churnkit 0.75.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/00_start_here.ipynb +647 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01_data_discovery.ipynb +1165 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_a_temporal_text_deep_dive.ipynb +961 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01a_temporal_deep_dive.ipynb +1690 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01b_temporal_quality.ipynb +679 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01c_temporal_patterns.ipynb +3305 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/01d_event_aggregation.ipynb +1463 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02_column_deep_dive.ipynb +1430 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/02a_text_columns_deep_dive.ipynb +854 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/03_quality_assessment.ipynb +1639 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/04_relationship_analysis.ipynb +1890 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/05_multi_dataset.ipynb +1457 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/06_feature_opportunities.ipynb +1624 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/07_modeling_readiness.ipynb +780 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/08_baseline_experiments.ipynb +979 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/09_business_alignment.ipynb +572 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/10_spec_generation.ipynb +1179 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/11_scoring_validation.ipynb +1418 -0
- churnkit-0.75.0a1.data/data/share/churnkit/exploration_notebooks/12_view_documentation.ipynb +151 -0
- churnkit-0.75.0a1.dist-info/METADATA +229 -0
- churnkit-0.75.0a1.dist-info/RECORD +302 -0
- churnkit-0.75.0a1.dist-info/WHEEL +4 -0
- churnkit-0.75.0a1.dist-info/entry_points.txt +2 -0
- churnkit-0.75.0a1.dist-info/licenses/LICENSE +202 -0
- customer_retention/__init__.py +37 -0
- customer_retention/analysis/__init__.py +0 -0
- customer_retention/analysis/auto_explorer/__init__.py +62 -0
- customer_retention/analysis/auto_explorer/exploration_manager.py +470 -0
- customer_retention/analysis/auto_explorer/explorer.py +258 -0
- customer_retention/analysis/auto_explorer/findings.py +291 -0
- customer_retention/analysis/auto_explorer/layered_recommendations.py +485 -0
- customer_retention/analysis/auto_explorer/recommendation_builder.py +148 -0
- customer_retention/analysis/auto_explorer/recommendations.py +418 -0
- customer_retention/analysis/business/__init__.py +26 -0
- customer_retention/analysis/business/ab_test_designer.py +144 -0
- customer_retention/analysis/business/fairness_analyzer.py +166 -0
- customer_retention/analysis/business/intervention_matcher.py +121 -0
- customer_retention/analysis/business/report_generator.py +222 -0
- customer_retention/analysis/business/risk_profile.py +199 -0
- customer_retention/analysis/business/roi_analyzer.py +139 -0
- customer_retention/analysis/diagnostics/__init__.py +20 -0
- customer_retention/analysis/diagnostics/calibration_analyzer.py +133 -0
- customer_retention/analysis/diagnostics/cv_analyzer.py +144 -0
- customer_retention/analysis/diagnostics/error_analyzer.py +107 -0
- customer_retention/analysis/diagnostics/leakage_detector.py +394 -0
- customer_retention/analysis/diagnostics/noise_tester.py +140 -0
- customer_retention/analysis/diagnostics/overfitting_analyzer.py +190 -0
- customer_retention/analysis/diagnostics/segment_analyzer.py +122 -0
- customer_retention/analysis/discovery/__init__.py +8 -0
- customer_retention/analysis/discovery/config_generator.py +49 -0
- customer_retention/analysis/discovery/discovery_flow.py +19 -0
- customer_retention/analysis/discovery/type_inferencer.py +147 -0
- customer_retention/analysis/interpretability/__init__.py +13 -0
- customer_retention/analysis/interpretability/cohort_analyzer.py +185 -0
- customer_retention/analysis/interpretability/counterfactual.py +175 -0
- customer_retention/analysis/interpretability/individual_explainer.py +141 -0
- customer_retention/analysis/interpretability/pdp_generator.py +103 -0
- customer_retention/analysis/interpretability/shap_explainer.py +106 -0
- customer_retention/analysis/jupyter_save_hook.py +28 -0
- customer_retention/analysis/notebook_html_exporter.py +136 -0
- customer_retention/analysis/notebook_progress.py +60 -0
- customer_retention/analysis/plotly_preprocessor.py +154 -0
- customer_retention/analysis/recommendations/__init__.py +54 -0
- customer_retention/analysis/recommendations/base.py +158 -0
- customer_retention/analysis/recommendations/cleaning/__init__.py +11 -0
- customer_retention/analysis/recommendations/cleaning/consistency.py +107 -0
- customer_retention/analysis/recommendations/cleaning/deduplicate.py +94 -0
- customer_retention/analysis/recommendations/cleaning/impute.py +67 -0
- customer_retention/analysis/recommendations/cleaning/outlier.py +71 -0
- customer_retention/analysis/recommendations/datetime/__init__.py +3 -0
- customer_retention/analysis/recommendations/datetime/extract.py +149 -0
- customer_retention/analysis/recommendations/encoding/__init__.py +3 -0
- customer_retention/analysis/recommendations/encoding/categorical.py +114 -0
- customer_retention/analysis/recommendations/pipeline.py +74 -0
- customer_retention/analysis/recommendations/registry.py +76 -0
- customer_retention/analysis/recommendations/selection/__init__.py +3 -0
- customer_retention/analysis/recommendations/selection/drop_column.py +56 -0
- customer_retention/analysis/recommendations/transform/__init__.py +4 -0
- customer_retention/analysis/recommendations/transform/power.py +94 -0
- customer_retention/analysis/recommendations/transform/scale.py +112 -0
- customer_retention/analysis/visualization/__init__.py +15 -0
- customer_retention/analysis/visualization/chart_builder.py +2619 -0
- customer_retention/analysis/visualization/console.py +122 -0
- customer_retention/analysis/visualization/display.py +171 -0
- customer_retention/analysis/visualization/number_formatter.py +36 -0
- customer_retention/artifacts/__init__.py +3 -0
- customer_retention/artifacts/fit_artifact_registry.py +146 -0
- customer_retention/cli.py +93 -0
- customer_retention/core/__init__.py +0 -0
- customer_retention/core/compat/__init__.py +193 -0
- customer_retention/core/compat/detection.py +99 -0
- customer_retention/core/compat/ops.py +48 -0
- customer_retention/core/compat/pandas_backend.py +57 -0
- customer_retention/core/compat/spark_backend.py +75 -0
- customer_retention/core/components/__init__.py +11 -0
