churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,1418 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"id": "32f00772",
|
|
6
|
+
"metadata": {
|
|
7
|
+
"papermill": {
|
|
8
|
+
"duration": 0.003366,
|
|
9
|
+
"end_time": "2026-02-02T13:04:20.028364",
|
|
10
|
+
"exception": false,
|
|
11
|
+
"start_time": "2026-02-02T13:04:20.024998",
|
|
12
|
+
"status": "completed"
|
|
13
|
+
},
|
|
14
|
+
"tags": []
|
|
15
|
+
},
|
|
16
|
+
"source": [
|
|
17
|
+
"# Chapter 11: Scoring, Validation & Explanations\n",
|
|
18
|
+
"\n",
|
|
19
|
+
"End-to-end scoring pipeline with holdout validation, model comparison, adversarial\n",
|
|
20
|
+
"validation, SHAP explanations, and error analysis.\n",
|
|
21
|
+
"\n",
|
|
22
|
+
"**Sections:**\n",
|
|
23
|
+
"1. Run Scoring\n",
|
|
24
|
+
"2. Summary Metrics\n",
|
|
25
|
+
"3. Model Comparison Grid\n",
|
|
26
|
+
"4. Adversarial Pipeline Validation\n",
|
|
27
|
+
"5. Transformation Validation\n",
|
|
28
|
+
"6. Model Explanations (SHAP)\n",
|
|
29
|
+
"7. Customer Browser\n",
|
|
30
|
+
"8. Error Analysis\n",
|
|
31
|
+
"9. Export Results"
|
|
32
|
+
]
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
"cell_type": "code",
|
|
36
|
+
"execution_count": null,
|
|
37
|
+
"id": "3dd9c433",
|
|
38
|
+
"metadata": {
|
|
39
|
+
"execution": {
|
|
40
|
+
"iopub.execute_input": "2026-02-02T13:04:20.034460Z",
|
|
41
|
+
"iopub.status.busy": "2026-02-02T13:04:20.034309Z",
|
|
42
|
+
"iopub.status.idle": "2026-02-02T13:04:20.383463Z",
|
|
43
|
+
"shell.execute_reply": "2026-02-02T13:04:20.382527Z"
|
|
44
|
+
},
|
|
45
|
+
"papermill": {
|
|
46
|
+
"duration": 0.353477,
|
|
47
|
+
"end_time": "2026-02-02T13:04:20.384447",
|
|
48
|
+
"exception": false,
|
|
49
|
+
"start_time": "2026-02-02T13:04:20.030970",
|
|
50
|
+
"status": "completed"
|
|
51
|
+
},
|
|
52
|
+
"tags": []
|
|
53
|
+
},
|
|
54
|
+
"outputs": [],
|
|
55
|
+
"source": [
|
|
56
|
+
"from customer_retention.analysis.notebook_progress import track_and_export_previous\n",
|
|
57
|
+
"track_and_export_previous(\"11_scoring_validation.ipynb\")\n",
|
|
58
|
+
"\n",
|
|
59
|
+
"import sys\n",
|
|
60
|
+
"from pathlib import Path\n",
|
|
61
|
+
"\n",
|
|
62
|
+
"from customer_retention.core.config.experiments import EXPERIMENTS_DIR, FINDINGS_DIR"
|
|
63
|
+
]
|
|
64
|
+
},
|
|
65
|
+
{
|
|
66
|
+
"cell_type": "code",
|
|
67
|
+
"execution_count": null,
|
|
68
|
+
"id": "2df62fbd",
|
|
69
|
+
"metadata": {
|
|
70
|
+
"execution": {
|
|
71
|
+
"iopub.execute_input": "2026-02-02T13:04:20.394211Z",
|
|
72
|
+
"iopub.status.busy": "2026-02-02T13:04:20.394015Z",
|
|
73
|
+
"iopub.status.idle": "2026-02-02T13:04:20.399431Z",
|
|
74
|
+
"shell.execute_reply": "2026-02-02T13:04:20.398670Z"
|
|
75
|
+
},
|
|
76
|
+
"papermill": {
|
|
77
|
+
"duration": 0.013077,
|
|
78
|
+
"end_time": "2026-02-02T13:04:20.400068",
|
|
79
|
+
"exception": false,
|
|
80
|
+
"start_time": "2026-02-02T13:04:20.386991",
|
|
81
|
+
"status": "completed"
|
|
82
|
+
},
|
|
83
|
+
"tags": []
|
|
84
|
+
},
|
|
85
|
+
"outputs": [],
|
|
86
|
+
"source": [
|
|
87
|
+
"# Discover the generated pipeline directory\n",
|
|
88
|
+
"generated_dir = Path(\"../generated_pipelines/local\")\n",
|
|
89
|
+
"pipeline_dirs = sorted(generated_dir.glob(\"*/config.py\"))\n",
|
|
90
|
+
"if not pipeline_dirs:\n",
|
|
91
|
+
" raise FileNotFoundError(\n",
|
|
92
|
+
" f\"No generated pipeline found under {generated_dir}. Run notebook 10 first.\"\n",
|
|
93
|
+
" )\n",
|
|
94
|
+
"PIPELINE_DIR = pipeline_dirs[-1].parent\n",
|
|
95
|
+
"sys.path.insert(0, str(PIPELINE_DIR))\n",
|
|
96
|
+
"\n",
|
|
97
|
+
"from config import (\n",
|
|
98
|
+
" PIPELINE_NAME, TARGET_COLUMN, RECOMMENDATIONS_HASH, MLFLOW_TRACKING_URI,\n",
|
|
99
|
+
" FEAST_REPO_PATH, FEAST_FEATURE_VIEW, FEAST_ENTITY_KEY, FEAST_TIMESTAMP_COL,\n",
|
|
100
|
+
" PRODUCTION_DIR, EXPERIMENTS_DIR as GEN_EXPERIMENTS_DIR,\n",
|
|
101
|
+
" get_feast_data_path, get_gold_path, ARTIFACTS_PATH,\n",
|
|
102
|
+
")\n",
|
|
103
|
+
"\n",
|
|
104
|
+
"print(f\"Pipeline: {PIPELINE_NAME}\")\n",
|
|
105
|
+
"print(f\"Pipeline dir: {PIPELINE_DIR}\")\n",
|
|
106
|
+
"print(f\"Experiments dir: {GEN_EXPERIMENTS_DIR}\")\n",
|
|
107
|
+
"print(f\"Recommendations hash: {RECOMMENDATIONS_HASH}\")"
|
|
108
|
+
]
|
|
109
|
+
},
|
|
110
|
+
{
|
|
111
|
+
"cell_type": "markdown",
|
|
112
|
+
"id": "cdb7a547",
|
|
113
|
+
"metadata": {
|
|
114
|
+
"papermill": {
|
|
115
|
+
"duration": 0.002345,
|
|
116
|
+
"end_time": "2026-02-02T13:04:20.404863",
|
|
117
|
+
"exception": false,
|
|
118
|
+
"start_time": "2026-02-02T13:04:20.402518",
|
|
119
|
+
"status": "completed"
|
|
120
|
+
},
|
|
121
|
+
"tags": []
|
|
122
|
+
},
|
|
123
|
+
"source": [
|
|
124
|
+
"## 11.1 Run Scoring"
|
|
125
|
+
]
|
|
126
|
+
},
|
|
127
|
+
{
|
|
128
|
+
"cell_type": "code",
|
|
129
|
+
"execution_count": null,
|
|
130
|
+
"id": "72417bd4",
|
|
131
|
+
"metadata": {
|
|
132
|
+
"execution": {
|
|
133
|
+
"iopub.execute_input": "2026-02-02T13:04:20.410359Z",
|
|
134
|
+
"iopub.status.busy": "2026-02-02T13:04:20.410203Z",
|
|
135
|
+
"iopub.status.idle": "2026-02-02T13:04:23.668644Z",
|
|
136
|
+
"shell.execute_reply": "2026-02-02T13:04:23.668162Z"
|
|
137
|
+
},
|
|
138
|
+
"papermill": {
|
|
139
|
+
"duration": 3.263488,
|
|
140
|
+
"end_time": "2026-02-02T13:04:23.670606",
|
|
141
|
+
"exception": false,
|
|
142
|
+
"start_time": "2026-02-02T13:04:20.407118",
|
|
143
|
+
"status": "completed"
|
|
144
|
+
},
|
|
145
|
+
"tags": []
|
|
146
|
+
},
|
|
147
|
+
"outputs": [],
|
|
148
|
+
"source": [
|
|
149
|
+
"import numpy as np\n",
|
|
150
|
+
"import pandas as pd\n",
|
|
151
|
+
"import mlflow\n",
|
|
152
|
+
"import mlflow.sklearn\n",
|
|
153
|
+
"import mlflow.xgboost\n",
|
|
154
|
+
"import xgboost as xgb\n",
|
|
155
|
+
"from feast import FeatureStore\n",
|
|
156
|
+
"from customer_retention.transforms import TransformExecutor, ArtifactStore\n",
|
|
157
|
+
"from customer_retention.generators.pipeline_generator.models import (\n",
|
|
158
|
+
" PipelineTransformationType, TransformationStep,\n",
|
|
159
|
+
")\n",
|
|
160
|
+
"from config import EXCLUDED_SOURCES\n",
|
|
161
|
+
"\n",
|
|
162
|
+
"_registry = ArtifactStore.from_manifest(Path(ARTIFACTS_PATH) / \"manifest.yaml\")\n",
|
|
163
|
+
"_executor = TransformExecutor()\n",
|
|
164
|
+
"\n",
|
|
165
|
+
"# Import encoding/scaling steps from gold module\n",
|
|
166
|
+
"sys.path.insert(0, str(PIPELINE_DIR / \"gold\"))\n",
|
|
167
|
+
"from gold_features import ENCODINGS, SCALINGS, load_gold\n",
|
|
168
|
+
"\n",
|
|
169
|
+
"ORIGINAL_COLUMN = f\"original_{TARGET_COLUMN}\"\n",
|
|
170
|
+
"PREDICTIONS_PATH = PRODUCTION_DIR / \"data\" / \"scoring\" / \"predictions.parquet\"\n",
|
|
171
|
+
"\n",
|
|
172
|
+
"# Set tracking URI\n",
|
|
173
|
+
"mlflow.set_tracking_uri(MLFLOW_TRACKING_URI)\n",
|
|
174
|
+
"\n",
|
|
175
|
+
"\n",
|
|
176
|
+
"# --- Load holdout (from gold path which retains original_target, not Feast which excludes it) ---\n",
|
|
177
|
+
"features_df = load_gold()\n",
|
|
178
|
+
"\n",
|
|
179
|
+
"if ORIGINAL_COLUMN not in features_df.columns:\n",
|
|
180
|
+
" raise ValueError(\n",
|
|
181
|
+
" f\"No holdout found (column '{ORIGINAL_COLUMN}' missing). \"\n",
|
|
182
|
+
" \"Holdout must be created in silver layer BEFORE gold layer feature computation.\"\n",
|
|
183
|
+
" )\n",
|
|
184
|
+
"\n",
|
|
185
|
+
"scoring_mask = features_df[TARGET_COLUMN].isna() & features_df[ORIGINAL_COLUMN].notna()\n",
|
|
186
|
+
"scoring_df = features_df[scoring_mask].copy()\n",
|
|
187
|
+
"print(f\"Found {len(scoring_df):,} holdout records for scoring\")\n",
|
|
188
|
+
"\n",
|
|
189
|
+
"\n",
|
|
190
|
+
