vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1536 -0
- vllm/_ipex_ops.py +241 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +38 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +31 -0
- vllm/assets/video.py +103 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +303 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1092 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +301 -0
- vllm/attention/backends/ipex_attn.py +396 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1444 -0
- vllm/attention/backends/pallas.py +346 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +412 -0
- vllm/attention/backends/rocm_flash_attn.py +969 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +443 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +244 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +105 -0
- vllm/attention/ops/ipex_attn.py +193 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +42 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +675 -0
- vllm/attention/ops/triton_flash_attention.py +1375 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +831 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +181 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +608 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +795 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/backends.py +715 -0
- vllm/compilation/compiler_interface.py +437 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +182 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +60 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +135 -0
- vllm/compilation/pass_manager.py +74 -0
- vllm/compilation/sequence_parallelism.py +266 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +68 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4179 -0
- vllm/connections.py +170 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2060 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/base_device_communicator.py +151 -0
- vllm/distributed/device_communicators/cpu_communicator.py +139 -0
- vllm/distributed/device_communicators/cuda_communicator.py +131 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +557 -0
- vllm/distributed/device_communicators/tpu_communicator.py +93 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1209 -0
- vllm/distributed/utils.py +366 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1724 -0
- vllm/engine/async_llm_engine.py +1261 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2150 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +183 -0
- vllm/engine/multiprocessing/client.py +745 -0
- vllm/engine/multiprocessing/engine.py +450 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +210 -0
- vllm/engine/output_processor/single_step.py +136 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +302 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1259 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +59 -0
- vllm/entrypoints/cli/openai.py +175 -0
- vllm/entrypoints/cli/serve.py +59 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1450 -0
- vllm/entrypoints/logger.py +44 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1130 -0
- vllm/entrypoints/openai/cli_args.py +296 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1806 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1210 -0
- vllm/entrypoints/openai/serving_completion.py +557 -0
- vllm/entrypoints/openai/serving_embedding.py +245 -0
- vllm/entrypoints/openai/serving_engine.py +569 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +237 -0
- vllm/entrypoints/openai/serving_score.py +439 -0
- vllm/entrypoints/openai/serving_tokenization.py +147 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +136 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +800 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +400 -0
- vllm/executor/uniproc_executor.py +141 -0
- vllm/forward_context.py +159 -0
- vllm/inputs/__init__.py +37 -0
- vllm/inputs/data.py +248 -0
- vllm/inputs/parse.py +121 -0
- vllm/inputs/preprocess.py +745 -0
- vllm/inputs/registry.py +212 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +210 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +121 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +335 -0
- vllm/lora/layers.py +1263 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +802 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand.py +293 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
- vllm/lora/ops/triton_ops/utils.py +121 -0
- vllm/lora/peft_helper.py +115 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +483 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/utils.py +161 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +83 -0
- vllm/lora/utils.py +237 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +153 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
- vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +51 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
- vllm/model_executor/layers/fused_moe/layer.py +949 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
- vllm/model_executor/layers/fused_moe/utils.py +48 -0
- vllm/model_executor/layers/layernorm.py +277 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1518 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +336 -0
- vllm/model_executor/layers/quantization/__init__.py +153 -0
- vllm/model_executor/layers/quantization/aqlm.py +374 -0
- vllm/model_executor/layers/quantization/awq.py +184 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +145 -0
- vllm/model_executor/layers/quantization/bitblas.py +459 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