- customer_retention/core/components/base.py +79 -0
- customer_retention/core/components/components/__init__.py +13 -0
- customer_retention/core/components/components/deployer.py +26 -0
- customer_retention/core/components/components/explainer.py +26 -0
- customer_retention/core/components/components/feature_eng.py +33 -0
- customer_retention/core/components/components/ingester.py +34 -0
- customer_retention/core/components/components/profiler.py +34 -0
- customer_retention/core/components/components/trainer.py +38 -0
- customer_retention/core/components/components/transformer.py +36 -0
- customer_retention/core/components/components/validator.py +37 -0
- customer_retention/core/components/enums.py +33 -0
- customer_retention/core/components/orchestrator.py +94 -0
- customer_retention/core/components/registry.py +59 -0
- customer_retention/core/config/__init__.py +39 -0
- customer_retention/core/config/column_config.py +95 -0
- customer_retention/core/config/experiments.py +71 -0
- customer_retention/core/config/pipeline_config.py +117 -0
- customer_retention/core/config/source_config.py +83 -0
- customer_retention/core/utils/__init__.py +28 -0
- customer_retention/core/utils/leakage.py +85 -0
- customer_retention/core/utils/severity.py +53 -0
- customer_retention/core/utils/statistics.py +90 -0
- customer_retention/generators/__init__.py +0 -0
- customer_retention/generators/notebook_generator/__init__.py +167 -0
- customer_retention/generators/notebook_generator/base.py +55 -0
- customer_retention/generators/notebook_generator/cell_builder.py +49 -0
- customer_retention/generators/notebook_generator/config.py +47 -0
- customer_retention/generators/notebook_generator/databricks_generator.py +48 -0
- customer_retention/generators/notebook_generator/local_generator.py +48 -0
- customer_retention/generators/notebook_generator/project_init.py +174 -0
- customer_retention/generators/notebook_generator/runner.py +150 -0
- customer_retention/generators/notebook_generator/script_generator.py +110 -0
- customer_retention/generators/notebook_generator/stages/__init__.py +19 -0
- customer_retention/generators/notebook_generator/stages/base_stage.py +86 -0
- customer_retention/generators/notebook_generator/stages/s01_ingestion.py +100 -0
- customer_retention/generators/notebook_generator/stages/s02_profiling.py +95 -0
- customer_retention/generators/notebook_generator/stages/s03_cleaning.py +180 -0
- customer_retention/generators/notebook_generator/stages/s04_transformation.py +165 -0
- customer_retention/generators/notebook_generator/stages/s05_feature_engineering.py +115 -0
- customer_retention/generators/notebook_generator/stages/s06_feature_selection.py +97 -0
- customer_retention/generators/notebook_generator/stages/s07_model_training.py +176 -0
- customer_retention/generators/notebook_generator/stages/s08_deployment.py +81 -0
- customer_retention/generators/notebook_generator/stages/s09_monitoring.py +112 -0
- customer_retention/generators/notebook_generator/stages/s10_batch_inference.py +642 -0
- customer_retention/generators/notebook_generator/stages/s11_feature_store.py +348 -0
- customer_retention/generators/orchestration/__init__.py +23 -0
- customer_retention/generators/orchestration/code_generator.py +196 -0
- customer_retention/generators/orchestration/context.py +147 -0
- customer_retention/generators/orchestration/data_materializer.py +188 -0
- customer_retention/generators/orchestration/databricks_exporter.py +411 -0
- customer_retention/generators/orchestration/doc_generator.py +311 -0
- customer_retention/generators/pipeline_generator/__init__.py +26 -0
- customer_retention/generators/pipeline_generator/findings_parser.py +727 -0
- customer_retention/generators/pipeline_generator/generator.py +142 -0
- customer_retention/generators/pipeline_generator/models.py +166 -0
- customer_retention/generators/pipeline_generator/renderer.py +2125 -0
- customer_retention/generators/spec_generator/__init__.py +37 -0
- customer_retention/generators/spec_generator/databricks_generator.py +433 -0
- customer_retention/generators/spec_generator/generic_generator.py +373 -0
- customer_retention/generators/spec_generator/mlflow_pipeline_generator.py +685 -0
- customer_retention/generators/spec_generator/pipeline_spec.py +298 -0
- customer_retention/integrations/__init__.py +0 -0
- customer_retention/integrations/adapters/__init__.py +13 -0
- customer_retention/integrations/adapters/base.py +10 -0
- customer_retention/integrations/adapters/factory.py +25 -0
- customer_retention/integrations/adapters/feature_store/__init__.py +6 -0
- customer_retention/integrations/adapters/feature_store/base.py +57 -0
- customer_retention/integrations/adapters/feature_store/databricks.py +94 -0
- customer_retention/integrations/adapters/feature_store/feast_adapter.py +97 -0
- customer_retention/integrations/adapters/feature_store/local.py +75 -0
- customer_retention/integrations/adapters/mlflow/__init__.py +6 -0
- customer_retention/integrations/adapters/mlflow/base.py +32 -0
- customer_retention/integrations/adapters/mlflow/databricks.py +54 -0
- customer_retention/integrations/adapters/mlflow/experiment_tracker.py +161 -0
- customer_retention/integrations/adapters/mlflow/local.py +50 -0
- customer_retention/integrations/adapters/storage/__init__.py +5 -0
- customer_retention/integrations/adapters/storage/base.py +33 -0
- customer_retention/integrations/adapters/storage/databricks.py +76 -0
- customer_retention/integrations/adapters/storage/local.py +59 -0
- customer_retention/integrations/feature_store/__init__.py +47 -0
- customer_retention/integrations/feature_store/definitions.py +215 -0
- customer_retention/integrations/feature_store/manager.py +744 -0
- customer_retention/integrations/feature_store/registry.py +412 -0
- customer_retention/integrations/iteration/__init__.py +28 -0
- customer_retention/integrations/iteration/context.py +212 -0
- customer_retention/integrations/iteration/feedback_collector.py +184 -0
- customer_retention/integrations/iteration/orchestrator.py +168 -0
- customer_retention/integrations/iteration/recommendation_tracker.py +341 -0
- customer_retention/integrations/iteration/signals.py +212 -0
- customer_retention/integrations/llm_context/__init__.py +4 -0
- customer_retention/integrations/llm_context/context_builder.py +201 -0
- customer_retention/integrations/llm_context/prompts.py +100 -0
- customer_retention/integrations/streaming/__init__.py +103 -0
- customer_retention/integrations/streaming/batch_integration.py +149 -0
- customer_retention/integrations/streaming/early_warning_model.py +227 -0