"# --- Feast features (fallback to parquet) ---\n",
|
|
191
|
+
"feast_path = Path(FEAST_REPO_PATH)\n",
|
|
192
|
+
"if (feast_path / \"feature_store.yaml\").exists():\n",
|
|
193
|
+
" try:\n",
|
|
194
|
+
" store = FeatureStore(repo_path=str(feast_path))\n",
|
|
195
|
+
" entity_df = scoring_df[[FEAST_ENTITY_KEY, FEAST_TIMESTAMP_COL]].copy()\n",
|
|
196
|
+
" exclude_cols = {FEAST_ENTITY_KEY, FEAST_TIMESTAMP_COL, TARGET_COLUMN, ORIGINAL_COLUMN}\n",
|
|
197
|
+
" feature_cols = [\n",
|
|
198
|
+
" c for c in scoring_df.columns\n",
|
|
199
|
+
" if c not in exclude_cols and not c.startswith(\"original_\")\n",
|
|
200
|
+
" ]\n",
|
|
201
|
+
" feature_refs = [f\"{FEAST_FEATURE_VIEW}:{col}\" for col in feature_cols]\n",
|
|
202
|
+
" result_df = store.get_online_features(\n",
|
|
203
|
+
" features=feature_refs,\n",
|
|
204
|
+
" entity_rows=[{FEAST_ENTITY_KEY: eid} for eid in scoring_df[FEAST_ENTITY_KEY]]\n",
|
|
205
|
+
" ).to_df()\n",
|
|
206
|
+
" result_df[ORIGINAL_COLUMN] = scoring_df[ORIGINAL_COLUMN].values\n",
|
|
207
|
+
" result_df[FEAST_ENTITY_KEY] = scoring_df[FEAST_ENTITY_KEY].values\n",
|
|
208
|
+
" scoring_features = result_df\n",
|
|
209
|
+
" print(\"Loaded features from Feast\")\n",
|
|
210
|
+
" except Exception as e:\n",
|
|
211
|
+
" print(f\"Feast retrieval failed ({e}), using parquet\")\n",
|
|
212
|
+
" scoring_features = scoring_df\n",
|
|
213
|
+
"else:\n",
|
|
214
|
+
" print(\"Feast not initialized, using parquet directly\")\n",
|
|
215
|
+
" scoring_features = scoring_df\n",
|
|
216
|
+
"\n",
|
|
217
|
+
"\n",
|
|
218
|
+
"# --- Load best model ---\n",
|
|
219
|
+
"client = mlflow.tracking.MlflowClient()\n",
|
|
220
|
+
"experiment = client.get_experiment_by_name(PIPELINE_NAME)\n",
|
|
221
|
+
"if not experiment:\n",
|
|
222
|
+
" raise ValueError(f\"Experiment {PIPELINE_NAME} not found\")\n",
|
|
223
|
+
"\n",
|
|
224
|
+
"\n",
|
|
225
|
+
"def _find_best_parent_run(client, experiment_id):\n",
|
|
226
|
+
" runs = client.search_runs(\n",
|
|
227
|
+
" experiment_ids=[experiment_id],\n",
|
|
228
|
+
" filter_string=f\"tags.recommendations_hash = '{RECOMMENDATIONS_HASH}'\",\n",
|
|
229
|
+
" order_by=[\"metrics.best_roc_auc DESC\"], max_results=1,\n",
|
|
230
|
+
" )\n",
|
|
231
|
+
" if not runs:\n",
|
|
232
|
+
" runs = client.search_runs(\n",
|
|
233
|
+
" experiment_ids=[experiment_id],\n",
|
|
234
|
+
" order_by=[\"metrics.best_roc_auc DESC\"], max_results=1,\n",
|
|
235
|
+
" )\n",
|
|
236
|
+
" if not runs:\n",
|
|
237
|
+
" raise ValueError(\"No runs found\")\n",
|
|
238
|
+
" return runs[0]\n",
|
|
239
|
+
"\n",
|
|
240
|
+
"\n",
|
|
241
|
+
"parent_run = _find_best_parent_run(client, experiment.experiment_id)\n",
|
|
242
|
+
"best_model_tag = parent_run.data.tags.get(\"best_model\", \"random_forest\")\n",
|
|
243
|
+
"model_name = f\"model_{best_model_tag}\"\n",
|
|
244
|
+
"if RECOMMENDATIONS_HASH:\n",
|
|
245
|
+
" model_name = f\"{model_name}_{RECOMMENDATIONS_HASH}\"\n",
|
|
246
|
+
"\n",
|
|
247
|
+
"child_runs = client.search_runs(\n",
|
|
248
|
+
" experiment_ids=[experiment.experiment_id],\n",
|
|
249
|
+
" filter_string=f\"tags.mlflow.parentRunId = '{parent_run.info.run_id}'\",\n",
|
|
250
|
+
")\n",
|
|
251
|
+
"model_run = next(\n",
|
|
252
|
+
" (c for c in child_runs if c.info.run_name == best_model_tag), parent_run\n",
|
|
253
|
+
")\n",
|
|
254
|
+
"model_uri = f\"runs:/{model_run.info.run_id}/{model_name}\"\n",
|
|
255
|
+
"print(f\"Loading model: {model_uri}\")\n",
|
|
256
|
+
"loader = mlflow.xgboost if best_model_tag == \"xgboost\" else mlflow.sklearn\n",
|
|
257
|
+
"model = loader.load_model(model_uri)\n",
|
|
258
|
+
"\n",
|
|
259
|
+
"\n",
|
|
260
|
+
"# --- Prepare features (TransformExecutor, NOT LabelEncoder) ---\n",
|
|
261
|
+
"def prepare_features(df):\n",
|
|
262
|
+
" df = df.copy()\n",
|
|
263
|
+
" drop_cols = [FEAST_ENTITY_KEY, FEAST_TIMESTAMP_COL, ORIGINAL_COLUMN, TARGET_COLUMN]\n",
|
|
264
|
+
" df = df.drop(columns=[c for c in drop_cols if c in df.columns], errors=\"ignore\")\n",
|
|
265
|
+
" df = df.drop(columns=[c for c in df.columns if c.startswith(\"original_\")], errors=\"ignore\")\n",
|
|
266
|
+
" df = _executor.apply_all(df, ENCODINGS + SCALINGS, fit_mode=False, artifact_store=_registry)\n",
|
|
267
|
+
" return df.select_dtypes(include=[\"int64\", \"float64\", \"int32\", \"float32\"]).fillna(0)\n",
|
|
268
|
+
"\n",
|
|
269
|
+
"\n",
|
|
270
|
+
"X = prepare_features(scoring_features)\n",
|
|
271
|
+
"y_true = scoring_features[ORIGINAL_COLUMN].values\n",
|
|
272
|
+
"\n",
|
|
273
|
+
"# --- Predict ---\n",
|
|
274
|
+
"print(\"Generating predictions...\")\n",
|
|
275
|
+
"if hasattr(model, \"predict_proba\"):\n",
|
|
276
|
+
" y_proba = model.predict_proba(X)[:, 1]\n",
|
|
277
|
+
"else:\n",
|
|
278
|
+
" y_proba = model.predict(xgb.DMatrix(X, feature_names=list(X.columns)))\n",
|
|
279
|
+
"y_pred = (y_proba >= 0.5).astype(int)\n",
|
|
280
|
+
"\n",
|
|
281
|
+
"# --- Metrics ---\n",
|
|
282
|
+
"from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score\n",
|
|
283
|
+
"\n",
|
|
284
|
+
"metrics = {\n",
|
|
285
|
+
" \"accuracy\": accuracy_score(y_true, y_pred),\n",
|
|
286
|
+
" \"precision\": precision_score(y_true, y_pred, zero_division=0),\n",
|
|
287
|
+
" \"recall\": recall_score(y_true, y_pred, zero_division=0),\n",
|
|
288
|
+
" \"f1\": f1_score(y_true, y_pred, zero_division=0),\n",
|
|
289
|
+
" \"roc_auc\": roc_auc_score(y_true, y_proba) if len(np.unique(y_true)) > 1 else 0.0,\n",
|
|
290
|
+
"}\n",
|
|
291
|
+
"print(\"\\nValidation Metrics (vs original values):\")\n",
|
|
292
|
+
"for name, value in metrics.items():\n",
|
|
293
|
+
" print(f\" {name}: {value:.4f}\")\n",
|
|
294
|
+
"\n",
|
|
295
|
+
"# --- Save predictions ---\n",
|
|
296
|
+
"predictions_df = pd.DataFrame({\n",
|
|
297
|
+
" FEAST_ENTITY_KEY: scoring_df[FEAST_ENTITY_KEY].values,\n",
|
|
298
|
+
" \"prediction\": y_pred,\n",
|
|
299
|
+
" \"probability\": y_proba,\n",
|
|
300
|
+
" \"actual\": y_true,\n",
|
|
301
|
+
" \"correct\": (y_pred == y_true).astype(int),\n",
|
|
302
|
+
"})\n",
|
|
303
|
+
"PREDICTIONS_PATH.parent.mkdir(parents=True, exist_ok=True)\n",
|
|
304
|
+
"predictions_df.to_parquet(PREDICTIONS_PATH, index=False)\n",
|
|
305
|
+
"print(f\"\\nPredictions saved: {PREDICTIONS_PATH}\")\n",
|
|
306
|
+
"print(f\"Correct: {predictions_df['correct'].sum():,}/{len(predictions_df):,} ({predictions_df['correct'].mean():.1%})\")"
|
|
307
|
+
]
|
|
308
|
+
},
|
|
309
|
+
{
|
|
310
|
+
"cell_type": "markdown",
|
|
311
|
+
"id": "8b5eb9d4",
|
|
312
|
+
"metadata": {
|
|
313
|
+
"papermill": {
|
|
314
|
+
"duration": 0.003123,
|
|
315
|
+
"end_time": "2026-02-02T13:04:23.676730",
|
|
316
|
+
"exception": false,
|
|
317
|
+
"start_time": "2026-02-02T13:04:23.673607",
|
|
318
|
+
"status": "completed"
|
|
319
|
+
},
|
|
320
|
+
"tags": []
|
|
321
|
+
},
|
|
322
|
+
"source": [
|
|
323
|
+
"## 11.2 Summary Metrics"
|
|
324
|
+
]
|
|
325
|
+
},
|
|
326
|
+
{
|
|
327
|
+
"cell_type": "code",
|
|
328
|
+
"execution_count": null,
|
|
329
|
+
"id": "5d2880c0",
|
|
330
|
+
"metadata": {
|
|
331
|
+
"execution": {
|
|
332
|
+
"iopub.execute_input": "2026-02-02T13:04:23.683183Z",
|
|
333
|
+
"iopub.status.busy": "2026-02-02T13:04:23.683045Z",
|
|
334
|
+
"iopub.status.idle": "2026-02-02T13:04:23.691221Z",
|
|
335
|
+
"shell.execute_reply": "2026-02-02T13:04:23.690765Z"
|
|
336
|
+
},
|
|
337
|
+
"papermill": {
|
|
338
|
+
"duration": 0.012164,
|
|
339
|
+
"end_time": "2026-02-02T13:04:23.691775",
|
|
340
|
+
"exception": false,
|
|
341
|
+
"start_time": "2026-02-02T13:04:23.679611",
|
|
342
|
+
"status": "completed"
|
|
343
|
+
},
|
|
344
|
+
"tags": []