- vllm/model_executor/layers/quantization/experts_int8.py +194 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
- vllm/model_executor/layers/quantization/fp8.py +832 -0
- vllm/model_executor/layers/quantization/gguf.py +408 -0
- vllm/model_executor/layers/quantization/gptq.py +276 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +137 -0
- vllm/model_executor/layers/quantization/marlin.py +259 -0
- vllm/model_executor/layers/quantization/modelopt.py +410 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
- vllm/model_executor/layers/quantization/qqq.py +273 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +385 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +102 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +127 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +400 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1598 -0
- vllm/model_executor/layers/sampler.py +1221 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
- vllm/model_executor/model_loader/__init__.py +20 -0
- vllm/model_executor/model_loader/loader.py +1542 -0
- vllm/model_executor/model_loader/neuron.py +243 -0
- vllm/model_executor/model_loader/tensorizer.py +468 -0
- vllm/model_executor/model_loader/utils.py +171 -0
- vllm/model_executor/model_loader/weight_utils.py +749 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +469 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +936 -0
- vllm/model_executor/models/bert.py +725 -0
- vllm/model_executor/models/blip.py +337 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +358 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +410 -0
- vllm/model_executor/models/commandr.py +466 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +469 -0
- vllm/model_executor/models/deepseek.py +484 -0
- vllm/model_executor/models/deepseek_mtp.py +266 -0
- vllm/model_executor/models/deepseek_v2.py +830 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +247 -0
- vllm/model_executor/models/exaone.py +548 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +508 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +423 -0
- vllm/model_executor/models/gemma2.py +423 -0
- vllm/model_executor/models/gemma3.py +531 -0
- vllm/model_executor/models/gemma3_mm.py +716 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +303 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +313 -0
- vllm/model_executor/models/gpt_bigcode.py +336 -0
- vllm/model_executor/models/gpt_j.py +337 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/granite.py +494 -0
- vllm/model_executor/models/granite_speech.py +777 -0
- vllm/model_executor/models/granitemoe.py +435 -0
- vllm/model_executor/models/granitemoeshared.py +339 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +560 -0
- vllm/model_executor/models/h2ovl.py +542 -0
- vllm/model_executor/models/idefics2_vision_model.py +387 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +569 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +476 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +945 -0
- vllm/model_executor/models/jais.py +371 -0
- vllm/model_executor/models/jamba.py +590 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +619 -0
- vllm/model_executor/models/llama4.py +530 -0
- vllm/model_executor/models/llama_eagle.py +152 -0
- vllm/model_executor/models/llama_eagle3.py +232 -0
- vllm/model_executor/models/llava.py +869 -0
- vllm/model_executor/models/llava_next.py +582 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +954 -0
- vllm/model_executor/models/mamba.py +271 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +210 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +725 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1261 -0
- vllm/model_executor/models/mistral3.py +598 -0
- vllm/model_executor/models/mixtral.py +485 -0
- vllm/model_executor/models/mixtral_quant.py +447 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +325 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +628 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nemotron.py +506 -0
- vllm/model_executor/models/nemotron_nas.py +446 -0
- vllm/model_executor/models/nvlm_d.py +212 -0
- vllm/model_executor/models/olmo.py +390 -0
- vllm/model_executor/models/olmo2.py +412 -0
- vllm/model_executor/models/olmoe.py +449 -0
- vllm/model_executor/models/opt.py +410 -0
- vllm/model_executor/models/orion.py +356 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +342 -0
- vllm/model_executor/models/phi.py +354 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +463 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1263 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +666 -0
- vllm/model_executor/models/pixtral.py +1281 -0
- vllm/model_executor/models/plamo2.py +736 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +360 -0
- vllm/model_executor/models/qwen2.py +552 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
- vllm/model_executor/models/qwen2_5_vl.py +1136 -0
- vllm/model_executor/models/qwen2_audio.py +402 -0
- vllm/model_executor/models/qwen2_moe.py +531 -0
- vllm/model_executor/models/qwen2_rm.py +130 -0
- vllm/model_executor/models/qwen2_vl.py +1409 -0
- vllm/model_executor/models/qwen3.py +319 -0
- vllm/model_executor/models/qwen3_moe.py +528 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +611 -0
- vllm/model_executor/models/roberta.py +332 -0
- vllm/model_executor/models/siglip.py +522 -0
- vllm/model_executor/models/skyworkr1v.py +949 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +349 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +442 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +714 -0