- customer_retention/integrations/streaming/event_schema.py +214 -0
- customer_retention/integrations/streaming/online_store_writer.py +249 -0
- customer_retention/integrations/streaming/realtime_scorer.py +261 -0
- customer_retention/integrations/streaming/trigger_engine.py +293 -0
- customer_retention/integrations/streaming/window_aggregator.py +393 -0
- customer_retention/stages/__init__.py +0 -0
- customer_retention/stages/cleaning/__init__.py +9 -0
- customer_retention/stages/cleaning/base.py +28 -0
- customer_retention/stages/cleaning/missing_handler.py +160 -0
- customer_retention/stages/cleaning/outlier_handler.py +204 -0
- customer_retention/stages/deployment/__init__.py +28 -0
- customer_retention/stages/deployment/batch_scorer.py +106 -0
- customer_retention/stages/deployment/champion_challenger.py +299 -0
- customer_retention/stages/deployment/model_registry.py +182 -0
- customer_retention/stages/deployment/retraining_trigger.py +245 -0
- customer_retention/stages/features/__init__.py +73 -0
- customer_retention/stages/features/behavioral_features.py +266 -0
- customer_retention/stages/features/customer_segmentation.py +505 -0
- customer_retention/stages/features/feature_definitions.py +265 -0
- customer_retention/stages/features/feature_engineer.py +551 -0
- customer_retention/stages/features/feature_manifest.py +340 -0
- customer_retention/stages/features/feature_selector.py +239 -0
- customer_retention/stages/features/interaction_features.py +160 -0
- customer_retention/stages/features/temporal_features.py +243 -0
- customer_retention/stages/ingestion/__init__.py +9 -0
- customer_retention/stages/ingestion/load_result.py +32 -0
- customer_retention/stages/ingestion/loaders.py +195 -0
- customer_retention/stages/ingestion/source_registry.py +130 -0
- customer_retention/stages/modeling/__init__.py +31 -0
- customer_retention/stages/modeling/baseline_trainer.py +139 -0
- customer_retention/stages/modeling/cross_validator.py +125 -0
- customer_retention/stages/modeling/data_splitter.py +205 -0
- customer_retention/stages/modeling/feature_scaler.py +99 -0
- customer_retention/stages/modeling/hyperparameter_tuner.py +107 -0
- customer_retention/stages/modeling/imbalance_handler.py +282 -0
- customer_retention/stages/modeling/mlflow_logger.py +95 -0
- customer_retention/stages/modeling/model_comparator.py +149 -0
- customer_retention/stages/modeling/model_evaluator.py +138 -0
- customer_retention/stages/modeling/threshold_optimizer.py +131 -0
- customer_retention/stages/monitoring/__init__.py +37 -0
- customer_retention/stages/monitoring/alert_manager.py +328 -0
- customer_retention/stages/monitoring/drift_detector.py +201 -0
- customer_retention/stages/monitoring/performance_monitor.py +242 -0
- customer_retention/stages/preprocessing/__init__.py +5 -0
- customer_retention/stages/preprocessing/transformer_manager.py +284 -0
- customer_retention/stages/profiling/__init__.py +256 -0
- customer_retention/stages/profiling/categorical_distribution.py +269 -0
- customer_retention/stages/profiling/categorical_target_analyzer.py +274 -0
- customer_retention/stages/profiling/column_profiler.py +527 -0
- customer_retention/stages/profiling/distribution_analysis.py +483 -0
- customer_retention/stages/profiling/drift_detector.py +310 -0
- customer_retention/stages/profiling/feature_capacity.py +507 -0
- customer_retention/stages/profiling/pattern_analysis_config.py +513 -0
- customer_retention/stages/profiling/profile_result.py +212 -0
- customer_retention/stages/profiling/quality_checks.py +1632 -0
- customer_retention/stages/profiling/relationship_detector.py +256 -0
- customer_retention/stages/profiling/relationship_recommender.py +454 -0
- customer_retention/stages/profiling/report_generator.py +520 -0
- customer_retention/stages/profiling/scd_analyzer.py +151 -0
- customer_retention/stages/profiling/segment_analyzer.py +632 -0
- customer_retention/stages/profiling/segment_aware_outlier.py +265 -0
- customer_retention/stages/profiling/target_level_analyzer.py +217 -0
- customer_retention/stages/profiling/temporal_analyzer.py +388 -0
- customer_retention/stages/profiling/temporal_coverage.py +488 -0
- customer_retention/stages/profiling/temporal_feature_analyzer.py +692 -0
- customer_retention/stages/profiling/temporal_feature_engineer.py +703 -0
- customer_retention/stages/profiling/temporal_pattern_analyzer.py +636 -0
- customer_retention/stages/profiling/temporal_quality_checks.py +278 -0
- customer_retention/stages/profiling/temporal_target_analyzer.py +241 -0
- customer_retention/stages/profiling/text_embedder.py +87 -0
- customer_retention/stages/profiling/text_processor.py +115 -0
- customer_retention/stages/profiling/text_reducer.py +60 -0
- customer_retention/stages/profiling/time_series_profiler.py +303 -0
- customer_retention/stages/profiling/time_window_aggregator.py +376 -0
- customer_retention/stages/profiling/type_detector.py +382 -0
- customer_retention/stages/profiling/window_recommendation.py +288 -0
- customer_retention/stages/temporal/__init__.py +166 -0
- customer_retention/stages/temporal/access_guard.py +180 -0
- customer_retention/stages/temporal/cutoff_analyzer.py +235 -0
- customer_retention/stages/temporal/data_preparer.py +178 -0
- customer_retention/stages/temporal/point_in_time_join.py +134 -0
- customer_retention/stages/temporal/point_in_time_registry.py +148 -0
- customer_retention/stages/temporal/scenario_detector.py +163 -0
- customer_retention/stages/temporal/snapshot_manager.py +259 -0
- customer_retention/stages/temporal/synthetic_coordinator.py +66 -0
- customer_retention/stages/temporal/timestamp_discovery.py +531 -0
- customer_retention/stages/temporal/timestamp_manager.py +255 -0
- customer_retention/stages/transformation/__init__.py +13 -0
- customer_retention/stages/transformation/binary_handler.py +85 -0
- customer_retention/stages/transformation/categorical_encoder.py +245 -0
- customer_retention/stages/transformation/datetime_transformer.py +97 -0
- customer_retention/stages/transformation/numeric_transformer.py +181 -0
- customer_retention/stages/transformation/pipeline.py +257 -0
- customer_retention/stages/validation/__init__.py +60 -0
- customer_retention/stages/validation/adversarial_scoring_validator.py +205 -0
- customer_retention/stages/validation/business_sense_gate.py +173 -0
- customer_retention/stages/validation/data_quality_gate.py +235 -0
- customer_retention/stages/validation/data_validators.py +511 -0
- customer_retention/stages/validation/feature_quality_gate.py +183 -0