|
|
345
|
+
},
|
|
346
|
+
"outputs": [],
|
|
347
|
+
"source": [
|
|
348
|
+
"from sklearn.metrics import (\n",
|
|
349
|
+
" accuracy_score, precision_score, recall_score,\n",
|
|
350
|
+
" f1_score, roc_auc_score, confusion_matrix,\n",
|
|
351
|
+
")\n",
|
|
352
|
+
"\n",
|
|
353
|
+
"y_true = predictions_df[\"actual\"]\n",
|
|
354
|
+
"y_pred = predictions_df[\"prediction\"]\n",
|
|
355
|
+
"y_proba = predictions_df[\"probability\"]\n",
|
|
356
|
+
"\n",
|
|
357
|
+
"metrics = {\n",
|
|
358
|
+
" \"Accuracy\": accuracy_score(y_true, y_pred),\n",
|
|
359
|
+
" \"Precision\": precision_score(y_true, y_pred, zero_division=0),\n",
|
|
360
|
+
" \"Recall\": recall_score(y_true, y_pred, zero_division=0),\n",
|
|
361
|
+
" \"F1 Score\": f1_score(y_true, y_pred, zero_division=0),\n",
|
|
362
|
+
" \"ROC-AUC\": roc_auc_score(y_true, y_proba) if len(np.unique(y_true)) > 1 else 0.0,\n",
|
|
363
|
+
"}\n",
|
|
364
|
+
"\n",
|
|
365
|
+
"print(\"\\n=== Scoring Validation Metrics ===\")\n",
|
|
366
|
+
"for name, value in metrics.items():\n",
|
|
367
|
+
" print(f\" {name}: {value:.4f}\")\n",
|
|
368
|
+
"\n",
|
|
369
|
+
"cm = confusion_matrix(y_true, y_pred)\n",
|
|
370
|
+
"print(f\"\\nConfusion Matrix:\")\n",
|
|
371
|
+
"print(f\" TN={cm[0,0]:,} FP={cm[0,1]:,}\")\n",
|
|
372
|
+
"print(f\" FN={cm[1,0]:,} TP={cm[1,1]:,}\")"
|
|
373
|
+
]
|
|
374
|
+
},
|
|
375
|
+
{
|
|
376
|
+
"cell_type": "code",
|
|
377
|
+
"execution_count": null,
|
|
378
|
+
"id": "aeb3bf7c",
|
|
379
|
+
"metadata": {
|
|
380
|
+
"execution": {
|
|
381
|
+
"iopub.execute_input": "2026-02-02T13:04:23.698098Z",
|
|
382
|
+
"iopub.status.busy": "2026-02-02T13:04:23.698000Z",
|
|
383
|
+
"iopub.status.idle": "2026-02-02T13:04:24.120245Z",
|
|
384
|
+
"shell.execute_reply": "2026-02-02T13:04:24.119760Z"
|
|
385
|
+
},
|
|
386
|
+
"papermill": {
|
|
387
|
+
"duration": 0.426255,
|
|
388
|
+
"end_time": "2026-02-02T13:04:24.120967",
|
|
389
|
+
"exception": false,
|
|
390
|
+
"start_time": "2026-02-02T13:04:23.694712",
|
|
391
|
+
"status": "completed"
|
|
392
|
+
},
|
|
393
|
+
"tags": []
|
|
394
|
+
},
|
|
395
|
+
"outputs": [],
|
|
396
|
+
"source": [
|
|
397
|
+
"import matplotlib.pyplot as plt\n",
|
|
398
|
+
"from sklearn.metrics import roc_curve\n",
|
|
399
|
+
"\n",
|
|
400
|
+
"fig, axes = plt.subplots(1, 2, figsize=(12, 4))\n",
|
|
401
|
+
"\n",
|
|
402
|
+
"# ROC curve\n",
|
|
403
|
+
"fpr, tpr, _ = roc_curve(y_true, y_proba)\n",
|
|
404
|
+
"axes[0].plot(fpr, tpr, \"b-\", lw=2, label=f\"ROC (AUC={metrics['ROC-AUC']:.3f})\")\n",
|
|
405
|
+
"axes[0].plot([0, 1], [0, 1], \"k--\", lw=1)\n",
|
|
406
|
+
"axes[0].set_xlabel(\"False Positive Rate\")\n",
|
|
407
|
+
"axes[0].set_ylabel(\"True Positive Rate\")\n",
|
|
408
|
+
"axes[0].set_title(\"ROC Curve\")\n",
|
|
409
|
+
"axes[0].legend()\n",
|
|
410
|
+
"\n",
|
|
411
|
+
"# Probability distribution\n",
|
|
412
|
+
"axes[1].hist(y_proba[y_true == 0], bins=30, alpha=0.5, label=\"Actual=0\", color=\"blue\")\n",
|
|
413
|
+
"axes[1].hist(y_proba[y_true == 1], bins=30, alpha=0.5, label=\"Actual=1\", color=\"red\")\n",
|
|
414
|
+
"axes[1].axvline(x=0.5, color=\"black\", linestyle=\"--\", label=\"Threshold\")\n",
|
|
415
|
+
"axes[1].set_xlabel(\"Predicted Probability\")\n",
|
|
416
|
+
"axes[1].set_ylabel(\"Count\")\n",
|
|
417
|
+
"axes[1].set_title(\"Probability Distribution\")\n",
|
|
418
|
+
"axes[1].legend()\n",
|
|
419
|
+
"\n",
|
|
420
|
+
"plt.tight_layout()\n",
|
|
421
|
+
"plt.show()"
|
|
422
|
+
]
|
|
423
|
+
},
|
|
424
|
+
{
|
|
425
|
+
"cell_type": "markdown",
|
|
426
|
+
"id": "afc8d09d",
|
|
427
|
+
"metadata": {
|
|
428
|
+
"papermill": {
|
|
429
|
+
"duration": 0.003519,
|
|
430
|
+
"end_time": "2026-02-02T13:04:24.127927",
|
|
431
|
+
"exception": false,
|
|
432
|
+
"start_time": "2026-02-02T13:04:24.124408",
|
|
433
|
+
"status": "completed"
|
|
434
|
+
},
|
|
435
|
+
"tags": []
|
|
436
|
+
},
|
|
437
|
+
"source": [
|
|
438
|
+
"## 11.3 Model Comparison Grid\n",
|
|
439
|
+
"\n",
|
|
440
|
+
"Compare all trained models (Logistic Regression, Random Forest, XGBoost) on the holdout set.\n",
|
|
441
|
+
"\n",
|
|
442
|
+
"**Grid Layout:**\n",
|
|
443
|
+
"- **Row 1**: Confusion matrices (counts and percentages)\n",
|
|
444
|
+
"- **Row 2**: ROC curves with AUC scores\n",
|
|
445
|
+
"- **Row 3**: Precision-Recall curves with PR-AUC scores"
|
|
446
|
+
]
|
|
447
|
+
},
|
|
448
|
+
{
|
|
449
|
+
"cell_type": "code",
|
|
450
|
+
"execution_count": null,
|
|
451
|
+
"id": "865ea5f6",
|
|
452
|
+
"metadata": {
|
|
453
|
+
"execution": {
|
|
454
|
+
"iopub.execute_input": "2026-02-02T13:04:24.135466Z",
|
|
455
|
+
"iopub.status.busy": "2026-02-02T13:04:24.135183Z",
|
|
456
|
+
"iopub.status.idle": "2026-02-02T13:04:24.234063Z",
|
|
457
|
+
"shell.execute_reply": "2026-02-02T13:04:24.233694Z"
|
|
458
|
+
},
|
|
459
|
+
"papermill": {
|
|
460
|
+
"duration": 0.103605,
|
|
461
|
+
"end_time": "2026-02-02T13:04:24.234812",
|
|
462
|
+
"exception": false,
|
|
463
|
+
"start_time": "2026-02-02T13:04:24.131207",
|
|
464
|
+
"status": "completed"
|
|
465
|
+
},
|
|
466
|
+
"tags": []
|
|
467
|
+
},
|
|
468
|
+
"outputs": [],
|
|
469
|
+
"source": [
|
|
470
|
+
"from sklearn.metrics import (\n",
|
|
471
|
+
" roc_curve, precision_recall_curve, average_precision_score,\n",
|
|
472
|
+
" confusion_matrix, roc_auc_score, f1_score, precision_score,\n",
|
|
473
|
+
" recall_score, accuracy_score,\n",
|
|
474
|
+
")\n",
|
|
475
|
+
"from IPython.display import display, HTML\n",
|
|
476
|
+
"\n",
|
|
477
|
+
"mlflow.set_tracking_uri(MLFLOW_TRACKING_URI)\n",
|
|
478
|
+
"client = mlflow.tracking.MlflowClient()\n",
|
|
479
|
+
"experiment = client.get_experiment_by_name(PIPELINE_NAME)\n",
|
|
480
|
+
"\n",
|
|
481
|
+
"# Prepare features for scoring using TransformExecutor (NOT LabelEncoder)\n",
|
|
482
|
+
"X_holdout = prepare_features(scoring_features)\n",
|
|
483
|
+
"y_actual = predictions_df[\"actual\"].values\n",
|
|
484
|
+
"\n",
|
|
485
|
+
"# Get all logged models\n",
|
|
486
|
+
"logged_models = client.search_logged_models(experiment_ids=[experiment.experiment_id])\n",
|
|
487
|
+
"\n",
|
|
488
|
+
"# Load all 3 model types\n",
|
|
489
|
+
"model_types = [\"logistic_regression\", \"random_forest\", \"xgboost\"]\n",
|
|
490
|
+
"model_display_names = [\"Logistic Regression\", \"Random Forest\", \"XGBoost\"]\n",
|
|
491
|
+
"loaded_models = {}\n",
|
|
492
|
+
"model_predictions = {}\n",
|
|
493
|
+
"\n",
|
|
494
|
+
"for model_type, display_name in zip(model_types, model_display_names):\n",
|
|
495
|
+
" model_name_pattern = f\"model_{model_type}\"\n",
|
|
496
|
+
" if RECOMMENDATIONS_HASH:\n",
|
|
497
|
+
" model_name_pattern = f\"{model_name_pattern}_{RECOMMENDATIONS_HASH}\"\n",
|
|
498
|
+
"\n",
|
|
499
|
+
" matching_model = None\n",
|
|
500
|
+
" for lm in logged_models:\n",
|
|
501
|
+
" if lm.name == model_name_pattern:\n",
|
|
502
|
+
" if matching_model is None or lm.creation_timestamp > matching_model.creation_timestamp:\n",
|
|
503
|
+
" matching_model = lm\n",
|
|
504
|
+
"\n",
|
|
505
|
+
" if matching_model:\n",
|
|
506
|
+
" try:\n",
|
|
507
|
+
" if \"xgboost\" in model_type:\n",
|
|
508
|
+
" m = mlflow.xgboost.load_model(matching_model.model_uri)\n",
|
|
509
|
+
" dmatrix = xgb.DMatrix(X_holdout, feature_names=list(X_holdout.columns))\n",
|
|
510
|
+
" yp = m.predict(dmatrix)\n",
|
|
511
|
+
" else:\n",
|
|
512
|
+
" m = mlflow.sklearn.load_model(matching_model.model_uri)\n",
|
|
513
|
+
" yp = m.predict_proba(X_holdout)[:, 1]\n",
|
|
514
|
+
"\n",
|
|
515
|
+
" y_p = (yp > 0.5).astype(int)\n",
|
|
516
|
+
" loaded_models[display_name] = m\n",
|
|
517
|
+