- vllm/model_executor/models/vision.py +149 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +31 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +103 -0
- vllm/multimodal/image.py +77 -0
- vllm/multimodal/inputs.py +843 -0
- vllm/multimodal/parse.py +454 -0
- vllm/multimodal/processing.py +1760 -0
- vllm/multimodal/profiling.py +274 -0
- vllm/multimodal/registry.py +321 -0
- vllm/multimodal/utils.py +386 -0
- vllm/multimodal/video.py +166 -0
- vllm/outputs.py +521 -0
- vllm/platforms/__init__.py +286 -0
- vllm/platforms/cpu.py +182 -0
- vllm/platforms/cuda.py +463 -0
- vllm/platforms/hpu.py +94 -0
- vllm/platforms/interface.py +427 -0
- vllm/platforms/neuron.py +69 -0
- vllm/platforms/rocm.py +346 -0
- vllm/platforms/tpu.py +174 -0
- vllm/platforms/xpu.py +142 -0
- vllm/plugins/__init__.py +82 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +7 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +12 -0
- vllm/reasoning/abs_reasoning_parsers.py +189 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/sampling_params.py +598 -0
- vllm/scalar_type.py +335 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1486 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +335 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +416 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
- vllm/spec_decode/spec_decode_worker.py +1324 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +19 -0
- vllm/transformers_utils/config.py +813 -0
- vllm/transformers_utils/configs/__init__.py +52 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +65 -0
- vllm/transformers_utils/configs/exaone.py +191 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +210 -0
- vllm/transformers_utils/processors/__init__.py +6 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +291 -0
- vllm/transformers_utils/tokenizer_base.py +146 -0
- vllm/transformers_utils/tokenizer_group.py +110 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +483 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +5 -0
- vllm/triton_utils/importing.py +53 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2692 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +783 -0
- vllm/v1/attention/backends/flashinfer.py +638 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +974 -0
- vllm/v1/attention/backends/mla/flashmla.py +149 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +221 -0
- vllm/v1/attention/backends/triton_attn.py +198 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +281 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +385 -0
- vllm/v1/core/kv_cache_utils.py +744 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +134 -0
- vllm/v1/core/sched/output.py +126 -0
- vllm/v1/core/sched/scheduler.py +838 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/specialized_manager.py +161 -0
- vllm/v1/engine/__init__.py +166 -0
- vllm/v1/engine/async_llm.py +532 -0
- vllm/v1/engine/core.py +701 -0
- vllm/v1/engine/core_client.py +942 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +285 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +82 -0
- vllm/v1/engine/output_processor.py +420 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +387 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +480 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +166 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +498 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +111 -0
- vllm/v1/request.py +178 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +118 -0
- vllm/v1/sample/tpu/sampler.py +154 -0
- vllm/v1/serial_utils.py +274 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +318 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +164 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +18 -0
- vllm/v1/stats/__init__.py +0 -0
- vllm/v1/stats/common.py +453 -0
- vllm/v1/structured_output/__init__.py +113 -0
- vllm/v1/structured_output/backend_guidance.py +215 -0
- vllm/v1/structured_output/backend_types.py +96 -0
- vllm/v1/structured_output/backend_xgrammar.py +299 -0
- vllm/v1/structured_output/request.py +84 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +249 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +677 -0
- vllm/v1/worker/gpu_model_runner.py +1776 -0
- vllm/v1/worker/gpu_worker.py +349 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1419 -0
- vllm/v1/worker/tpu_worker.py +260 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +323 -0
- vllm/worker/cpu_model_runner.py +668 -0
- vllm/worker/cpu_pooling_model_runner.py +122 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +542 -0
- vllm/worker/hpu_model_runner.py +2221 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2056 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +908 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +336 -0
- vllm/worker/neuron_worker.py +138 -0
- vllm/worker/pooling_model_runner.py +200 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +332 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +570 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +603 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
- vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
- vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
- vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
vllm/envs.py
ADDED
|
@@ -0,0 +1,800 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
import hashlib
|
|
4
|
+
import os
|
|
5
|
+
import sys
|
|
6
|
+
import tempfile
|
|
7
|
+
from typing import TYPE_CHECKING, Any, Callable, Optional
|
|
8
|
+
|
|
9
|
+
if TYPE_CHECKING:
|
|
10
|
+
VLLM_HOST_IP: str = ""
|
|
11
|
+
VLLM_PORT: Optional[int] = None
|
|
12
|
+
VLLM_RPC_BASE_PATH: str = tempfile.gettempdir()
|
|
13
|
+
VLLM_USE_MODELSCOPE: bool = False