- customer_retention/stages/validation/gates.py +117 -0
- customer_retention/stages/validation/leakage_gate.py +352 -0
- customer_retention/stages/validation/model_validity_gate.py +213 -0
- customer_retention/stages/validation/pipeline_validation_runner.py +264 -0
- customer_retention/stages/validation/quality_scorer.py +544 -0
- customer_retention/stages/validation/rule_generator.py +57 -0
- customer_retention/stages/validation/scoring_pipeline_validator.py +446 -0
- customer_retention/stages/validation/timeseries_detector.py +769 -0
- customer_retention/transforms/__init__.py +47 -0
- customer_retention/transforms/artifact_store.py +50 -0
- customer_retention/transforms/executor.py +157 -0
- customer_retention/transforms/fitted.py +92 -0
- customer_retention/transforms/ops.py +148 -0
|
@@ -0,0 +1,485 @@
|
|
|
1
|
+
import hashlib
|
|
2
|
+
import json
|
|
3
|
+
from dataclasses import asdict, dataclass, field
|
|
4
|
+
from typing import Any, Dict, List, Optional
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import yaml
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def _to_native(value: Any) -> Any:
|
|
11
|
+
if isinstance(value, (np.integer, np.floating)):
|
|
12
|
+
return value.item()
|
|
13
|
+
if isinstance(value, np.ndarray):
|
|
14
|
+
return value.tolist()
|
|
15
|
+
if isinstance(value, dict):
|
|
16
|
+
return {k: _to_native(v) for k, v in value.items()}
|
|
17
|
+
if isinstance(value, list):
|
|
18
|
+
return [_to_native(v) for v in value]
|
|
19
|
+
return value
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
NUMERIC_AGGREGATIONS = ("sum", "mean", "max", "min", "count", "std", "median", "first", "last")
|
|
23
|
+
CATEGORICAL_AGGREGATIONS = ("mode", "nunique", "mode_ratio", "entropy", "value_counts")
|
|
24
|
+
ALL_AGGREGATIONS = NUMERIC_AGGREGATIONS + CATEGORICAL_AGGREGATIONS
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@dataclass
|
|
28
|
+
class LayeredRecommendation:
|
|
29
|
+
id: str
|
|
30
|
+
layer: str
|
|
31
|
+
category: str
|
|
32
|
+
action: str
|
|
33
|
+
target_column: str
|
|
34
|
+
parameters: Dict[str, Any]
|
|
35
|
+
rationale: str
|
|
36
|
+
source_notebook: str
|
|
37
|
+
priority: int = 1
|
|
38
|
+
dependencies: List[str] = field(default_factory=list)
|
|
39
|
+
fit_artifact_id: Optional[str] = None
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
@dataclass
|
|
43
|
+
class BronzeRecommendations:
|
|
44
|
+
source_file: str
|
|
45
|
+
null_handling: List[LayeredRecommendation] = field(default_factory=list)
|
|
46
|
+
outlier_handling: List[LayeredRecommendation] = field(default_factory=list)
|
|
47
|
+
type_conversions: List[LayeredRecommendation] = field(default_factory=list)
|
|
48
|
+
deduplication: List[LayeredRecommendation] = field(default_factory=list)
|
|
49
|
+
filtering: List[LayeredRecommendation] = field(default_factory=list)
|
|
50
|
+
text_processing: List[LayeredRecommendation] = field(default_factory=list)
|
|
51
|
+
modeling_strategy: List[LayeredRecommendation] = field(default_factory=list)
|
|
52
|
+
|
|
53
|
+
@property
|
|
54
|
+
def all_recommendations(self) -> List[LayeredRecommendation]:
|
|
55
|
+
return (self.null_handling + self.outlier_handling + self.type_conversions +
|
|
56
|
+
self.deduplication + self.filtering + self.text_processing + self.modeling_strategy)
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
@dataclass
|
|
60
|
+
class SilverRecommendations:
|
|
61
|
+
entity_column: str
|
|
62
|
+
time_column: Optional[str] = None
|
|
63
|
+
joins: List[LayeredRecommendation] = field(default_factory=list)
|
|
64
|
+
aggregations: List[LayeredRecommendation] = field(default_factory=list)
|
|
65
|
+
derived_columns: List[LayeredRecommendation] = field(default_factory=list)
|
|
66
|
+
|
|
67
|
+
@property
|
|
68
|
+
def all_recommendations(self) -> List[LayeredRecommendation]:
|
|
69
|
+
return self.joins + self.aggregations + self.derived_columns
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
@dataclass
|
|
73
|
+
class GoldRecommendations:
|
|
74
|
+
target_column: str
|
|
75
|
+
encoding: List[LayeredRecommendation] = field(default_factory=list)
|
|
76
|
+
scaling: List[LayeredRecommendation] = field(default_factory=list)
|
|
77
|
+
feature_selection: List[LayeredRecommendation] = field(default_factory=list)
|
|
78
|
+
transformations: List[LayeredRecommendation] = field(default_factory=list)
|
|
79
|
+
|
|
80
|
+
@property
|
|
81
|
+
def all_recommendations(self) -> List[LayeredRecommendation]:
|
|
82
|
+
return self.encoding + self.scaling + self.feature_selection + self.transformations
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
class RecommendationRegistry:
|
|
86
|
+
def __init__(self):
|
|
87
|
+
self.sources: Dict[str, BronzeRecommendations] = {}
|
|
88
|
+
self.bronze: Optional[BronzeRecommendations] = None
|
|
89
|
+
self.silver: Optional[SilverRecommendations] = None
|
|
90
|
+
self.gold: Optional[GoldRecommendations] = None
|
|
91
|
+
self.fit_artifacts: Dict[str, str] = {}
|
|
92
|
+
self._id_counter = 0
|
|
93
|
+
|
|
94
|
+
def save(self, path: str) -> None:
|
|
95
|
+
with open(path, "w") as f:
|
|
96
|
+
yaml.dump(self.to_dict(), f, default_flow_style=False, sort_keys=False)
|
|
97
|
+
|
|
98
|
+
@classmethod
|
|
99
|
+
def load(cls, path: str) -> "RecommendationRegistry":
|
|
100
|
+
with open(path) as f:
|
|
101
|
+
return cls.from_dict(yaml.safe_load(f))
|
|
102
|
+
|
|
103
|
+
def link_fit_artifact(self, recommendation_id: str, artifact_id: str) -> None:
|
|
104
|
+
self.fit_artifacts[recommendation_id] = artifact_id
|
|
105
|
+
|
|
106
|
+
def get_fit_artifact(self, recommendation_id: str) -> Optional[str]:
|
|
107
|
+
return self.fit_artifacts.get(recommendation_id)
|
|
108
|
+
|
|
109
|
+
@property
|
|
110
|
+
def source_names(self) -> List[str]:
|
|
111
|
+
return list(self.sources.keys())
|
|
112
|
+
|
|
113
|
+
def add_source(self, name: str, source_file: str) -> None:
|
|
114
|
+
self.sources[name] = BronzeRecommendations(source_file=source_file)
|
|
115
|
+
|
|
116
|
+
def get_source_recommendations(self, name: str) -> List[LayeredRecommendation]:
|
|
117
|
+
if name in self.sources:
|
|
118
|
+
return self.sources[name].all_recommendations
|
|
119
|
+
return []
|
|
120
|
+
|
|
121
|
+
def init_bronze(self, source_file: str) -> None:
|
|
122
|
+
self.bronze = BronzeRecommendations(source_file=source_file)
|
|
123
|
+
|
|
124
|
+
def init_silver(self, entity_column: str, time_column: Optional[str] = None) -> None:
|
|
125
|
+
self.silver = SilverRecommendations(entity_column=entity_column, time_column=time_column)
|
|
126
|
+
|
|