" model_predictions[display_name] = {\"y_pred\": y_p, \"y_proba\": yp}\n",
|
|
518
|
+
" print(f\"Loaded {display_name}: ROC-AUC = {roc_auc_score(y_actual, yp):.4f}\")\n",
|
|
519
|
+
" except Exception as e:\n",
|
|
520
|
+
" print(f\"Could not load {display_name}: {e}\")\n",
|
|
521
|
+
"\n",
|
|
522
|
+
"print(f\"\\nLoaded {len(loaded_models)} models for comparison\")"
|
|
523
|
+
]
|
|
524
|
+
},
|
|
525
|
+
{
|
|
526
|
+
"cell_type": "code",
|
|
527
|
+
"execution_count": null,
|
|
528
|
+
"id": "e8152776",
|
|
529
|
+
"metadata": {
|
|
530
|
+
"execution": {
|
|
531
|
+
"iopub.execute_input": "2026-02-02T13:04:24.242988Z",
|
|
532
|
+
"iopub.status.busy": "2026-02-02T13:04:24.242860Z",
|
|
533
|
+
"iopub.status.idle": "2026-02-02T13:04:24.582353Z",
|
|
534
|
+
"shell.execute_reply": "2026-02-02T13:04:24.581773Z"
|
|
535
|
+
},
|
|
536
|
+
"papermill": {
|
|
537
|
+
"duration": 0.344716,
|
|
538
|
+
"end_time": "2026-02-02T13:04:24.582901",
|
|
539
|
+
"exception": false,
|
|
540
|
+
"start_time": "2026-02-02T13:04:24.238185",
|
|
541
|
+
"status": "completed"
|
|
542
|
+
},
|
|
543
|
+
"tags": []
|
|
544
|
+
},
|
|
545
|
+
"outputs": [],
|
|
546
|
+
"source": [
|
|
547
|
+
"# Model Comparison Grid (3 columns x 3 rows)\n",
|
|
548
|
+
"n_models = len(model_predictions)\n",
|
|
549
|
+
"if n_models > 0:\n",
|
|
550
|
+
" fig, axes = plt.subplots(3, n_models, figsize=(5 * n_models, 12))\n",
|
|
551
|
+
" if n_models == 1:\n",
|
|
552
|
+
" axes = axes.reshape(-1, 1)\n",
|
|
553
|
+
"\n",
|
|
554
|
+
" colors = [\"#1f77b4\", \"#ff7f0e\", \"#2ca02c\"]\n",
|
|
555
|
+
"\n",
|
|
556
|
+
" for col_idx, (name, preds) in enumerate(model_predictions.items()):\n",
|
|
557
|
+
" y_p = preds[\"y_pred\"]\n",
|
|
558
|
+
" yp = preds[\"y_proba\"]\n",
|
|
559
|
+
" color = colors[col_idx % len(colors)]\n",
|
|
560
|
+
"\n",
|
|
561
|
+
" # Row 1: Confusion Matrix\n",
|
|
562
|
+
" cm = confusion_matrix(y_actual, y_p)\n",
|
|
563
|
+
" ax = axes[0, col_idx]\n",
|
|
564
|
+
" ax.imshow(cm, cmap=\"Blues\")\n",
|
|
565
|
+
" ax.set_xticks([0, 1])\n",
|
|
566
|
+
" ax.set_yticks([0, 1])\n",
|
|
567
|
+
" ax.set_xticklabels([\"Pred 0\", \"Pred 1\"])\n",
|
|
568
|
+
" ax.set_yticklabels([\"Actual 0\", \"Actual 1\"])\n",
|
|
569
|
+
" for i in range(2):\n",
|
|
570
|
+
" for j in range(2):\n",
|
|
571
|
+
" pct = cm[i, j] / cm.sum() * 100\n",
|
|
572
|
+
" ax.text(j, i, f\"{cm[i, j]}\\n({pct:.1f}%)\", ha=\"center\", va=\"center\",\n",
|
|
573
|
+
" color=\"white\" if cm[i, j] > cm.max() / 2 else \"black\", fontsize=10)\n",
|
|
574
|
+
" acc = accuracy_score(y_actual, y_p)\n",
|
|
575
|
+
" ax.set_title(f\"{name}\\nAccuracy: {acc:.3f}\", fontsize=11, fontweight=\"bold\")\n",
|
|
576
|
+
"\n",
|
|
577
|
+
" # Row 2: ROC Curve\n",
|
|
578
|
+
" ax = axes[1, col_idx]\n",
|
|
579
|
+
" fpr, tpr, _ = roc_curve(y_actual, yp)\n",
|
|
580
|
+
" auc = roc_auc_score(y_actual, yp)\n",
|
|
581
|
+
" ax.plot(fpr, tpr, color=color, lw=2, label=f\"AUC = {auc:.4f}\")\n",
|
|
582
|
+
" ax.plot([0, 1], [0, 1], \"k--\", lw=1, alpha=0.5)\n",
|
|
583
|
+
" ax.fill_between(fpr, tpr, alpha=0.2, color=color)\n",
|
|
584
|
+
" ax.set_xlabel(\"False Positive Rate\")\n",
|
|
585
|
+
" ax.set_ylabel(\"True Positive Rate\")\n",
|
|
586
|
+
" ax.set_title(\"ROC Curve\", fontsize=10)\n",
|
|
587
|
+
" ax.legend(loc=\"lower right\")\n",
|
|
588
|
+
" ax.grid(True, alpha=0.3)\n",
|
|
589
|
+
"\n",
|
|
590
|
+
" # Row 3: Precision-Recall Curve\n",
|
|
591
|
+
" ax = axes[2, col_idx]\n",
|
|
592
|
+
" precision_vals, recall_vals, _ = precision_recall_curve(y_actual, yp)\n",
|
|
593
|
+
" pr_auc = average_precision_score(y_actual, yp)\n",
|
|
594
|
+
" ax.plot(recall_vals, precision_vals, color=color, lw=2, label=f\"PR-AUC = {pr_auc:.4f}\")\n",
|
|
595
|
+
" baseline = y_actual.sum() / len(y_actual)\n",
|
|
596
|
+
" ax.axhline(y=baseline, color=\"gray\", linestyle=\"--\", lw=1, label=f\"Baseline = {baseline:.2f}\")\n",
|
|
597
|
+
" ax.fill_between(recall_vals, precision_vals, alpha=0.2, color=color)\n",
|
|
598
|
+
" ax.set_xlabel(\"Recall\")\n",
|
|
599
|
+
" ax.set_ylabel(\"Precision\")\n",
|
|
600
|
+
" ax.set_title(\"Precision-Recall Curve\", fontsize=10)\n",
|
|
601
|
+
" ax.legend(loc=\"lower left\")\n",
|
|
602
|
+
" ax.grid(True, alpha=0.3)\n",
|
|
603
|
+
"\n",
|
|
604
|
+
" plt.suptitle(\"Model Comparison Grid: Holdout Set Performance\",\n",
|
|
605
|
+
" fontsize=14, fontweight=\"bold\", y=1.02)\n",
|
|
606
|
+
" plt.tight_layout()\n",
|
|
607
|
+
" plt.show()\n",
|
|
608
|
+
"else:\n",
|
|
609
|
+
" print(\"No models loaded for comparison\")"
|
|
610
|
+
]
|
|
611
|
+
},
|
|
612
|
+
{
|
|
613
|
+
"cell_type": "code",
|
|
614
|
+
"execution_count": null,
|
|
615
|
+
"id": "5e641fbf",
|
|
616
|
+
"metadata": {
|
|
617
|
+
"execution": {
|
|
618
|
+
"iopub.execute_input": "2026-02-02T13:04:24.591754Z",
|
|
619
|
+
"iopub.status.busy": "2026-02-02T13:04:24.591626Z",
|
|
620
|
+
"iopub.status.idle": "2026-02-02T13:04:24.625306Z",
|
|
621
|
+
"shell.execute_reply": "2026-02-02T13:04:24.624779Z"
|
|
622
|
+
},
|
|
623
|
+
"papermill": {
|
|
624
|
+
"duration": 0.039099,
|
|
625
|
+
"end_time": "2026-02-02T13:04:24.625974",
|
|
626
|
+
"exception": false,
|
|
627
|
+
"start_time": "2026-02-02T13:04:24.586875",
|
|
628
|
+
"status": "completed"
|
|
629
|
+
},
|
|
630
|
+
"tags": []
|
|
631
|
+
},
|
|
632
|
+
"outputs": [],
|
|
633
|
+
"source": [
|
|
634
|
+
"# Summary metrics table for all models\n",
|
|
635
|
+
"if model_predictions:\n",
|
|
636
|
+
" comparison_results = []\n",
|
|
637
|
+
" for name, preds in model_predictions.items():\n",
|
|
638
|
+
" y_p = preds[\"y_pred\"]\n",
|
|
639
|
+
" yp = preds[\"y_proba\"]\n",
|
|
640
|
+
" comparison_results.append({\n",
|
|
641
|
+
" \"Model\": name,\n",
|
|
642
|
+
" \"ROC-AUC\": roc_auc_score(y_actual, yp),\n",
|
|
643
|
+
" \"PR-AUC\": average_precision_score(y_actual, yp),\n",
|
|
644
|
+
" \"F1-Score\": f1_score(y_actual, y_p),\n",
|
|
645
|
+
" \"Precision\": precision_score(y_actual, y_p, zero_division=0),\n",
|
|
646
|
+
" \"Recall\": recall_score(y_actual, y_p, zero_division=0),\n",
|
|
647
|
+
" \"Accuracy\": accuracy_score(y_actual, y_p),\n",
|
|
648
|
+
" })\n",
|
|
649
|
+
"\n",
|
|
650
|
+
" comparison_df = pd.DataFrame(comparison_results).set_index(\"Model\")\n",
|
|
651
|
+
" print(\"\\n\" + \"=\" * 70)\n",
|
|
652
|
+
" print(\"MODEL COMPARISON SUMMARY (Holdout Set)\")\n",
|
|
653
|
+
" print(\"=\" * 70)\n",
|
|
654
|
+
" display(\n",
|
|
655
|
+
" comparison_df.style\n",
|
|
656
|
+
" .highlight_max(axis=0, props=\"background-color: #2e7d32; color: white\")\n",
|
|
657
|
+
" .format(\"{:.4f}\")\n",
|
|
658
|
+
" )\n",
|
|
659
|
+
"\n",
|
|
660
|
+
" best_model_name = comparison_df[\"ROC-AUC\"].idxmax()\n",
|
|
661
|
+
" best_auc = comparison_df.loc[best_model_name, \"ROC-AUC\"]\n",
|
|
662
|
+
" print(f\"\\nBest Model: {best_model_name} (ROC-AUC = {best_auc:.4f})\")"
|
|
663
|
+
]
|
|
664
|
+
},
|
|
665
|
+
{
|
|
666
|
+
"cell_type": "markdown",
|
|
667
|
+
"id": "7cc7e27d",
|
|
668
|
+
"metadata": {
|
|
669
|
+
"papermill": {
|
|
670
|
+
"duration": 0.003359,
|
|
671
|
+
"end_time": "2026-02-02T13:04:24.633357",
|
|
672
|
+
"exception": false,
|
|
673
|
+
"start_time": "2026-02-02T13:04:24.629998",
|
|
674
|
+
"status": "completed"
|
|
675
|
+
},
|
|
676
|
+
"tags": []
|
|
677
|
+
},
|
|
678
|
+
"source": [
|
|
679
|
+
"## 11.4 Adversarial Pipeline Validation\n",
|
|
680
|
+
"\n",
|
|
681
|
+
"Validate that scoring pipeline produces identical features to training for holdout entities.\n",
|
|
682
|
+
"This catches transformation inconsistencies (e.g., scalers re-fit, encoders handling unseen values differently)."
