEATURE ENGINEERING: Duration between dates
305
+ if other_date_columns:
306
+ for other_col in other_date_columns:
307
+ recommendations.append(TemporalRecommendation(
308
+ feature_name=f"days_between_{column_name}_and_{other_col}",
309
+ recommendation_type=TemporalRecommendationType.FEATURE_ENGINEERING,
310
+ category="duration",
311
+ reason="Duration between events captures behavioral patterns (e.g., time to convert)",
312
+ priority="medium",
313
+ code_hint=f"(df['{other_col}'] - df['{column_name}']).dt.days",
314
+ ))
315
+
316
+ # FEATURE ENGINEERING: Cyclical encoding for seasonality
317
+ if seasonality.has_seasonality and seasonality.seasonal_strength > 0.15:
318
+ priority = "high" if seasonality.seasonal_strength > 0.3 else "medium"
319
+ recommendations.append(TemporalRecommendation(
320
+ feature_name=f"{column_name}_month_sin_cos",
321
+ recommendation_type=TemporalRecommendationType.FEATURE_ENGINEERING,
322
+ category="cyclical",
323
+ reason=f"Seasonality detected (strength: {seasonality.seasonal_strength:.2f}) - cyclical encoding preserves month proximity (Dec near Jan)",
324
+ priority=priority,
325
+ code_hint=f"np.sin(2 * np.pi * df['{column_name}'].dt.month / 12)",
326
+ ))
327
+
328
+ # MODELING STRATEGY: Time-based split for trends
329
+ if growth.get("has_data") and abs(growth.get("overall_growth_pct", 0)) > 50:
330
+ direction = growth["trend_direction"]
331
+ pct = growth["overall_growth_pct"]
332
+ recommendations.append(TemporalRecommendation(
333
+ feature_name="time_based_train_test_split",
334
+ recommendation_type=TemporalRecommendationType.MODELING_STRATEGY,
335
+ category="split",
336
+ reason=f"Significant {direction} trend ({pct:+.0f}%) detected - random splits would leak future patterns into training",
337
+ priority="high",
338
+ ))
339
+ elif growth.get("has_data") and abs(growth.get("overall_growth_pct", 0)) > 20:
340
+ recommendations.append(TemporalRecommendation(
341
+ feature_name="time_aware_validation",
342
+ recommendation_type=TemporalRecommendationType.MODELING_STRATEGY,
343
+ category="split",
344
+ reason="Moderate trend detected - time-aware validation ensures model generalizes to future data",
345
+ priority="medium",
346
+ ))
347
+
348
+ # FEATURE ENGINEERING: Tenure for long histories
349
+ if analysis.span_days > 365 * 2:
350
+ years = analysis.span_days / 365
351
+ recommendations.append(TemporalRecommendation(
352
+ feature_name=f"tenure_from_{column_name}",
353
+ recommendation_type=TemporalRecommendationType.FEATURE_ENGINEERING,
354
+ category="tenure",
355
+ reason=f"Long history ({years:.1f} years) enables tenure feature - captures customer maturity/loyalty",
356
+ priority="medium",
357
+ code_hint=f"(reference_date - df['{column_name}']).dt.days / 365",
358
+ ))
359
+
360
+ # DATA QUALITY: Placeholder dates
361
+ placeholder_count = (valid_dates < "2000-01-01").sum()
362
+ if placeholder_count > 0:
363
+ pct = placeholder_count / len(valid_dates) * 100
364
+ recommendations.append(TemporalRecommendation(
365
+ feature_name=f"{column_name}_placeholder_flag",
366
+ recommendation_type=TemporalRecommendationType.DATA_QUALITY,
367
+ category="filter",
368
+ reason=f"Found {placeholder_count:,} dates before 2000 ({pct:.1f}%) - likely system defaults, not real dates",
369
+ priority="high",
370
+ code_hint=f"df['{column_name}'] < '2000-01-01'",
371
+ ))
372
+
373
+ # FEATURE ENGINEERING: Weekend indicator
374
+ dow_counts = valid_dates.dt.dayofweek.value_counts()
375
+ if len(dow_counts) == 7:
376
+ dow_imbalance = dow_counts.max() / dow_counts.min() if dow_counts.min() > 0 else 1
377
+ if dow_imbalance > 1.5:
378
+ weekday_pct = dow_counts[dow_counts.index < 5].sum() / len(valid_dates) * 100
379
+ recommendations.append(TemporalRecommendation(
380
+ feature_name=f"{column_name}_is_weekend",
381
+ recommendation_type=TemporalRecommendationType.FEATURE_ENGINEERING,
382
+ category="extraction",
383
+ reason=f"Weekday/weekend imbalance ({weekday_pct:.0f}% weekday) suggests behavior differs by day type",
384
+ priority="low",
385
+ code_hint=f"df['{column_name}'].dt.dayofweek >= 5",
386
+ ))
387
+
388
+ return recommendations