|
|
14
|
+
VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60
|
|
15
|
+
VLLM_NCCL_SO_PATH: Optional[str] = None
|
|
16
|
+
LD_LIBRARY_PATH: Optional[str] = None
|
|
17
|
+
VLLM_USE_TRITON_FLASH_ATTN: bool = False
|
|
18
|
+
VLLM_FLASH_ATTN_VERSION: Optional[int] = None
|
|
19
|
+
LOCAL_RANK: int = 0
|
|
20
|
+
CUDA_VISIBLE_DEVICES: Optional[str] = None
|
|
21
|
+
VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
|
|
22
|
+
VLLM_API_KEY: Optional[str] = None
|
|
23
|
+
S3_ACCESS_KEY_ID: Optional[str] = None
|
|
24
|
+
S3_SECRET_ACCESS_KEY: Optional[str] = None
|
|
25
|
+
S3_ENDPOINT_URL: Optional[str] = None
|
|
26
|
+
VLLM_MODEL_REDIRECT_PATH: Optional[str] = None
|
|
27
|
+
VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm")
|
|
28
|
+
VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm")
|
|
29
|
+
VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
|
|
30
|
+
VLLM_NO_USAGE_STATS: bool = False
|
|
31
|
+
VLLM_DO_NOT_TRACK: bool = False
|
|
32
|
+
VLLM_USAGE_SOURCE: str = ""
|
|
33
|
+
VLLM_CONFIGURE_LOGGING: int = 1
|
|
34
|
+
VLLM_LOGGING_LEVEL: str = "INFO"
|
|
35
|
+
VLLM_LOGGING_PREFIX: str = ""
|
|
36
|
+
VLLM_LOGGING_CONFIG_PATH: Optional[str] = None
|
|
37
|
+
VLLM_LOGITS_PROCESSOR_THREADS: Optional[int] = None
|
|
38
|
+
VLLM_TRACE_FUNCTION: int = 0
|
|
39
|
+
VLLM_ATTENTION_BACKEND: Optional[str] = None
|
|
40
|
+
VLLM_USE_FLASHINFER_SAMPLER: Optional[bool] = None
|
|
41
|
+
VLLM_FLASHINFER_FORCE_TENSOR_CORES: bool = False
|
|
42
|
+
VLLM_PP_LAYER_PARTITION: Optional[str] = None
|
|
43
|
+
VLLM_CPU_KVCACHE_SPACE: int = 0
|
|
44
|
+
VLLM_CPU_OMP_THREADS_BIND: str = ""
|
|
45
|
+
VLLM_CPU_MOE_PREPACK: bool = True
|
|
46
|
+
VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
|
|
47
|
+
VLLM_XLA_CHECK_RECOMPILATION: bool = False
|
|
48
|
+
VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024
|
|
49
|
+
VLLM_USE_RAY_SPMD_WORKER: bool = False
|
|
50
|
+
VLLM_USE_RAY_COMPILED_DAG: bool = False
|
|
51
|
+
VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: str = "auto"
|
|
52
|
+
VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False
|
|
53
|
+
VLLM_WORKER_MULTIPROC_METHOD: str = "fork"
|
|
54
|
+
VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
|
|
55
|
+
VLLM_IMAGE_FETCH_TIMEOUT: int = 5
|
|
56
|
+
VLLM_VIDEO_FETCH_TIMEOUT: int = 30
|
|
57
|
+
VLLM_AUDIO_FETCH_TIMEOUT: int = 10
|
|
58
|
+
VLLM_MM_INPUT_CACHE_GIB: int = 8
|
|
59
|
+
VLLM_TARGET_DEVICE: str = "cuda"
|
|
60
|
+
MAX_JOBS: Optional[str] = None
|
|
61
|
+
NVCC_THREADS: Optional[str] = None
|
|
62
|
+
VLLM_USE_PRECOMPILED: bool = False
|
|
63
|
+
VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL: bool = False
|
|
64
|
+
VLLM_NO_DEPRECATION_WARNING: bool = False
|
|
65
|
+
VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False
|
|
66
|
+
CMAKE_BUILD_TYPE: Optional[str] = None
|
|
67
|
+
VERBOSE: bool = False
|
|
68
|
+
VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False
|
|
69
|
+
VLLM_RPC_TIMEOUT: int = 10000 # ms
|
|
70
|
+
VLLM_PLUGINS: Optional[list[str]] = None
|
|
71
|
+
VLLM_TORCH_PROFILER_DIR: Optional[str] = None
|
|
72
|
+
VLLM_USE_TRITON_AWQ: bool = False
|
|
73
|
+
VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
|
|
74
|
+
VLLM_SKIP_P2P_CHECK: bool = False
|
|
75
|
+
VLLM_DISABLED_KERNELS: list[str] = []
|
|
76
|
+
VLLM_USE_V1: bool = True
|
|
77
|
+
VLLM_ROCM_USE_AITER: bool = False
|
|
78
|
+
VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False
|
|
79
|
+
VLLM_ROCM_USE_AITER_LINEAR: bool = True
|
|
80
|
+
VLLM_ROCM_USE_AITER_MOE: bool = True
|
|
81
|
+
VLLM_ROCM_USE_AITER_RMSNORM: bool = True
|
|
82
|
+
VLLM_ROCM_USE_AITER_MLA: bool = True
|
|
83
|
+
VLLM_ROCM_USE_SKINNY_GEMM: bool = True
|
|
84
|
+
VLLM_ROCM_FP8_PADDING: bool = True
|
|
85
|
+
VLLM_ROCM_MOE_PADDING: bool = True
|
|
86
|
+
VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True
|
|
87
|
+
VLLM_ENABLE_V1_MULTIPROCESSING: bool = True
|
|
88
|
+
VLLM_LOG_BATCHSIZE_INTERVAL: float = -1
|
|
89
|
+
VLLM_DISABLE_COMPILE_CACHE: bool = False
|
|
90
|
+
Q_SCALE_CONSTANT: int = 200
|
|
91
|
+
K_SCALE_CONSTANT: int = 200
|
|
92
|
+
V_SCALE_CONSTANT: int = 100
|
|
93
|
+
VLLM_SERVER_DEV_MODE: bool = False
|
|
94
|
+
VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128
|
|
95
|
+
VLLM_MLA_DISABLE: bool = False
|
|
96
|
+
VLLM_ENABLE_MOE_ALIGN_BLOCK_SIZE_TRITON: bool = False
|
|
97
|
+
VLLM_RAY_PER_WORKER_GPUS: float = 1.0
|
|
98
|
+
VLLM_RAY_BUNDLE_INDICES: str = ""
|
|
99
|
+
VLLM_CUDART_SO_PATH: Optional[str] = None
|
|
100
|
+
VLLM_USE_HPU_CONTIGUOUS_CACHE_FETCH: bool = True
|
|
101
|
+
VLLM_HPU_USE_DELAYED_SAMPLING: bool = False
|
|
102
|
+
VLLM_DP_RANK: int = 0
|
|
103
|
+
VLLM_DP_RANK_LOCAL: int = -1
|
|
104
|
+
VLLM_DP_SIZE: int = 1
|
|
105
|
+
VLLM_DP_MASTER_IP: str = ""
|
|
106
|
+
VLLM_DP_MASTER_PORT: int = 0
|
|
107
|
+
VLLM_MARLIN_USE_ATOMIC_ADD: bool = False
|
|
108
|
+
VLLM_V0_USE_OUTLINES_CACHE: bool = False
|
|
109
|
+
VLLM_TPU_BUCKET_PADDING_GAP: int = 0
|
|
110
|
+
VLLM_USE_DEEP_GEMM: bool = False
|
|
111
|
+
VLLM_XGRAMMAR_CACHE_MB: int = 0
|
|
112
|
+
VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
def get_default_cache_root():
|
|
116
|
+
return os.getenv(
|
|
117
|
+
"XDG_CACHE_HOME",
|
|
118
|
+
os.path.join(os.path.expanduser("~"), ".cache"),
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
def get_default_config_root():
|
|
123
|
+
return os.getenv(
|
|
124
|
+
"XDG_CONFIG_HOME",
|
|
125
|
+
os.path.join(os.path.expanduser("~"), ".config"),
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
def maybe_convert_int(value: Optional[str]) -> Optional[int]:
|
|
130
|
+
if value is None:
|
|
131
|
+
return None
|
|
132
|
+
return int(value)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
# The begin-* and end* here are used by the documentation generator
|
|
136
|
+
# to extract the used env vars.
|
|
137
|
+
|
|
138
|
+
# begin-env-vars-definition
|
|
139
|
+
|
|
140
|
+
environment_variables: dict[str, Callable[[], Any]] = {
|
|
141
|
+
|
|
142
|
+
# ================== Installation Time Env Vars ==================
|
|
143
|
+
|
|
144
|
+
# Target device of vLLM, supporting [cuda (by default),
|
|
145
|
+
# rocm, neuron, cpu]
|
|
146
|
+
"VLLM_TARGET_DEVICE":
|
|
147
|
+
lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda"),
|
|
148
|
+
|
|
149
|
+
# Maximum number of compilation jobs to run in parallel.
|
|
150
|
+
# By default this is the number of CPUs
|
|
151
|
+
"MAX_JOBS":
|
|
152
|
+
lambda: os.getenv("MAX_JOBS", None),
|
|
153
|
+
|
|
154
|
+
# Number of threads to use for nvcc
|
|
155
|
+
# By default this is 1.
|
|
156
|
+
# If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
|
|
157
|
+
"NVCC_THREADS":
|
|
158
|
+
lambda: os.getenv("NVCC_THREADS", None),
|
|
159
|
+
|
|
160
|
+
# If set, vllm will use precompiled binaries (*.so)
|
|
161
|
+
"VLLM_USE_PRECOMPILED":
|
|
162
|
+
lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")) or bool(
|
|
163
|
+
os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")),
|
|
164
|
+
|
|
165
|
+
# Whether to force using nightly wheel in python build.
|
|
166
|
+
# This is used for testing the nightly wheel in python build.
|
|
167
|
+
"VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL":
|
|
168
|
+
lambda: bool(int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0"))
|
|
169
|
+
),
|
|
170
|
+
|
|
171
|
+
# CMake build type
|
|
172
|
+
# If not set, defaults to "Debug" or "RelWithDebInfo"
|
|
173
|
+
# Available options: "Debug", "Release", "RelWithDebInfo"
|
|
174
|
+
"CMAKE_BUILD_TYPE":
|
|
175
|
+
lambda: os.getenv("CMAKE_BUILD_TYPE"),
|
|
176
|
+
|
|
177
|
+
# If set, vllm will print verbose logs during installation
|
|
178
|
+
"VERBOSE":
|
|
179
|
+
lambda: bool(int(os.getenv('VERBOSE', '0'))),
|
|
180
|
+
|
|
181
|
+
# Root directory for vLLM configuration files
|
|
182
|
+
# Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
|
|
183
|
+
# Note that this not only affects how vllm finds its configuration files
|
|
184
|
+
# during runtime, but also affects how vllm installs its configuration
|
|
185
|
+
# files during **installation**.
|
|
186
|
+
"VLLM_CONFIG_ROOT":
|
|
187
|
+
lambda: os.path.expanduser(
|
|
188
|
+
os.getenv(
|
|
189
|
+
"VLLM_CONFIG_ROOT",
|
|
190
|
+
os.path.join(get_default_config_root(), "vllm"),
|
|
191
|
+
)),
|
|
192
|
+
|
|
193
|
+
# ================== Runtime Env Vars ==================
|
|
194
|
+
|
|
195
|
+
# Root directory for vLLM cache files
|
|
196
|
+
# Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
|
|
197
|
+
"VLLM_CACHE_ROOT":