|
|
683
|
+
]
|
|
684
|
+
},
|
|
685
|
+
{
|
|
686
|
+
"cell_type": "code",
|
|
687
|
+
"execution_count": null,
|
|
688
|
+
"id": "77e2ea51",
|
|
689
|
+
"metadata": {
|
|
690
|
+
"execution": {
|
|
691
|
+
"iopub.execute_input": "2026-02-02T13:04:24.640766Z",
|
|
692
|
+
"iopub.status.busy": "2026-02-02T13:04:24.640645Z",
|
|
693
|
+
"iopub.status.idle": "2026-02-02T13:04:24.669286Z",
|
|
694
|
+
"shell.execute_reply": "2026-02-02T13:04:24.668810Z"
|
|
695
|
+
},
|
|
696
|
+
"papermill": {
|
|
697
|
+
"duration": 0.033239,
|
|
698
|
+
"end_time": "2026-02-02T13:04:24.669913",
|
|
699
|
+
"exception": false,
|
|
700
|
+
"start_time": "2026-02-02T13:04:24.636674",
|
|
701
|
+
"status": "completed"
|
|
702
|
+
},
|
|
703
|
+
"tags": []
|
|
704
|
+
},
|
|
705
|
+
"outputs": [],
|
|
706
|
+
"source": [
|
|
707
|
+
"gold_features = load_gold()\n",
|
|
708
|
+
"\n",
|
|
709
|
+
"holdout_mask = gold_features[ORIGINAL_COLUMN].notna()\n",
|
|
710
|
+
"holdout_gold = gold_features[holdout_mask].copy()\n",
|
|
711
|
+
"print(f\"Holdout entities for validation: {holdout_mask.sum():,}\")\n",
|
|
712
|
+
"\n",
|
|
713
|
+
"# Compare scoring features vs gold features for holdout records\n",
|
|
714
|
+
"scoring_entity_ids = set(scoring_features[FEAST_ENTITY_KEY].values)\n",
|
|
715
|
+
"gold_holdout = holdout_gold[holdout_gold[FEAST_ENTITY_KEY].isin(scoring_entity_ids)]\n",
|
|
716
|
+
"\n",
|
|
717
|
+
"exclude_cols = {FEAST_ENTITY_KEY, \"event_timestamp\", TARGET_COLUMN, ORIGINAL_COLUMN}\n",
|
|
718
|
+
"compare_cols = [\n",
|
|
719
|
+
" c for c in gold_holdout.columns\n",
|
|
720
|
+
" if c not in exclude_cols and not c.startswith(\"original_\")\n",
|
|
721
|
+
"]\n",
|
|
722
|
+
"\n",
|
|
723
|
+
"print(\"\\n\" + \"=\" * 60)\n",
|
|
724
|
+
"print(\"ADVERSARIAL PIPELINE VALIDATION\")\n",
|
|
725
|
+
"print(\"=\" * 60)\n",
|
|
726
|
+
"\n",
|
|
727
|
+
"mismatches = []\n",
|
|
728
|
+
"for col in compare_cols:\n",
|
|
729
|
+
" if col in scoring_features.columns and col in gold_holdout.columns:\n",
|
|
730
|
+
" g_vals = gold_holdout[col].values\n",
|
|
731
|
+
" s_vals = scoring_features.reindex(gold_holdout.index)[col].values\n",
|
|
732
|
+
" if pd.api.types.is_numeric_dtype(gold_holdout[col]):\n",
|
|
733
|
+
" delta = np.abs(g_vals.astype(float) - s_vals.astype(float))\n",
|
|
734
|
+
" max_delta = np.nanmax(delta) if len(delta) > 0 else 0\n",
|
|
735
|
+
" if max_delta > 1e-6:\n",
|
|
736
|
+
" mismatches.append({\"feature\": col, \"max_delta\": max_delta})\n",
|
|
737
|
+
"\n",
|
|
738
|
+
"if not mismatches:\n",
|
|
739
|
+
" print(\"\\nPASSED: Scoring features match training features\")\n",
|
|
740
|
+
"else:\n",
|
|
741
|
+
" print(f\"\\nFAILED: {len(mismatches)} features with drift\")\n",
|
|
742
|
+
" display(pd.DataFrame(mismatches).sort_values(\"max_delta\", ascending=False))"
|
|
743
|
+
]
|
|
744
|
+
},
|
|
745
|
+
{
|
|
746
|
+
"cell_type": "markdown",
|
|
747
|
+
"id": "de444011",
|
|
748
|
+
"metadata": {
|
|
749
|
+
"papermill": {
|
|
750
|
+
"duration": 0.003852,
|
|
751
|
+
"end_time": "2026-02-02T13:04:24.678592",
|
|
752
|
+
"exception": false,
|
|
753
|
+
"start_time": "2026-02-02T13:04:24.674740",
|
|
754
|
+
"status": "completed"
|
|
755
|
+
},
|
|
756
|
+
"tags": []
|
|
757
|
+
},
|
|
758
|
+
"source": [
|
|
759
|
+
"## 11.5 Transformation Validation\n",
|
|
760
|
+
"\n",
|
|
761
|
+
"Use `validate_feature_transformation()` from the validation module to verify\n",
|
|
762
|
+
"encoding/scaling consistency between training and scoring."
|
|
763
|
+
]
|
|
764
|
+
},
|
|
765
|
+
{
|
|
766
|
+
"cell_type": "code",
|
|
767
|
+
"execution_count": null,
|
|
768
|
+
"id": "a2dc6490",
|
|
769
|
+
"metadata": {
|
|
770
|
+
"execution": {
|
|
771
|
+
"iopub.execute_input": "2026-02-02T13:04:24.686472Z",
|
|
772
|
+
"iopub.status.busy": "2026-02-02T13:04:24.686358Z",
|
|
773
|
+
"iopub.status.idle": "2026-02-02T13:04:24.728303Z",
|
|
774
|
+
"shell.execute_reply": "2026-02-02T13:04:24.727841Z"
|
|
775
|
+
},
|
|
776
|
+
"papermill": {
|
|
777
|
+
"duration": 0.04693,
|
|
778
|
+
"end_time": "2026-02-02T13:04:24.728951",
|
|
779
|
+
"exception": false,
|
|
780
|
+
"start_time": "2026-02-02T13:04:24.682021",
|
|
781
|
+
"status": "completed"
|
|
782
|
+
},
|
|
783
|
+
"tags": []
|
|
784
|
+
},
|
|
785
|
+
"outputs": [],
|
|
786
|
+
"source": [
|
|
787
|
+
"from customer_retention.stages.validation import validate_feature_transformation\n",
|
|
788
|
+
"\n",
|
|
789
|
+
"# Training features = non-holdout, scoring features = holdout\n",
|
|
790
|
+
"training_mask = gold_features[ORIGINAL_COLUMN].isna()\n",
|
|
791
|
+
"training_subset = gold_features[training_mask].copy()\n",
|
|
792
|
+
"scoring_subset = gold_features[~training_mask].copy()\n",
|
|
793
|
+
"\n",
|
|
794
|
+
"report = validate_feature_transformation(\n",
|
|
795
|
+
" training_df=training_subset,\n",
|
|
796
|
+
" scoring_df=scoring_subset,\n",
|
|
797
|
+
" transform_fn=prepare_features,\n",
|
|
798
|
+
" entity_column=FEAST_ENTITY_KEY,\n",
|
|
799
|
+
" verbose=True,\n",
|
|
800
|
+
")\n",
|
|
801
|
+
"\n",
|
|
802
|
+
"if report.passed:\n",
|
|
803
|
+
" print(\"Transformation validation PASSED\")\n",
|
|
804
|
+
"else:\n",
|
|
805
|
+
" print(f\"Transformation validation FAILED: {len(report.feature_mismatches)} mismatches\")"
|
|
806
|
+
]
|
|
807
|
+
},
|
|
808
|
+
{
|
|
809
|
+
"cell_type": "markdown",
|
|
810
|
+
"id": "b79d4809",
|
|
811
|
+
"metadata": {
|
|
812
|
+
"papermill": {
|
|
813
|
+
"duration": 0.003454,
|
|
814
|
+
"end_time": "2026-02-02T13:04:24.736988",
|
|
815
|
+
"exception": false,
|
|
816
|
+
"start_time": "2026-02-02T13:04:24.733534",
|
|
817
|
+
"status": "completed"
|
|
818
|
+
},
|
|
819
|
+
"tags": []
|
|
820
|
+
},
|
|
821
|
+
"source": [
|
|
822
|
+
"## 11.6 Model Explanations (SHAP)"
|
|
823
|
+
]
|
|
824
|
+
},
|
|
825
|
+
{
|
|
826
|
+
"cell_type": "code",
|
|
827
|
+
"execution_count": null,
|
|
828
|
+
"id": "76fce665",
|
|
829
|
+
"metadata": {
|
|
830
|
+
"execution": {
|
|
831
|
+
"iopub.execute_input": "2026-02-02T13:04:24.746062Z",
|
|
832
|
+
"iopub.status.busy": "2026-02-02T13:04:24.745943Z",
|
|
833
|
+
"iopub.status.idle": "2026-02-02T13:04:25.182792Z",
|
|
834
|
+
"shell.execute_reply": "2026-02-02T13:04:25.182312Z"
|
|
835
|
+
},
|
|
836
|
+
"papermill": {
|
|
837
|
+
"duration": 0.442072,
|
|
838
|
+
"end_time": "2026-02-02T13:04:25.183386",
|
|
839
|
+
"exception": false,
|
|
840
|
+
"start_time": "2026-02-02T13:04:24.741314",
|
|
841
|
+
"status": "completed"
|
|
842
|
+
},
|
|
843
|
+
"tags": []
|
|
844
|
+
},
|
|
845
|
+
"outputs": [],
|
|
846
|
+
"source": [
|
|
847
|
+
"import shap\n",
|
|
848
|
+
"\n",
|
|
849
|
+
"# Load best model for SHAP\n",
|
|
850
|
+
"mlflow.set_tracking_uri(MLFLOW_TRACKING_URI)\n",
|
|
851
|
+
"client = mlflow.tracking.MlflowClient()\n",
|
|
852
|
+
"\n",
|
|
853
|
+
"experiment = client.get_experiment_by_name(PIPELINE_NAME)\n",
|
|
854
|
+
"runs = client.search_runs(\n",
|
|
855
|
+
" experiment_ids=[experiment.experiment_id],\n",
|
|
856
|
+
" order_by=[\"metrics.best_roc_auc DESC\"],\n",
|
|
857
|
+
" max_results=1,\n",
|
|
858
|
+
")\n",
|
|
859
|
+
"parent_run = runs[0]\n",
|
|
860
|
+
"\n",
|
|
861
|
+
"best_model_tag = parent_run.data.tags.get(\"best_model\", \"random_forest\")\n",
|
|
862
|
+
"model_name = f\"model_{best_model_tag}\"\n",
|
|
863
|
+
"if RECOMMENDATIONS_HASH:\n",
|
|
864
|
+