127
|
+
def init_gold(self, target_column: str) -> None:
|
|
128
|
+
self.gold = GoldRecommendations(target_column=target_column)
|
|
129
|
+
|
|
130
|
+
def add_bronze_null(self, column: str, strategy: str, rationale: str, source_notebook: str,
|
|
131
|
+
source: Optional[str] = None) -> None:
|
|
132
|
+
rec = self._create_recommendation("bronze", "null", "impute", column,
|
|
133
|
+
{"strategy": strategy}, rationale, source_notebook)
|
|
134
|
+
if source and source in self.sources:
|
|
135
|
+
self.sources[source].null_handling.append(rec)
|
|
136
|
+
elif self.bronze:
|
|
137
|
+
self.bronze.null_handling.append(rec)
|
|
138
|
+
|
|
139
|
+
def add_bronze_outlier(self, column: str, action: str, parameters: Dict, rationale: str,
|
|
140
|
+
source_notebook: str, source: Optional[str] = None) -> None:
|
|
141
|
+
rec = self._create_recommendation("bronze", "outlier", action, column,
|
|
142
|
+
parameters, rationale, source_notebook)
|
|
143
|
+
if source and source in self.sources:
|
|
144
|
+
self.sources[source].outlier_handling.append(rec)
|
|
145
|
+
elif self.bronze:
|
|
146
|
+
self.bronze.outlier_handling.append(rec)
|
|
147
|
+
|
|
148
|
+
def add_bronze_text_processing(self, column: str, embedding_model: str,
|
|
149
|
+
variance_threshold: float, n_components: int,
|
|
150
|
+
rationale: str, source_notebook: str,
|
|
151
|
+
source: Optional[str] = None) -> None:
|
|
152
|
+
params = {
|
|
153
|
+
"embedding_model": embedding_model,
|
|
154
|
+
"variance_threshold": variance_threshold,
|
|
155
|
+
"n_components": n_components,
|
|
156
|
+
"approach": "pca"
|
|
157
|
+
}
|
|
158
|
+
rec = self._create_recommendation("bronze", "text", "embed_reduce", column,
|
|
159
|
+
params, rationale, source_notebook)
|
|
160
|
+
if source and source in self.sources:
|
|
161
|
+
self.sources[source].text_processing.append(rec)
|
|
162
|
+
elif self.bronze:
|
|
163
|
+
self.bronze.text_processing.append(rec)
|
|
164
|
+
|
|
165
|
+
def add_bronze_filtering(self, column: str, condition: str, action: str, rationale: str,
|
|
166
|
+
source_notebook: str, source: Optional[str] = None) -> None:
|
|
167
|
+
rec = self._create_recommendation("bronze", "filtering", action, column,
|
|
168
|
+
{"condition": condition}, rationale, source_notebook)
|
|
169
|
+
if source and source in self.sources:
|
|
170
|
+
self.sources[source].filtering.append(rec)
|
|
171
|
+
elif self.bronze:
|
|
172
|
+
self.bronze.filtering.append(rec)
|
|
173
|
+
|
|
174
|
+
def add_bronze_modeling_strategy(self, strategy: str, column: str, parameters: Dict,
|
|
175
|
+
rationale: str, source_notebook: str,
|
|
176
|
+
source: Optional[str] = None) -> None:
|
|
177
|
+
rec = self._create_recommendation("bronze", "modeling", strategy, column,
|
|
178
|
+
parameters, rationale, source_notebook)
|
|
179
|
+
if source and source in self.sources:
|
|
180
|
+
self.sources[source].modeling_strategy.append(rec)
|
|
181
|
+
elif self.bronze:
|
|
182
|
+
self.bronze.modeling_strategy.append(rec)
|
|
183
|
+
|
|
184
|
+
def add_bronze_deduplication(self, key_column: str, strategy: str, rationale: str,
|
|
185
|
+
source_notebook: str, conflict_columns: Optional[List[str]] = None,
|
|
186
|
+
source: Optional[str] = None) -> None:
|
|
187
|
+
params = {"strategy": strategy}
|
|
188
|
+
if conflict_columns:
|
|
189
|
+
params["conflict_columns"] = conflict_columns
|
|
190
|
+
rec = self._create_recommendation("bronze", "deduplication", strategy, key_column,
|
|
191
|
+
params, rationale, source_notebook)
|
|
192
|
+
if source and source in self.sources:
|
|
193
|
+
self.sources[source].deduplication.append(rec)
|
|
194
|
+
elif self.bronze:
|
|
195
|
+
self.bronze.deduplication.append(rec)
|
|
196
|
+
|
|
197
|
+
def add_bronze_consistency(self, column: str, issue_type: str, action: str,
|
|
198
|
+
variants: List[str], rationale: str, source_notebook: str,
|
|
199
|
+
source: Optional[str] = None) -> None:
|
|
200
|
+
params = {"issue_type": issue_type, "variants": variants}
|
|
201
|
+
rec = self._create_recommendation("bronze", "consistency", action, column,
|
|
202
|
+
params, rationale, source_notebook)
|
|
203
|
+
if source and source in self.sources:
|
|
204
|
+
self.sources[source].type_conversions.append(rec)
|
|
205
|
+
elif self.bronze:
|
|
206
|
+
self.bronze.type_conversions.append(rec)
|
|
207
|
+
|
|
208
|
+
def add_bronze_imbalance_strategy(self, target_column: str, imbalance_ratio: float,
|
|
209
|
+
minority_class: Any, strategy: str, rationale: str,
|
|
210
|
+
source_notebook: str, source: Optional[str] = None) -> None:
|
|
211
|
+
params = {"imbalance_ratio": imbalance_ratio, "minority_class": minority_class}
|
|
212
|
+
rec = self._create_recommendation("bronze", "imbalance", strategy, target_column,
|
|
213
|
+
params, rationale, source_notebook)
|
|
214
|
+
if source and source in self.sources:
|
|
215
|
+
self.sources[source].modeling_strategy.append(rec)
|
|
216
|
+
elif self.bronze:
|
|
217
|
+
self.bronze.modeling_strategy.append(rec)
|
|
218
|
+
|
|
219
|
+
def add_silver_derived(self, column: str, expression: str, feature_type: str,
|
|
220
|
+
rationale: str, source_notebook: str) -> None:
|
|
221
|
+
params = {"expression": expression, "feature_type": feature_type}
|
|
222
|
+
rec = self._create_recommendation("silver", "derived", feature_type, column,
|
|
223
|
+
params, rationale, source_notebook)
|
|
224
|
+
self.silver.derived_columns.append(rec)
|
|
225
|
+
|
|
226
|
+
def add_gold_transformation(self, column: str, transform: str, parameters: Dict,
|
|
227
|
+
rationale: str, source_notebook: str) -> None:
|
|
228
|
+
rec = self._create_recommendation("gold", "transformation", transform, column,
|
|
229
|
+
parameters, rationale, source_notebook)
|
|
230
|
+
self.gold.transformations.append(rec)
|
|
231
|
+
|
|
232
|
+
def add_silver_aggregation(self, column: str, aggregation: str, windows: List[str],
|
|
233
|
+
rationale: str, source_notebook: str) -> None:
|
|
234
|
+
params = {"aggregation": aggregation, "windows": windows}
|
|
235
|
+
rec = self._create_recommendation("silver", "aggregation", aggregation, column,
|
|
236
|
+
params, rationale, source_notebook)
|
|
237
|
+
self.silver.aggregations.append(rec)
|
|
238
|
+
|
|
239
|
+
def add_silver_join(self, left_source: str, right_source: str, join_keys: List[str],
|
|
240
|
+
join_type: str, rationale: str, source_notebook: str = "") -> None:
|
|
241
|
+
params = {
|
|
242
|
+
"left_source": left_source,
|
|
243
|
+
"right_source": right_source,
|
|
244
|
+
"join_keys": join_keys,
|
|
245
|
+
"join_type": join_type
|
|
246
|
+
}