|
|
198
|
+
lambda: os.path.expanduser(
|
|
199
|
+
os.getenv(
|
|
200
|
+
"VLLM_CACHE_ROOT",
|
|
201
|
+
os.path.join(get_default_cache_root(), "vllm"),
|
|
202
|
+
)),
|
|
203
|
+
|
|
204
|
+
# used in distributed environment to determine the ip address
|
|
205
|
+
# of the current node, when the node has multiple network interfaces.
|
|
206
|
+
# If you are using multi-node inference, you should set this differently
|
|
207
|
+
# on each node.
|
|
208
|
+
'VLLM_HOST_IP':
|
|
209
|
+
lambda: os.getenv('VLLM_HOST_IP', ""),
|
|
210
|
+
|
|
211
|
+
# used in distributed environment to manually set the communication port
|
|
212
|
+
# Note: if VLLM_PORT is set, and some code asks for multiple ports, the
|
|
213
|
+
# VLLM_PORT will be used as the first port, and the rest will be generated
|
|
214
|
+
# by incrementing the VLLM_PORT value.
|
|
215
|
+
# '0' is used to make mypy happy
|
|
216
|
+
'VLLM_PORT':
|
|
217
|
+
lambda: int(os.getenv('VLLM_PORT', '0'))
|
|
218
|
+
if 'VLLM_PORT' in os.environ else None,
|
|
219
|
+
|
|
220
|
+
# path used for ipc when the frontend api server is running in
|
|
221
|
+
# multi-processing mode to communicate with the backend engine process.
|
|
222
|
+
'VLLM_RPC_BASE_PATH':
|
|
223
|
+
lambda: os.getenv('VLLM_RPC_BASE_PATH', tempfile.gettempdir()),
|
|
224
|
+
|
|
225
|
+
# If true, will load models from ModelScope instead of Hugging Face Hub.
|
|
226
|
+
# note that the value is true or false, not numbers
|
|
227
|
+
"VLLM_USE_MODELSCOPE":
|
|
228
|
+
lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true",
|
|
229
|
+
|
|
230
|
+
# Interval in seconds to log a warning message when the ring buffer is full
|
|
231
|
+
"VLLM_RINGBUFFER_WARNING_INTERVAL":
|
|
232
|
+
lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")),
|
|
233
|
+
|
|
234
|
+
# path to cudatoolkit home directory, under which should be bin, include,
|
|
235
|
+
# and lib directories.
|
|
236
|
+
"CUDA_HOME":
|
|
237
|
+
lambda: os.environ.get("CUDA_HOME", None),
|
|
238
|
+
|
|
239
|
+
# Path to the NCCL library file. It is needed because nccl>=2.19 brought
|
|
240
|
+
# by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
|
|
241
|
+
"VLLM_NCCL_SO_PATH":
|
|
242
|
+
lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),
|
|
243
|
+
|
|
244
|
+
# when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
|
|
245
|
+
# library file in the locations specified by `LD_LIBRARY_PATH`
|
|
246
|
+
"LD_LIBRARY_PATH":
|
|
247
|
+
lambda: os.environ.get("LD_LIBRARY_PATH", None),
|
|
248
|
+
|
|
249
|
+
# flag to control if vllm should use triton flash attention
|
|
250
|
+
"VLLM_USE_TRITON_FLASH_ATTN":
|
|
251
|
+
lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
|
|
252
|
+
("true", "1")),
|
|
253
|
+
|
|
254
|
+
# Force vllm to use a specific flash-attention version (2 or 3), only valid
|
|
255
|
+
# when using the flash-attention backend.
|
|
256
|
+
"VLLM_FLASH_ATTN_VERSION":
|
|
257
|
+
lambda: maybe_convert_int(os.environ.get("VLLM_FLASH_ATTN_VERSION", None)),
|
|
258
|
+
|
|
259
|
+
# Internal flag to enable Dynamo fullgraph capture
|
|
260
|
+
"VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE":
|
|
261
|
+
lambda: bool(
|
|
262
|
+
os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"),
|
|
263
|
+
|
|
264
|
+
# local rank of the process in the distributed setting, used to determine
|
|
265
|
+
# the GPU device id
|
|
266
|
+
"LOCAL_RANK":
|
|
267
|
+
lambda: int(os.environ.get("LOCAL_RANK", "0")),
|
|
268
|
+
|
|
269
|
+
# used to control the visible devices in the distributed setting
|
|
270
|
+
"CUDA_VISIBLE_DEVICES":
|
|
271
|
+
lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),
|
|
272
|
+
|
|
273
|
+
# timeout for each iteration in the engine
|
|
274
|
+
"VLLM_ENGINE_ITERATION_TIMEOUT_S":
|
|
275
|
+
lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")),
|
|
276
|
+
|
|
277
|
+
# API key for vLLM API server
|
|
278
|
+
"VLLM_API_KEY":
|
|
279
|
+
lambda: os.environ.get("VLLM_API_KEY", None),
|
|
280
|
+
|
|
281
|
+
# Whether to log responses from API Server for debugging
|
|
282
|
+
"VLLM_DEBUG_LOG_API_SERVER_RESPONSE":
|
|
283
|
+
lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False").