" model_name = f\"{model_name}_{RECOMMENDATIONS_HASH}\"\n",
|
|
865
|
+
"\n",
|
|
866
|
+
"child_runs = client.search_runs(\n",
|
|
867
|
+
" experiment_ids=[experiment.experiment_id],\n",
|
|
868
|
+
" filter_string=f\"tags.mlflow.parentRunId = '{parent_run.info.run_id}'\",\n",
|
|
869
|
+
")\n",
|
|
870
|
+
"model_run = next((c for c in child_runs if c.info.run_name == best_model_tag), parent_run)\n",
|
|
871
|
+
"\n",
|
|
872
|
+
"model_uri = f\"runs:/{model_run.info.run_id}/{model_name}\"\n",
|
|
873
|
+
"print(f\"Loading model: {model_uri}\")\n",
|
|
874
|
+
"if best_model_tag == \"xgboost\":\n",
|
|
875
|
+
" model = mlflow.xgboost.load_model(model_uri)\n",
|
|
876
|
+
"else:\n",
|
|
877
|
+
" model = mlflow.sklearn.load_model(model_uri)\n",
|
|
878
|
+
"print(f\"Model type: {type(model).__name__}\")"
|
|
879
|
+
]
|
|
880
|
+
},
|
|
881
|
+
{
|
|
882
|
+
"cell_type": "code",
|
|
883
|
+
"execution_count": null,
|
|
884
|
+
"id": "3464d0e1",
|
|
885
|
+
"metadata": {
|
|
886
|
+
"execution": {
|
|
887
|
+
"iopub.execute_input": "2026-02-02T13:04:25.192330Z",
|
|
888
|
+
"iopub.status.busy": "2026-02-02T13:04:25.192081Z",
|
|
889
|
+
"iopub.status.idle": "2026-02-02T13:04:25.197408Z",
|
|
890
|
+
"shell.execute_reply": "2026-02-02T13:04:25.197016Z"
|
|
891
|
+
},
|
|
892
|
+
"papermill": {
|
|
893
|
+
"duration": 0.010186,
|
|
894
|
+
"end_time": "2026-02-02T13:04:25.197861",
|
|
895
|
+
"exception": false,
|
|
896
|
+
"start_time": "2026-02-02T13:04:25.187675",
|
|
897
|
+
"status": "completed"
|
|
898
|
+
},
|
|
899
|
+
"tags": []
|
|
900
|
+
},
|
|
901
|
+
"outputs": [],
|
|
902
|
+
"source": [
|
|
903
|
+
"# Prepare features for SHAP using TransformExecutor (NOT LabelEncoder)\n",
|
|
904
|
+
"X = prepare_features(scoring_features)\n",
|
|
905
|
+
"feature_names = list(X.columns)\n",
|
|
906
|
+
"print(f\"Prepared {len(feature_names)} features for SHAP analysis\")"
|
|
907
|
+
]
|
|
908
|
+
},
|
|
909
|
+
{
|
|
910
|
+
"cell_type": "code",
|
|
911
|
+
"execution_count": null,
|
|
912
|
+
"id": "4e0595d4",
|
|
913
|
+
"metadata": {
|
|
914
|
+
"execution": {
|
|
915
|
+
"iopub.execute_input": "2026-02-02T13:04:25.207529Z",
|
|
916
|
+
"iopub.status.busy": "2026-02-02T13:04:25.207410Z",
|
|
917
|
+
"iopub.status.idle": "2026-02-02T13:04:34.310396Z",
|
|
918
|
+
"shell.execute_reply": "2026-02-02T13:04:34.309912Z"
|
|
919
|
+
},
|
|
920
|
+
"papermill": {
|
|
921
|
+
"duration": 9.108894,
|
|
922
|
+
"end_time": "2026-02-02T13:04:34.310996",
|
|
923
|
+
"exception": false,
|
|
924
|
+
"start_time": "2026-02-02T13:04:25.202102",
|
|
925
|
+
"status": "completed"
|
|
926
|
+
},
|
|
927
|
+
"tags": []
|
|
928
|
+
},
|
|
929
|
+
"outputs": [],
|
|
930
|
+
"source": [
|
|
931
|
+
"# Create SHAP explainer\n",
|
|
932
|
+
"print(\"Creating SHAP explainer (may take a moment)...\")\n",
|
|
933
|
+
"\n",
|
|
934
|
+
"background_size = min(100, len(X))\n",
|
|
935
|
+
"background = shap.sample(X, background_size)\n",
|
|
936
|
+
"\n",
|
|
937
|
+
"if hasattr(model, \"predict_proba\"):\n",
|
|
938
|
+
" explainer = shap.Explainer(model.predict_proba, background, feature_names=feature_names)\n",
|
|
939
|
+
"else:\n",
|
|
940
|
+
" explainer = shap.Explainer(model, background, feature_names=feature_names)\n",
|
|
941
|
+
"\n",
|
|
942
|
+
"print(\"Computing SHAP values...\")\n",
|
|
943
|
+
"shap_values = explainer(X)\n",
|
|
944
|
+
"print(f\"SHAP values computed for {len(shap_values)} records\")"
|
|
945
|
+
]
|
|
946
|
+
},
|
|
947
|
+
{
|
|
948
|
+
"cell_type": "code",
|
|
949
|
+
"execution_count": null,
|
|
950
|
+
"id": "f3be6aab",
|
|
951
|
+
"metadata": {
|
|
952
|
+
"execution": {
|
|
953
|
+
"iopub.execute_input": "2026-02-02T13:04:34.320580Z",
|
|
954
|
+
"iopub.status.busy": "2026-02-02T13:04:34.320441Z",
|
|
955
|
+
"iopub.status.idle": "2026-02-02T13:04:34.531044Z",
|
|
956
|
+
"shell.execute_reply": "2026-02-02T13:04:34.530558Z"
|
|
957
|
+
},
|
|
958
|
+
"papermill": {
|
|
959
|
+
"duration": 0.216039,
|
|
960
|
+
"end_time": "2026-02-02T13:04:34.531635",
|
|
961
|
+
"exception": false,
|
|
962
|
+
"start_time": "2026-02-02T13:04:34.315596",
|
|
963
|
+
"status": "completed"
|
|
964
|
+
},
|
|
965
|
+
"tags": []
|
|
966
|
+
},
|
|
967
|
+
"outputs": [],
|
|
968
|
+
"source": [
|
|
969
|
+
"# Use positive class SHAP values if multi-output\n",
|
|
970
|
+
"if len(shap_values.shape) == 3:\n",
|
|
971
|
+
" shap_vals = shap_values[:, :, 1] # Positive class\n",
|
|
972
|
+
"else:\n",
|
|
973
|
+
" shap_vals = shap_values\n",
|
|
974
|
+
"\n",
|
|
975
|
+
"plt.figure(figsize=(10, 8))\n",
|
|
976
|
+
"shap.summary_plot(shap_vals, X, feature_names=feature_names, show=False, max_display=20)\n",
|
|
977
|
+
"plt.title(\"Feature Importance (SHAP Summary)\")\n",
|
|
978
|
+
"plt.tight_layout()\n",
|
|
979
|
+
"plt.show()"
|
|
980
|
+
]
|
|
981
|
+
},
|
|
982
|
+
{
|
|
983
|
+
"cell_type": "code",
|
|
984
|
+
"execution_count": null,
|
|
985
|
+
"id": "e7daa7dc",
|
|
986
|
+
"metadata": {
|
|
987
|
+
"execution": {
|
|
988
|
+
"iopub.execute_input": "2026-02-02T13:04:34.542356Z",
|
|
989
|
+
"iopub.status.busy": "2026-02-02T13:04:34.542238Z",
|
|
990
|
+
"iopub.status.idle": "2026-02-02T13:04:34.548179Z",
|
|
991
|
+
"shell.execute_reply": "2026-02-02T13:04:34.547705Z"
|
|
992
|
+
},
|
|
993
|
+
"papermill": {
|
|
994
|
+
"duration": 0.011839,
|
|
995
|
+
"end_time": "2026-02-02T13:04:34.548851",
|
|
996
|
+
"exception": false,
|
|
997
|
+
"start_time": "2026-02-02T13:04:34.537012",
|
|
998
|
+
"status": "completed"
|
|
999
|
+
},
|
|
1000
|
+
"tags": []
|
|
1001
|
+
},
|
|
1002
|
+
"outputs": [],
|
|
1003
|
+
"source": [
|
|
1004
|
+
"# Mean absolute SHAP values\n",
|
|
1005
|
+
"mean_shap = np.abs(shap_vals.values).mean(axis=0)\n",
|
|
1006
|
+
"importance_df = pd.DataFrame({\n",
|
|
1007
|
+
" \"feature\": feature_names,\n",
|
|
1008
|
+
" \"importance\": mean_shap,\n",
|
|
1009
|
+
"}).sort_values(\"importance\", ascending=False)\n",
|
|
1010
|
+
"\n",
|
|
1011
|
+
"print(\"Top 15 Most Important Features:\")\n",
|
|
1012
|
+
"display(importance_df.head(15))"
|
|
1013
|
+
]
|
|
1014
|
+
},
|
|
1015
|
+
{
|
|
1016
|
+
"cell_type": "markdown",
|
|
1017
|
+
"id": "30791e92",
|
|
1018
|
+
"metadata": {
|
|
1019
|
+
"papermill": {
|
|
1020
|
+
"duration": 0.004667,
|
|
1021
|
+
"end_time": "2026-02-02T13:04:34.559340",
|
|
1022
|
+
"exception": false,
|
|
1023
|
+
"start_time": "2026-02-02T13:04:34.554673",
|
|
1024
|
+
"status": "completed"
|
|
1025
|
+
},
|
|
1026
|
+
"tags": []
|
|
1027
|
+
},
|
|
1028
|
+
"source": [
|
|
1029
|
+
"## 11.7 Customer Browser"
|
|
1030
|
+
]
|
|
1031
|
+
},
|
|
1032
|
+
{
|
|
1033
|
+
"cell_type": "code",
|
|
1034
|
+
"execution_count": null,
|
|
1035
|
+
"id": "cd8460ea",
|
|
1036
|
+
"metadata": {
|
|
1037
|
+
"execution": {
|
|
1038
|
+
"iopub.execute_input": "2026-02-02T13:04:34.571206Z",
|
|
1039
|
+
"iopub.status.busy": "2026-02-02T13:04:34.571077Z",
|
|
1040
|
+
"iopub.status.idle": "2026-02-02T13:04:34.575971Z",
|
|
1041
|
+
"shell.execute_reply": "2026-02-02T13:04:34.575461Z"
|
|
1042
|
+
},
|
|
1043
|
+
"papermill": {
|
|
1044
|
+
"duration": 0.012058,
|
|
1045
|
+
"end_time": "2026-02-02T13:04:34.576704",
|
|
1046
|
+
"exception": false,
|
|
1047
|
+
"start_time": "2026-02-02T13:04:34.564646",
|
|
1048
|
+
"status": "completed"
|
|
1049
|
+
},
|
|
1050
|
+
"tags": []
|
|
1051
|
+
},
|
|
1052
|
+
"outputs": [],
|
|
1053
|
+
"source": [
|
|
1054
|
+