|
|
247
|
+
rec = self._create_recommendation("silver", "join", "join", "_merge",
|
|
248
|
+
params, rationale, source_notebook)
|
|
249
|
+
self.silver.joins.append(rec)
|
|
250
|
+
|
|
251
|
+
def add_gold_encoding(self, column: str, method: str, rationale: str,
|
|
252
|
+
source_notebook: str) -> None:
|
|
253
|
+
rec = self._create_recommendation("gold", "encoding", method, column,
|
|
254
|
+
{"method": method}, rationale, source_notebook)
|
|
255
|
+
self.gold.encoding.append(rec)
|
|
256
|
+
|
|
257
|
+
def add_gold_scaling(self, column: str, method: str, rationale: str,
|
|
258
|
+
source_notebook: str) -> None:
|
|
259
|
+
rec = self._create_recommendation("gold", "scaling", method, column,
|
|
260
|
+
{"method": method}, rationale, source_notebook)
|
|
261
|
+
self.gold.scaling.append(rec)
|
|
262
|
+
|
|
263
|
+
def add_gold_drop_multicollinear(self, column: str, correlated_with: str, correlation: float,
|
|
264
|
+
rationale: str, source_notebook: str) -> None:
|
|
265
|
+
params = {"correlated_with": correlated_with, "correlation": correlation}
|
|
266
|
+
rec = self._create_recommendation("gold", "feature_selection", "drop_multicollinear", column,
|
|
267
|
+
params, rationale, source_notebook)
|
|
268
|
+
self.gold.feature_selection.append(rec)
|
|
269
|
+
|
|
270
|
+
def add_gold_drop_weak(self, column: str, effect_size: float, correlation: float,
|
|
271
|
+
rationale: str, source_notebook: str) -> None:
|
|
272
|
+
params = {"effect_size": effect_size, "correlation": correlation}
|
|
273
|
+
rec = self._create_recommendation("gold", "feature_selection", "drop_weak", column,
|
|
274
|
+
params, rationale, source_notebook)
|
|
275
|
+
self.gold.feature_selection.append(rec)
|
|
276
|
+
|
|
277
|
+
def add_gold_prioritize_feature(self, column: str, effect_size: float, correlation: float,
|
|
278
|
+
rationale: str, source_notebook: str) -> None:
|
|
279
|
+
params = {"effect_size": effect_size, "correlation": correlation}
|
|
280
|
+
rec = self._create_recommendation("gold", "feature_selection", "prioritize", column,
|
|
281
|
+
params, rationale, source_notebook)
|
|
282
|
+
self.gold.feature_selection.append(rec)
|
|
283
|
+
|
|
284
|
+
def add_silver_ratio(self, column: str, numerator: str, denominator: str,
|
|
285
|
+
rationale: str, source_notebook: str) -> None:
|
|
286
|
+
params = {"feature_type": "ratio", "numerator": numerator, "denominator": denominator,
|
|
287
|
+
"expression": f"{numerator} / {denominator}"}
|
|
288
|
+
rec = self._create_recommendation("silver", "derived", "ratio", column,
|
|
289
|
+
params, rationale, source_notebook)
|
|
290
|
+
self.silver.derived_columns.append(rec)
|
|
291
|
+
|
|
292
|
+
def add_silver_interaction(self, column: str, features: List[str],
|
|
293
|
+
rationale: str, source_notebook: str) -> None:
|
|
294
|
+
params = {"feature_type": "interaction", "features": features,
|
|
295
|
+
"expression": " * ".join(features)}
|
|
296
|
+
rec = self._create_recommendation("silver", "derived", "interaction", column,
|
|
297
|
+
params, rationale, source_notebook)
|
|
298
|
+
self.silver.derived_columns.append(rec)
|
|
299
|
+
|
|
300
|
+
def add_silver_temporal_config(self, source_dataset: str, columns: List[str],
|
|
301
|
+
lag_windows: int, lag_window_days: int,
|
|
302
|
+
aggregations: List[str], feature_groups: List[str],
|
|
303
|
+
rationale: str, source_notebook: str) -> None:
|
|
304
|
+
params = {
|
|
305
|
+
"columns": columns, "lag_windows": lag_windows, "lag_window_days": lag_window_days,
|
|
306
|
+
"aggregations": aggregations, "feature_groups": feature_groups
|
|
307
|
+
}
|
|
308
|
+
rec = self._create_recommendation("silver", "temporal", "temporal_aggregation", source_dataset,
|
|
309
|
+
params, rationale, source_notebook)
|
|
310
|
+
self.silver.aggregations.append(rec)
|
|
311
|
+
|
|
312
|
+
def add_bronze_segmentation_strategy(self, strategy: str, confidence: float, n_segments: int,
|
|
313
|
+
silhouette_score: float, rationale: str,
|
|
314
|
+
source_notebook: str, source: Optional[str] = None) -> None:
|
|
315
|
+
params = {"confidence": confidence, "n_segments": n_segments, "silhouette_score": silhouette_score}
|
|
316
|
+
rec = self._create_recommendation("bronze", "segmentation", strategy, "target",
|
|
317
|
+
params, rationale, source_notebook)
|
|
318
|
+
if source and source in self.sources:
|
|
319
|
+
self.sources[source].modeling_strategy.append(rec)
|
|
320
|
+
elif self.bronze:
|
|
321
|
+
self.bronze.modeling_strategy.append(rec)
|
|
322
|
+
|
|
323
|
+
def add_bronze_feature_capacity(self, epv: float, capacity_status: str, recommended_features: int,
|
|
324
|
+
current_features: int, rationale: str,
|
|
325
|
+
source_notebook: str, source: Optional[str] = None) -> None:
|
|
326
|
+
params = {"epv": epv, "capacity_status": capacity_status,
|
|
327
|
+
"recommended_features": recommended_features, "current_features": current_features}
|
|
328
|
+
rec = self._create_recommendation("bronze", "capacity", "feature_capacity", "features",
|
|
329
|
+
params, rationale, source_notebook)
|
|
330
|
+
if source and source in self.sources:
|
|
331
|
+
self.sources[source].modeling_strategy.append(rec)
|
|
332
|
+
elif self.bronze:
|
|
333
|
+
self.bronze.modeling_strategy.append(rec)
|
|
334
|
+
|
|
335
|
+
def add_bronze_model_type(self, model_type: str, max_features_linear: int,
|
|
336
|
+
max_features_regularized: int, max_features_tree: int,
|
|
337
|
+
rationale: str, source_notebook: str,
|
|
338
|
+
source: Optional[str] = None) -> None:
|
|
339
|
+
params = {"max_features_linear": max_features_linear,
|
|
340
|
+
"max_features_regularized": max_features_regularized,
|
|
341
|
+
"max_features_tree": max_features_tree}
|
|
342
|
+
rec = self._create_recommendation("bronze", "model_selection", model_type, "model",
|
|
343
|
+
params, rationale, source_notebook)
|
|
344
|
+
if source and source in self.sources:
|
|
345
|
+
self.sources[source].modeling_strategy.append(rec)
|
|
346
|
+
elif self.bronze:
|
|
347
|
+
self.bronze.modeling_strategy.append(rec)
|
|
348
|
+
|
|
349
|
+
@property
|
|
350
|
+
def all_recommendations(self) -> List[LayeredRecommendation]:
|
|
351
|
+
recs = []
|
|
352
|
+
for source_bronze in self.sources.values():
|
|
353
|
+
recs.extend(source_bronze.all_recommendations)
|
|
354
|
+
if self.bronze:
|
|
355
|
+
recs.extend(self.bronze.all_recommendations)
|
|
356
|
+
if self.silver:
|
|
357
|
+
recs.extend(self.silver.all_recommendations)
|
|
358
|
+
if self.gold:
|
|
359
|
+
recs.extend(self.gold.all_recommendations)
|
|
360
|
+
return recs
|
|
361
|
+
|