|
|
284
|
+
lower() == "true",
|
|
285
|
+
|
|
286
|
+
# S3 access information, used for tensorizer to load model from S3
|
|
287
|
+
"S3_ACCESS_KEY_ID":
|
|
288
|
+
lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
|
|
289
|
+
"S3_SECRET_ACCESS_KEY":
|
|
290
|
+
lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
|
|
291
|
+
"S3_ENDPOINT_URL":
|
|
292
|
+
lambda: os.environ.get("S3_ENDPOINT_URL", None),
|
|
293
|
+
|
|
294
|
+
# Usage stats collection
|
|
295
|
+
"VLLM_USAGE_STATS_SERVER":
|
|
296
|
+
lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
|
|
297
|
+
"VLLM_NO_USAGE_STATS":
|
|
298
|
+
lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
|
|
299
|
+
"VLLM_DO_NOT_TRACK":
|
|
300
|
+
lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
|
|
301
|
+
"DO_NOT_TRACK", None) or "0") == "1",
|
|
302
|
+
"VLLM_USAGE_SOURCE":
|
|
303
|
+
lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),
|
|
304
|
+
|
|
305
|
+
# Logging configuration
|
|
306
|
+
# If set to 0, vllm will not configure logging
|
|
307
|
+
# If set to 1, vllm will configure logging using the default configuration
|
|
308
|
+
# or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
|
|
309
|
+
"VLLM_CONFIGURE_LOGGING":
|
|
310
|
+
lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
|
|
311
|
+
"VLLM_LOGGING_CONFIG_PATH":
|
|
312
|
+
lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),
|
|
313
|
+
|
|
314
|
+
# this is used for configuring the default logging level
|
|
315
|
+
"VLLM_LOGGING_LEVEL":
|
|
316
|
+
lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(),
|
|
317
|
+
|
|
318
|
+
# if set, VLLM_LOGGING_PREFIX will be prepended to all log messages
|
|
319
|
+
"VLLM_LOGGING_PREFIX":
|
|
320
|
+
lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),
|
|
321
|
+
|
|
322
|
+
# if set, vllm will call logits processors in a thread pool with this many
|
|
323
|
+
# threads. This is useful when using custom logits processors that either
|
|
324
|
+
# (a) launch additional CUDA kernels or (b) do significant CPU-bound work
|
|
325
|
+
# while not holding the python GIL, or both.
|
|
326
|
+
"VLLM_LOGITS_PROCESSOR_THREADS":
|
|
327
|
+
lambda: int(os.getenv("VLLM_LOGITS_PROCESSOR_THREADS", "0"))
|
|
328
|
+
if "VLLM_LOGITS_PROCESSOR_THREADS" in os.environ else None,
|
|
329
|
+
|
|
330
|
+
# Trace function calls
|
|
331
|
+
# If set to 1, vllm will trace function calls
|
|
332
|
+
# Useful for debugging
|
|
333
|
+
"VLLM_TRACE_FUNCTION":
|
|
334
|
+
lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),
|
|
335
|
+
|
|
336
|
+
# Backend for attention computation
|
|
337
|
+
# Available options:
|
|
338
|
+
# - "TORCH_SDPA": use torch.nn.MultiheadAttention
|
|
339
|
+
# - "FLASH_ATTN": use FlashAttention
|
|
340
|
+
# - "XFORMERS": use XFormers
|
|
341
|
+
# - "ROCM_FLASH": use ROCmFlashAttention
|
|
342
|
+
# - "FLASHINFER": use flashinfer
|
|
343
|
+
# - "FLASHMLA": use FlashMLA
|
|
344
|
+
"VLLM_ATTENTION_BACKEND":
|
|
345
|
+
lambda: os.getenv("VLLM_ATTENTION_BACKEND", None),
|
|
346
|
+
|
|
347
|
+
# If set, vllm will use flashinfer sampler
|
|
348
|
+
"VLLM_USE_FLASHINFER_SAMPLER":
|
|
349
|
+
lambda: bool(int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"]))
|
|
350
|
+
if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ else None,
|
|
351
|
+
|
|
352
|
+
# If set, vllm will force flashinfer to use tensor cores;
|
|
353
|
+
# otherwise will use heuristic based on model architecture.
|
|
354
|
+
"VLLM_FLASHINFER_FORCE_TENSOR_CORES":
|
|
355
|
+
lambda: bool(int(os.getenv("VLLM_FLASHINFER_FORCE_TENSOR_CORES", "0"))),
|
|
356
|
+
|
|
357
|
+
# Pipeline stage partition strategy
|
|
358
|
+
"VLLM_PP_LAYER_PARTITION":