"# Create combined dataset for browsing\n",
|
|
1055
|
+
"browser_df = predictions_df.merge(\n",
|
|
1056
|
+
" scoring_features[[FEAST_ENTITY_KEY] + feature_names],\n",
|
|
1057
|
+
" on=FEAST_ENTITY_KEY,\n",
|
|
1058
|
+
" how=\"left\",\n",
|
|
1059
|
+
")\n",
|
|
1060
|
+
"\n",
|
|
1061
|
+
"print(f\"Customer browser ready with {len(browser_df):,} records\")\n",
|
|
1062
|
+
"print(f\"\\nPrediction Distribution:\")\n",
|
|
1063
|
+
"print(f\" Predicted Positive: {(browser_df['prediction'] == 1).sum():,}\")\n",
|
|
1064
|
+
"print(f\" Predicted Negative: {(browser_df['prediction'] == 0).sum():,}\")\n",
|
|
1065
|
+
"print(f\"\\nCorrect Predictions: {browser_df['correct'].sum():,}/{len(browser_df):,} ({browser_df['correct'].mean():.1%})\")"
|
|
1066
|
+
]
|
|
1067
|
+
},
|
|
1068
|
+
{
|
|
1069
|
+
"cell_type": "code",
|
|
1070
|
+
"execution_count": null,
|
|
1071
|
+
"id": "d14e806a",
|
|
1072
|
+
"metadata": {
|
|
1073
|
+
"execution": {
|
|
1074
|
+
"iopub.execute_input": "2026-02-02T13:04:34.586759Z",
|
|
1075
|
+
"iopub.status.busy": "2026-02-02T13:04:34.586648Z",
|
|
1076
|
+
"iopub.status.idle": "2026-02-02T13:04:34.590204Z",
|
|
1077
|
+
"shell.execute_reply": "2026-02-02T13:04:34.589718Z"
|
|
1078
|
+
},
|
|
1079
|
+
"papermill": {
|
|
1080
|
+
"duration": 0.01003,
|
|
1081
|
+
"end_time": "2026-02-02T13:04:34.591530",
|
|
1082
|
+
"exception": false,
|
|
1083
|
+
"start_time": "2026-02-02T13:04:34.581500",
|
|
1084
|
+
"status": "completed"
|
|
1085
|
+
},
|
|
1086
|
+
"tags": []
|
|
1087
|
+
},
|
|
1088
|
+
"outputs": [],
|
|
1089
|
+
"source": [
|
|
1090
|
+
"def show_customer(idx: int):\n",
|
|
1091
|
+
" \"\"\"Display details and SHAP explanation for a single customer.\"\"\"\n",
|
|
1092
|
+
" row = browser_df.iloc[idx]\n",
|
|
1093
|
+
" entity_id = row[FEAST_ENTITY_KEY]\n",
|
|
1094
|
+
"\n",
|
|
1095
|
+
" print(f\"=== Customer {entity_id} ===\")\n",
|
|
1096
|
+
" print(f\"Prediction: {int(row['prediction'])} (probability: {row['probability']:.3f})\")\n",
|
|
1097
|
+
" print(f\"Actual: {int(row['actual'])}\")\n",
|
|
1098
|
+
" print(f\"Correct: {'Yes' if row['correct'] else 'No'}\")\n",
|
|
1099
|
+
" print()\n",
|
|
1100
|
+
"\n",
|
|
1101
|
+
" feature_vals = X.iloc[idx]\n",
|
|
1102
|
+
" if len(shap_values.shape) == 3:\n",
|
|
1103
|
+
" customer_shap = shap_values[idx, :, 1].values\n",
|
|
1104
|
+
" else:\n",
|
|
1105
|
+
" customer_shap = shap_values[idx].values\n",
|
|
1106
|
+
"\n",
|
|
1107
|
+
" feature_impact = pd.DataFrame({\n",
|
|
1108
|
+
" \"feature\": feature_names,\n",
|
|
1109
|
+
" \"value\": feature_vals.values,\n",
|
|
1110
|
+
" \"shap_impact\": customer_shap,\n",
|
|
1111
|
+
" }).sort_values(\"shap_impact\", key=abs, ascending=False)\n",
|
|
1112
|
+
"\n",
|
|
1113
|
+
" print(\"Top Contributing Features:\")\n",
|
|
1114
|
+
" display(feature_impact.head(10))\n",
|
|
1115
|
+
"\n",
|
|
1116
|
+
" # Waterfall plot\n",
|
|
1117
|
+
" plt.figure(figsize=(10, 6))\n",
|
|
1118
|
+
" if len(shap_values.shape) == 3:\n",
|
|
1119
|
+
" shap.plots.waterfall(shap_values[idx, :, 1], max_display=10, show=False)\n",
|
|
1120
|
+
" else:\n",
|
|
1121
|
+
" shap.plots.waterfall(shap_values[idx], max_display=10, show=False)\n",
|
|
1122
|
+
" plt.title(f\"SHAP Explanation for Customer {entity_id}\")\n",
|
|
1123
|
+
" plt.tight_layout()\n",
|
|
1124
|
+
" plt.show()"
|
|
1125
|
+
]
|
|
1126
|
+
},
|
|
1127
|
+
{
|
|
1128
|
+
"cell_type": "code",
|
|
1129
|
+
"execution_count": null,
|
|
1130
|
+
"id": "fd6aaaee",
|
|
1131
|
+
"metadata": {
|
|
1132
|
+
"execution": {
|
|
1133
|
+
"iopub.execute_input": "2026-02-02T13:04:34.601322Z",
|
|
1134
|
+
"iopub.status.busy": "2026-02-02T13:04:34.601195Z",
|
|
1135
|
+
"iopub.status.idle": "2026-02-02T13:04:34.992570Z",
|
|
1136
|
+
"shell.execute_reply": "2026-02-02T13:04:34.992096Z"
|
|
1137
|
+
},
|
|
1138
|
+
"papermill": {
|
|
1139
|
+
"duration": 0.396932,
|
|
1140
|
+
"end_time": "2026-02-02T13:04:34.993166",
|
|
1141
|
+
"exception": false,
|
|
1142
|
+
"start_time": "2026-02-02T13:04:34.596234",
|
|
1143
|
+
"status": "completed"
|
|
1144
|
+
},
|
|
1145
|
+
"tags": []
|
|
1146
|
+
},
|
|
1147
|
+
"outputs": [],
|
|
1148
|
+
"source": [
|
|
1149
|
+
"# Show first 3 customers\n",
|
|
1150
|
+
"print(\"Showing first 3 customers:\\n\")\n",
|
|
1151
|
+
"for i in range(min(3, len(browser_df))):\n",
|
|
1152
|
+
" show_customer(i)\n",
|
|
1153
|
+
" print(\"\\n\" + \"=\" * 60 + \"\\n\")"
|
|
1154
|
+
]
|
|
1155
|
+
},
|
|
1156
|
+
{
|
|
1157
|
+
"cell_type": "code",
|
|
1158
|
+
"execution_count": null,
|
|
1159
|
+
"id": "35a9e063",
|
|
1160
|
+
"metadata": {
|
|
1161
|
+
"execution": {
|
|
1162
|
+
"iopub.execute_input": "2026-02-02T13:04:35.005568Z",
|
|
1163
|
+
"iopub.status.busy": "2026-02-02T13:04:35.005433Z",
|
|
1164
|
+
"iopub.status.idle": "2026-02-02T13:04:35.008375Z",
|
|
1165
|
+
"shell.execute_reply": "2026-02-02T13:04:35.007656Z"
|
|
1166
|
+
},
|
|
1167
|
+
"papermill": {
|
|
1168
|
+
"duration": 0.009752,
|
|
1169
|
+
"end_time": "2026-02-02T13:04:35.008902",
|
|
1170
|
+
"exception": false,
|
|
1171
|
+
"start_time": "2026-02-02T13:04:34.999150",
|
|
1172
|
+
"status": "completed"
|
|
1173
|
+
},
|
|
1174
|
+
"tags": []
|
|
1175
|
+
},
|
|
1176
|
+
"outputs": [],
|
|
1177
|
+
"source": [
|
|
1178
|
+
"# Look up by entity ID\n",
|
|
1179
|
+
"def lookup_customer(entity_id):\n",
|
|
1180
|
+
" \"\"\"Find and display a customer by their entity ID.\"\"\"\n",
|
|
1181
|
+
" mask = browser_df[FEAST_ENTITY_KEY] == entity_id\n",
|
|
1182
|
+
" if not mask.any():\n",
|
|
1183
|
+
" print(f\"Customer {entity_id} not found in scoring set\")\n",
|
|
1184
|
+
" return\n",
|
|
1185
|
+
" idx = browser_df[mask].index[0]\n",
|
|
1186
|
+
" x_idx = browser_df.index.get_loc(idx)\n",
|
|
1187
|
+
" show_customer(x_idx)\n",
|
|
1188
|
+
"\n",
|
|
1189
|
+
"\n",
|
|
1190
|
+
"# Example: lookup_customer(12345)\n",
|
|
1191
|
+
"print(\"Available entity IDs (first 10):\")\n",
|
|
1192
|
+
"print(browser_df[FEAST_ENTITY_KEY].head(10).tolist())"
|
|
1193
|
+
]
|
|
1194
|
+
},
|
|
1195
|
+
{
|
|
1196
|
+
"cell_type": "markdown",
|
|
1197
|
+
"id": "7a10e90a",
|
|
1198
|
+
"metadata": {
|
|
1199
|
+
"papermill": {
|
|
1200
|
+
"duration": 0.005938,
|
|
1201
|
+
"end_time": "2026-02-02T13:04:35.020817",
|
|
1202
|
+
"exception": false,
|
|
1203
|
+
"start_time": "2026-02-02T13:04:35.014879",
|
|
1204
|
+
"status": "completed"
|
|
1205
|
+
},
|
|
1206
|
+
"tags": []
|
|
1207
|
+
},
|
|
1208
|
+
"source": [
|
|
1209
|
+
"## 11.8 Error Analysis"
|
|
1210
|
+
]
|
|
1211
|
+
},
|
|
1212
|
+
{
|
|
1213
|
+
"cell_type": "code",
|
|
1214
|
+
"execution_count": null,
|
|
1215
|
+
"id": "2cee8606",
|
|
1216
|
+
"metadata": {
|
|
1217
|
+
"execution": {
|
|
1218
|
+
"iopub.execute_input": "2026-02-02T13:04:35.033732Z",
|
|
1219
|
+
"iopub.status.busy": "2026-02-02T13:04:35.033622Z",
|
|
1220
|
+
"iopub.status.idle": "2026-02-02T13:04:35.036439Z",
|
|
1221
|
+
"shell.execute_reply": "2026-02-02T13:04:35.036131Z"
|
|
1222
|
+
},
|
|
1223
|
+
"papermill": {
|
|
1224
|
+
"duration": 0.010077,
|
|
1225
|
+
"end_time": "2026-02-02T13:04:35.037185",
|
|
1226
|
+
"exception": false,
|
|
1227
|
+
"start_time": "2026-02-02T13:04:35.027108",
|
|
1228
|
+
"status": "completed"
|
|
1229
|
+
},
|
|
1230
|
+
"tags": []
|
|
1231
|
+
},
|
|
1232
|
+
"outputs": [],
|
|
1233
|
+
"source": [
|
|
1234
|
+
"# Analyze misclassified customers\n",
|