|
362
|
+
def get_by_layer(self, layer: str) -> List[LayeredRecommendation]:
|
|
363
|
+
if layer == "bronze":
|
|
364
|
+
recs = []
|
|
365
|
+
for source_bronze in self.sources.values():
|
|
366
|
+
recs.extend(source_bronze.all_recommendations)
|
|
367
|
+
if self.bronze:
|
|
368
|
+
recs.extend(self.bronze.all_recommendations)
|
|
369
|
+
return recs
|
|
370
|
+
if layer == "silver" and self.silver:
|
|
371
|
+
return self.silver.all_recommendations
|
|
372
|
+
if layer == "gold" and self.gold:
|
|
373
|
+
return self.gold.all_recommendations
|
|
374
|
+
return []
|
|
375
|
+
|
|
376
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
377
|
+
result = {}
|
|
378
|
+
if self.sources:
|
|
379
|
+
result["sources"] = {name: self._layer_to_dict(bronze)
|
|
380
|
+
for name, bronze in self.sources.items()}
|
|
381
|
+
if self.bronze:
|
|
382
|
+
result["bronze"] = self._layer_to_dict(self.bronze)
|
|
383
|
+
if self.silver:
|
|
384
|
+
result["silver"] = self._layer_to_dict(self.silver)
|
|
385
|
+
if self.gold:
|
|
386
|
+
result["gold"] = self._layer_to_dict(self.gold)
|
|
387
|
+
if self.fit_artifacts:
|
|
388
|
+
result["fit_artifacts"] = self.fit_artifacts.copy()
|
|
389
|
+
return result
|
|
390
|
+
|
|
391
|
+
def compute_recommendations_hash(self, length: int = 8) -> str:
|
|
392
|
+
hashable_data = self._build_hashable_gold_data()
|
|
393
|
+
serialized = json.dumps(hashable_data, sort_keys=True, separators=(',', ':'))
|
|
394
|
+
return hashlib.sha256(serialized.encode()).hexdigest()[:length]
|
|
395
|
+
|
|
396
|
+
def _build_hashable_gold_data(self) -> Dict[str, Any]:
|
|
397
|
+
if not self.gold:
|
|
398
|
+
return {}
|
|
399
|
+
return {
|
|
400
|
+
"transformations": self._recs_to_hashable(self.gold.transformations),
|
|
401
|
+
"encoding": self._recs_to_hashable(self.gold.encoding),
|
|
402
|
+
"scaling": self._recs_to_hashable(self.gold.scaling),
|
|
403
|
+
"feature_selection": self._recs_to_hashable(self.gold.feature_selection),
|
|
404
|
+
}
|
|
405
|
+
|
|
406
|
+
def _recs_to_hashable(self, recs: List[LayeredRecommendation]) -> List[Dict]:
|
|
407
|
+
return sorted(
|
|
408
|
+
[{"column": r.target_column, "action": r.action, "params": r.parameters} for r in recs],
|
|
409
|
+
key=lambda x: (x["column"], x["action"])
|
|
410
|
+
)
|
|
411
|
+
|
|
412
|
+
@classmethod
|
|
413
|
+
def from_dict(cls, data: Dict[str, Any]) -> "RecommendationRegistry":
|
|
414
|
+
registry = cls()
|
|
415
|
+
if "sources" in data:
|
|
416
|
+
for name, bronze_data in data["sources"].items():
|
|
417
|
+
registry.sources[name] = cls._bronze_from_dict(bronze_data)
|
|
418
|
+
if "bronze" in data:
|
|
419
|
+
registry.bronze = cls._bronze_from_dict(data["bronze"])
|
|
420
|
+
if "silver" in data:
|
|
421
|
+
registry.silver = cls._silver_from_dict(data["silver"])
|
|
422
|
+
if "gold" in data:
|
|
423
|
+
registry.gold = cls._gold_from_dict(data["gold"])
|
|
424
|
+
if "fit_artifacts" in data:
|
|
425
|
+
registry.fit_artifacts = data["fit_artifacts"].copy()
|
|
426
|
+
return registry
|
|
427
|
+
|
|
428
|
+
def _create_recommendation(self, layer: str, category: str, action: str, column: str,
|
|
429
|
+
parameters: Dict, rationale: str,
|
|
430
|
+
source_notebook: str) -> LayeredRecommendation:
|
|
431
|
+
self._id_counter += 1
|
|
432
|
+
rec_id = f"{layer}_{category}_{column}"
|
|
433
|
+
return LayeredRecommendation(
|
|
434
|
+
id=rec_id, layer=layer, category=category, action=action,
|
|
435
|
+
target_column=column, parameters=_to_native(parameters),
|
|
436
|
+
rationale=rationale, source_notebook=source_notebook
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
def _layer_to_dict(self, layer_obj) -> Dict[str, Any]:
|
|
440
|
+
result = {}
|
|
441
|
+
for key, value in asdict(layer_obj).items():
|
|
442
|
+
if isinstance(value, list) and value and isinstance(value[0], dict):
|
|
443
|
+
result[key] = value
|
|
444
|
+
elif isinstance(value, list):
|
|
445
|
+
result[key] = [asdict(r) if hasattr(r, '__dataclass_fields__') else r for r in value]
|
|
446
|
+
else:
|
|
447
|
+
result[key] = value
|
|
448
|
+
return result
|
|
449
|
+
|
|
450
|
+
@classmethod
|
|
451
|
+
def _bronze_from_dict(cls, data: Dict) -> BronzeRecommendations:
|
|
452
|
+
return BronzeRecommendations(
|
|
453
|
+
source_file=data["source_file"],
|
|
454
|
+
null_handling=[cls._rec_from_dict(r) for r in data.get("null_handling", [])],
|
|
455
|
+
outlier_handling=[cls._rec_from_dict(r) for r in data.get("outlier_handling", [])],
|
|
456
|
+
type_conversions=[cls._rec_from_dict(r) for r in data.get("type_conversions", [])],
|
|
457
|
+
deduplication=[cls._rec_from_dict(r) for r in data.get("deduplication", [])],
|
|
458
|
+
filtering=[cls._rec_from_dict(r) for r in data.get("filtering", [])],
|
|
459
|
+
text_processing=[cls._rec_from_dict(r) for r in data.get("text_processing", [])],
|
|
460
|
+
modeling_strategy=[cls._rec_from_dict(r) for r in data.get("modeling_strategy", [])]
|
|
461
|
+
)
|
|
462
|
+
|
|
463
|
+
@classmethod
|
|
464
|
+
def _silver_from_dict(cls, data: Dict) -> SilverRecommendations:
|
|
465
|
+
return SilverRecommendations(
|
|
466
|
+
entity_column=data["entity_column"],
|
|
467
|
+
time_column=data.get("time_column"),
|
|
468
|
+
joins=[cls._rec_from_dict(r) for r in data.get("joins", [])],
|
|
469
|
+
aggregations=[cls._rec_from_dict(r) for r in data.get("aggregations", [])],
|
|
470
|
+
derived_columns=[cls._rec_from_dict(r) for r in data.get("derived_columns", [])]
|
|
471
|
+
)
|
|
472
|
+
|
|
473
|
+
@classmethod
|
|
474
|
+
def _gold_from_dict(cls, data: Dict) -> GoldRecommendations:
|
|
475
|
+
return GoldRecommendations(
|
|
476
|
+
target_column=data["target_column"],
|
|
477
|
+
encoding=[cls._rec_from_dict(r) for r in data.get("encoding", [])],
|
|
478
|
+
scaling=[cls._rec_from_dict(r) for r in data.get("scaling", [])],
|
|
479
|
+
feature_selection=[cls._rec_from_dict(r) for r in data.get("feature_selection", [])],
|
|
480
|
+
transformations=[cls._rec_from_dict(r) for r in data.get("transformations", [])]
|
|
481
|
+
)
|
|
482
|
+
|
|
483
|
+
@classmethod
|
|
484
|
+
def _rec_from_dict(cls, data: Dict) -> LayeredRecommendation:
|
|
485
|
+
return LayeredRecommendation(**data)
|
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING, Any, Dict, List
|
|
2
|
+
|
|
3
|
+
from .layered_recommendations import LayeredRecommendation, RecommendationRegistry
|
|
4
|
+
|
|
5
|
+
if TYPE_CHECKING:
|
|
6
|
+
from .findings import ExplorationFindings
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class BronzeBuilder:
|
|
10
|
+
def __init__(self, parent: "RecommendationBuilder"):
|
|
11
|
+
self._parent = parent
|
|
12
|
+
self._registry = parent.registry
|
|
13
|
+
self._notebook = parent.notebook
|
|
14
|
+
if self._registry.bronze is None:
|
|
15
|
+
self._registry.init_bronze(parent.findings.source_path)
|
|
16
|
+
|
|
17
|
+
def impute_nulls(self, column: str, strategy: str, reason: str) -> "BronzeBuilder":
|
|
18
|
+
self._registry.add_bronze_null(column, strategy, reason, self._notebook)
|
|
19
|
+
return self
|
|
20
|
+
|
|
21
|
+
def cap_outliers(self, column: str, method: str, reason: str = "", **kwargs) -> "BronzeBuilder":
|
|
22
|
+
params = {"method": method, **kwargs}
|
|
23
|
+
self._registry.add_bronze_outlier(column, "cap", params, reason, self._notebook)
|
|
24
|
+
return self
|
|
25
|
+
|
|
26
|
+
def drop_column(self, column: str, reason: str) -> "BronzeBuilder":
|
|
27
|
+
rec = LayeredRecommendation(
|
|
28
|
+
id=f"bronze_drop_{column}", layer="bronze", category="filtering",
|
|
29
|
+
action="drop", target_column=column, parameters={},
|
|
30
|
+
rationale=reason, source_notebook=self._notebook
|
|
31
|
+
)
|
|
32
|
+
self._registry.bronze.filtering.append(rec)
|
|
33
|
+
return self
|
|
34
|
+
|
|
35
|
+
def convert_type(self, column: str, target_type: str, reason: str) -> "BronzeBuilder":
|
|
36
|
+
rec = LayeredRecommendation(
|
|
37
|
+
id=f"bronze_type_{column}", layer="bronze", category="type",
|
|
38
|
+
action="cast", target_column=column, parameters={"target_type": target_type},
|
|
39
|
+
rationale=reason, source_notebook=self._notebook
|
|
40
|
+
)
|
|
41
|
+
self._registry.bronze.type_conversions.append(rec)
|
|
42
|
+
return self
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class SilverBuilder:
|
|
46
|
+
def __init__(self, parent: "RecommendationBuilder"):
|
|
47
|
+
self._parent = parent
|
|
48
|
+
self._registry = parent.registry
|
|
49
|
+
self._notebook = parent.notebook
|
|
50
|
+
if self._registry.silver is None:
|
|
51
|
+
entity_col = (parent.findings.identifier_columns[0]
|
|
52
|
+
if parent.findings.identifier_columns else "id")
|
|
53
|
+
time_col = (parent.findings.datetime_columns[0]
|
|
54
|
+
if parent.findings.datetime_columns else None)
|
|
55
|
+
self._registry.init_silver(entity_col, time_col)
|
|
56
|
+
|
|
57
|
+
def aggregate(self, column: str, aggregation: str, windows: List[str], reason: str) -> "SilverBuilder":
|
|
58
|
+
self._registry.add_silver_aggregation(column, aggregation, windows, reason, self._notebook)
|
|
59
|
+
return self
|
|
60
|
+
|
|
61
|
+
def join(self, dataset: str, join_key: str, join_type: str, reason: str) -> "SilverBuilder":
|
|
62
|
+
rec = LayeredRecommendation(
|
|
63
|
+
id=f"silver_join_{dataset}", layer="silver", category="join",
|
|
64
|
+
action="join", target_column=join_key,
|
|
65
|
+
parameters={"dataset": dataset, "join_type": join_type},
|
|
66
|
+
rationale=reason, source_notebook=self._notebook
|
|
67
|
+
)
|
|
68
|
+
self._registry.silver.joins.append(rec)
|
|
69
|
+
return self
|
|
70
|
+
|
|
71
|
+
def derive(self, column_name: str, formula: str, reason: str) -> "SilverBuilder":
|
|
72
|
+
rec = LayeredRecommendation(
|
|
73
|
+
id=f"silver_derive_{column_name}", layer="silver", category="derived",
|
|
74
|
+
action="compute", target_column=column_name, parameters={"formula": formula},
|
|
75
|
+
rationale=reason, source_notebook=self._notebook
|
|
76
|
+
)
|
|
77
|
+
self._registry.silver.derived_columns.append(rec)
|
|
78
|
+
return self
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class GoldBuilder:
|
|
82
|
+
def __init__(self, parent: "RecommendationBuilder"):
|
|
83
|
+
self._parent = parent
|
|
84
|
+
self._registry = parent.registry
|
|
85
|
+
self._notebook = parent.notebook
|
|
86
|
+
if self._registry.gold is None:
|
|
87
|
+
target = parent.findings.target_column or "target"
|
|
88
|
+
self._registry.init_gold(target)
|
|
89
|
+
|
|
90
|
+
def encode(self, column: str, method: str, reason: str, **kwargs) -> "GoldBuilder":
|
|
91
|
+
rec = LayeredRecommendation(
|
|
92
|
+
id=f"gold_encode_{column}", layer="gold", category="encoding",
|
|
93
|
+
action=method, target_column=column, parameters={"method": method, **kwargs},
|
|
94
|
+
rationale=reason, source_notebook=self._notebook
|
|
95
|
+
)
|
|
96
|
+
self._registry.gold.encoding.append(rec)
|
|
97
|
+
return self
|
|
98
|
+
|
|
99
|
+
def scale(self, column: str, method: str, reason: str) -> "GoldBuilder":
|
|
100
|
+
rec = LayeredRecommendation(
|
|
101
|
+
id=f"gold_scale_{column}", layer="gold", category="scaling",
|
|
102
|
+
action=method, target_column=column, parameters={"method": method},
|
|
103
|
+
rationale=reason, source_notebook=self._notebook
|
|
104
|
+
)
|
|
105
|
+
self._registry.gold.scaling.append(rec)
|
|
106
|
+
return self
|
|
107
|
+
|
|
108
|
+
def select(self, column: str, include: bool, reason: str) -> "GoldBuilder":
|
|
109
|
+
action = "include" if include else "exclude"
|
|
110
|
+
rec = LayeredRecommendation(
|
|
111
|
+
id=f"gold_select_{column}", layer="gold", category="selection",
|
|
112
|
+
action=action, target_column=column, parameters={"include": include},
|
|
113
|
+
rationale=reason, source_notebook=self._notebook
|
|
114
|
+
)
|
|
115
|
+
self._registry.gold.feature_selection.append(rec)
|
|
116
|
+
return self
|
|
117
|
+
|
|
118
|
+
def transform(self, column: str, method: str, reason: str) -> "GoldBuilder":
|
|
119
|
+
rec = LayeredRecommendation(
|
|
120
|
+
id=f"gold_transform_{column}", layer="gold", category="transformation",
|
|
121
|
+
action=method, target_column=column, parameters={"method": method},
|
|
122
|
+
rationale=reason, source_notebook=self._notebook
|
|
123
|
+
)
|
|
124
|
+
self._registry.gold.transformations.append(rec)
|
|
125
|
+
return self
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
class RecommendationBuilder:
|
|
129
|
+
def __init__(self, findings: "ExplorationFindings", notebook: str):
|
|
130
|
+
self.findings = findings
|
|
131
|
+
self.notebook = notebook
|
|
132
|
+
self.registry = RecommendationRegistry()
|
|
133
|
+
|
|
134
|
+
def bronze(self) -> BronzeBuilder:
|
|
135
|
+
return BronzeBuilder(self)
|
|
136
|
+
|
|
137
|
+
def silver(self) -> SilverBuilder:
|
|
138
|
+
return SilverBuilder(self)
|
|
139
|
+
|
|
140
|
+
def gold(self) -> GoldBuilder:
|
|
141
|
+
return GoldBuilder(self)
|
|
142
|
+
|
|
143
|
+
@property
|
|
144
|
+
def all_recommendations(self) -> List[LayeredRecommendation]:
|
|
145
|
+
return self.registry.all_recommendations
|
|
146
|
+
|
|
147
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
148
|
+
return self.registry.to_dict()
|