|
1235
|
+
"incorrect = browser_df[browser_df[\"correct\"] == 0]\n",
|
|
1236
|
+
"print(f\"Misclassified customers: {len(incorrect):,}\")\n",
|
|
1237
|
+
"\n",
|
|
1238
|
+
"# False positives (predicted 1, actual 0)\n",
|
|
1239
|
+
"fp = incorrect[incorrect[\"prediction\"] == 1]\n",
|
|
1240
|
+
"print(f\" False Positives: {len(fp):,}\")\n",
|
|
1241
|
+
"\n",
|
|
1242
|
+
"# False negatives (predicted 0, actual 1)\n",
|
|
1243
|
+
"fn = incorrect[incorrect[\"prediction\"] == 0]\n",
|
|
1244
|
+
"print(f\" False Negatives: {len(fn):,}\")"
|
|
1245
|
+
]
|
|
1246
|
+
},
|
|
1247
|
+
{
|
|
1248
|
+
"cell_type": "code",
|
|
1249
|
+
"execution_count": null,
|
|
1250
|
+
"id": "988b6a72",
|
|
1251
|
+
"metadata": {
|
|
1252
|
+
"execution": {
|
|
1253
|
+
"iopub.execute_input": "2026-02-02T13:04:35.048794Z",
|
|
1254
|
+
"iopub.status.busy": "2026-02-02T13:04:35.048684Z",
|
|
1255
|
+
"iopub.status.idle": "2026-02-02T13:04:35.171216Z",
|
|
1256
|
+
"shell.execute_reply": "2026-02-02T13:04:35.170804Z"
|
|
1257
|
+
},
|
|
1258
|
+
"papermill": {
|
|
1259
|
+
"duration": 0.129762,
|
|
1260
|
+
"end_time": "2026-02-02T13:04:35.172645",
|
|
1261
|
+
"exception": false,
|
|
1262
|
+
"start_time": "2026-02-02T13:04:35.042883",
|
|
1263
|
+
"status": "completed"
|
|
1264
|
+
},
|
|
1265
|
+
"tags": []
|
|
1266
|
+
},
|
|
1267
|
+
"outputs": [],
|
|
1268
|
+
"source": [
|
|
1269
|
+
"# Example false positive\n",
|
|
1270
|
+
"if len(fp) > 0:\n",
|
|
1271
|
+
" print(\"\\n=== Example False Positive ===\")\n",
|
|
1272
|
+
" fp_idx = browser_df.index.get_loc(fp.index[0])\n",
|
|
1273
|
+
" show_customer(fp_idx)"
|
|
1274
|
+
]
|
|
1275
|
+
},
|
|
1276
|
+
{
|
|
1277
|
+
"cell_type": "code",
|
|
1278
|
+
"execution_count": null,
|
|
1279
|
+
"id": "7ce2bae4",
|
|
1280
|
+
"metadata": {
|
|
1281
|
+
"execution": {
|
|
1282
|
+
"iopub.execute_input": "2026-02-02T13:04:35.186493Z",
|
|
1283
|
+
"iopub.status.busy": "2026-02-02T13:04:35.186355Z",
|
|
1284
|
+
"iopub.status.idle": "2026-02-02T13:04:35.446048Z",
|
|
1285
|
+
"shell.execute_reply": "2026-02-02T13:04:35.445342Z"
|
|
1286
|
+
},
|
|
1287
|
+
"papermill": {
|
|
1288
|
+
"duration": 0.267906,
|
|
1289
|
+
"end_time": "2026-02-02T13:04:35.446873",
|
|
1290
|
+
"exception": false,
|
|
1291
|
+
"start_time": "2026-02-02T13:04:35.178967",
|
|
1292
|
+
"status": "completed"
|
|
1293
|
+
},
|
|
1294
|
+
"tags": []
|
|
1295
|
+
},
|
|
1296
|
+
"outputs": [],
|
|
1297
|
+
"source": [
|
|
1298
|
+
"# Example false negative\n",
|
|
1299
|
+
"if len(fn) > 0:\n",
|
|
1300
|
+
" print(\"\\n=== Example False Negative ===\")\n",
|
|
1301
|
+
" fn_idx = browser_df.index.get_loc(fn.index[0])\n",
|
|
1302
|
+
" show_customer(fn_idx)"
|
|
1303
|
+
]
|
|
1304
|
+
},
|
|
1305
|
+
{
|
|
1306
|
+
"cell_type": "markdown",
|
|
1307
|
+
"id": "773e6df6",
|
|
1308
|
+
"metadata": {
|
|
1309
|
+
"papermill": {
|
|
1310
|
+
"duration": 0.007096,
|
|
1311
|
+
"end_time": "2026-02-02T13:04:35.460861",
|
|
1312
|
+
"exception": false,
|
|
1313
|
+
"start_time": "2026-02-02T13:04:35.453765",
|
|
1314
|
+
"status": "completed"
|
|
1315
|
+
},
|
|
1316
|
+
"tags": []
|
|
1317
|
+
},
|
|
1318
|
+
"source": [
|
|
1319
|
+
"## 11.9 Export Results"
|
|
1320
|
+
]
|
|
1321
|
+
},
|
|
1322
|
+
{
|
|
1323
|
+
"cell_type": "code",
|
|
1324
|
+
"execution_count": null,
|
|
1325
|
+
"id": "99fec76d",
|
|
1326
|
+
"metadata": {
|
|
1327
|
+
"execution": {
|
|
1328
|
+
"iopub.execute_input": "2026-02-02T13:04:35.474943Z",
|
|
1329
|
+
"iopub.status.busy": "2026-02-02T13:04:35.474800Z",
|
|
1330
|
+
"iopub.status.idle": "2026-02-02T13:04:35.487191Z",
|
|
1331
|
+
"shell.execute_reply": "2026-02-02T13:04:35.486629Z"
|
|
1332
|
+
},
|
|
1333
|
+
"papermill": {
|
|
1334
|
+
"duration": 0.020645,
|
|
1335
|
+
"end_time": "2026-02-02T13:04:35.487797",
|
|
1336
|
+
"exception": false,
|
|
1337
|
+
"start_time": "2026-02-02T13:04:35.467152",
|
|
1338
|
+
"status": "completed"
|
|
1339
|
+
},
|
|
1340
|
+
"tags": []
|
|
1341
|
+
},
|
|
1342
|
+
"outputs": [],
|
|
1343
|
+
"source": [
|
|
1344
|
+
"# Export detailed results with feature importance\n",
|
|
1345
|
+
"output_dir = GEN_EXPERIMENTS_DIR / \"data\" / \"scoring\"\n",
|
|
1346
|
+
"output_dir.mkdir(parents=True, exist_ok=True)\n",
|
|
1347
|
+
"\n",
|
|
1348
|
+
"# Save global feature importance\n",
|
|
1349
|
+
"importance_df.to_csv(output_dir / \"feature_importance.csv\", index=False)\n",
|
|
1350
|
+
"print(f\"Feature importance saved to {output_dir / 'feature_importance.csv'}\")\n",
|
|
1351
|
+
"\n",
|
|
1352
|
+
"top_features = importance_df.head(10)[\"feature\"].tolist()\n",
|
|
1353
|
+
"shap_by_entity = pd.DataFrame({FEAST_ENTITY_KEY: scoring_features[FEAST_ENTITY_KEY].values})\n",
|
|
1354
|
+
"for feat in top_features:\n",
|
|
1355
|
+
" feat_idx = feature_names.index(feat)\n",
|
|
1356
|
+
" if len(shap_values.shape) == 3:\n",
|
|
1357
|
+
" shap_by_entity[f\"shap_{feat}\"] = shap_values[:, feat_idx, 1].values\n",
|
|
1358
|
+
" else:\n",
|
|
1359
|
+
" shap_by_entity[f\"shap_{feat}\"] = shap_values[:, feat_idx].values\n",
|
|
1360
|
+
"\n",
|
|
1361
|
+
"detailed_df = predictions_df.merge(shap_by_entity, on=FEAST_ENTITY_KEY, how=\"left\")\n",
|
|
1362
|
+
"detailed_df.to_parquet(output_dir / \"predictions_with_shap.parquet\", index=False)\n",
|
|
1363
|
+
"print(f\"Detailed predictions with SHAP saved to {output_dir / 'predictions_with_shap.parquet'}\")\n"
|
|
1364
|
+
]
|
|
1365
|
+
},
|
|
1366
|
+
{
|
|
1367
|
+
"cell_type": "markdown",
|
|
1368
|
+
"id": "91811812",
|
|
1369
|
+
"metadata": {
|
|
1370
|
+
"papermill": {
|
|
1371
|
+
"duration": 0.006688,
|
|
1372
|
+
"end_time": "2026-02-02T13:04:35.501600",
|
|
1373
|
+
"exception": false,
|
|
1374
|
+
"start_time": "2026-02-02T13:04:35.494912",
|
|
1375
|
+
"status": "completed"
|
|
1376
|
+
},
|
|
1377
|
+
"tags": []
|
|
1378
|
+
},
|
|
1379
|
+
"source": [
|
|
1380
|
+
"> **Save Reminder:** Save this notebook (Ctrl+S / Cmd+S) before running the next one.\n",
|
|
1381
|
+
"> The next notebook will automatically export this notebook's HTML documentation from the saved file."
|
|
1382
|
+
]
|
|
1383
|
+
}
|
|
1384
|
+
],
|
|
1385
|
+
"metadata": {
|
|
1386
|
+
"kernelspec": {
|
|
1387
|
+
"display_name": "Python 3",
|
|
1388
|
+
"language": "python",
|
|
1389
|
+
"name": "python3"
|
|
1390
|
+
},
|
|
1391
|
+
"language_info": {
|
|
1392
|
+
"codemirror_mode": {
|
|
1393
|
+
"name": "ipython",
|
|
1394
|
+
"version": 3
|
|
1395
|
+
},
|
|
1396
|
+
"file_extension": ".py",
|
|
1397
|
+
"mimetype": "text/x-python",
|
|
1398
|
+
"name": "python",
|
|
1399
|
+
"nbconvert_exporter": "python",
|
|
1400
|
+
"pygments_lexer": "ipython3",
|
|
1401
|
+
"version": "3.12.4"
|
|
1402
|
+
},
|
|
1403
|
+
"papermill": {
|
|
1404
|
+
"default_parameters": {},
|
|
1405
|
+
"duration": 18.648212,
|
|
1406
|
+
"end_time": "2026-02-02T13:04:38.124707",
|
|
1407
|
+
"environment_variables": {},
|
|
1408
|
+
"exception": null,
|
|
1409
|
+
"input_path": "/Users/Vital/python/CustomerRetention/exploration_notebooks/11_scoring_validation.ipynb",
|
|
1410
|
+
"output_path": "/Users/Vital/python/CustomerRetention/exploration_notebooks/11_scoring_validation.ipynb",
|
|
1411
|
+
"parameters": {},
|
|
1412
|
+
"start_time": "2026-02-02T13:04:19.476495",
|
|
1413
|
+
"version": "2.6.0"
|
|
1414
|
+
}
|
|
1415
|
+
},
|
|
1416
|
+
"nbformat": 4,
|
|
1417
|
+
"nbformat_minor": 5
|
|
1418
|
+
}
|