|
|
359
|
+
lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),
|
|
360
|
+
|
|
361
|
+
# (CPU backend only) CPU key-value cache space.
|
|
362
|
+
# default is 4 GiB
|
|
363
|
+
"VLLM_CPU_KVCACHE_SPACE":
|
|
364
|
+
lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")),
|
|
365
|
+
|
|
366
|
+
# (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
|
|
367
|
+
# "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
|
|
368
|
+
"VLLM_CPU_OMP_THREADS_BIND":
|
|
369
|
+
lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "all"),
|
|
370
|
+
|
|
371
|
+
# (CPU backend only) whether to use prepack for MoE layer. This will be
|
|
372
|
+
# passed to ipex.llm.modules.GatedMLPMOE. On unsupported CPUs, you might
|
|
373
|
+
# need to set this to "0" (False).
|
|
374
|
+
"VLLM_CPU_MOE_PREPACK":
|
|
375
|
+
lambda: bool(int(os.getenv("VLLM_CPU_MOE_PREPACK", "1"))),
|
|
376
|
+
|
|
377
|
+
# If the env var is set, then all workers will execute as separate
|
|
378
|
+
# processes from the engine, and we use the same mechanism to trigger
|
|
379
|
+
# execution on all workers.
|
|
380
|
+
# Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
|
|
381
|
+
"VLLM_USE_RAY_SPMD_WORKER":
|
|
382
|
+
lambda: bool(int(os.getenv("VLLM_USE_RAY_SPMD_WORKER", "0"))),
|
|
383
|
+
|
|
384
|
+
# If the env var is set, it uses the Ray's Compiled Graph
|
|
385
|
+
# (previously known as ADAG) API which optimizes the
|
|
386
|
+
# control plane overhead.
|
|
387
|
+
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
|
|
388
|
+
# Note that this variable is set to 1 in V1 by default
|
|
389
|
+
# when ray distributed executor is used.
|
|
390
|
+
"VLLM_USE_RAY_COMPILED_DAG":
|
|
391
|
+
lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG", "0"))),
|
|
392
|
+
|
|
393
|
+
# If the env var is set, Ray Compiled Graph uses the specified
|
|
394
|
+
# channel type to communicate between workers belonging to
|
|
395
|
+
# different pipeline-parallel stages.
|
|
396
|
+
# Available options:
|
|
397
|
+
# - "auto": use the default channel type
|
|
398
|
+
# - "nccl": use NCCL for communication
|
|
399
|
+
# - "shm": use shared memory and gRPC for communication
|
|
400
|
+
# This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
|
|
401
|
+
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE":
|
|
402
|
+
lambda: os.getenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto"),
|
|
403
|
+
|
|
404
|
+
# If the env var is set, it enables GPU communication overlap
|
|
405
|
+
# (experimental feature) in Ray's Compiled Graph. This flag is ignored if
|
|
406
|
+
# VLLM_USE_RAY_COMPILED_DAG is not set.
|
|
407
|
+
"VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM":
|
|
408
|
+
lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0"))
|
|
409
|
+
),
|
|
410
|
+
|
|
411
|
+
# Use dedicated multiprocess context for workers.
|
|
412
|
+
# Both spawn and fork work
|
|
413
|
+
"VLLM_WORKER_MULTIPROC_METHOD":
|
|
414
|
+
lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"),
|
|
415
|
+
|
|
416
|
+
# Path to the cache for storing downloaded assets
|
|
417
|
+
"VLLM_ASSETS_CACHE":
|
|
418
|
+
lambda: os.path.expanduser(
|
|
419
|
+
os.getenv(
|
|
420
|
+
"VLLM_ASSETS_CACHE",
|
|
421
|
+
os.path.join(get_default_cache_root(), "vllm", "assets"),
|
|
422
|
+
)),
|
|
423
|
+
|
|
424
|
+
# Timeout for fetching images when serving multimodal models
|
|
425
|
+
# Default is 5 seconds
|
|
426
|
+
"VLLM_IMAGE_FETCH_TIMEOUT":
|
|
427
|
+
lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),
|
|
428
|
+
|
|
429
|
+
# Timeout for fetching videos when serving multimodal models
|
|
430
|
+
# Default is 30 seconds
|
|
431
|
+
"VLLM_VIDEO_FETCH_TIMEOUT":
|
|
432
|
+
lambda: int(os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")),
|
|
433
|
+
|
|
434
|
+
# Timeout for fetching audio when serving multimodal models
|
|
435
|
+
# Default is 10 seconds
|
|
436
|
+
"VLLM_AUDIO_FETCH_TIMEOUT":
|
|
437
|
+
lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")),
|
|
438
|
+
|
|
439
|
+
# Cache size (in GiB) for multimodal input cache
|
|
440
|
+
# Default is 4 GiB
|
|
441
|
+
"VLLM_MM_INPUT_CACHE_GIB":
|
|
442
|
+
lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")),
|
|
443
|
+
|
|
444
|
+
# Path to the XLA persistent cache directory.
|
|
445
|
+
# Only used for XLA devices such as TPUs.
|
|
446
|
+
"VLLM_XLA_CACHE_PATH":
|
|
447
|
+
lambda: os.path.expanduser(
|
|
448
|
+
os.getenv(
|
|
449
|
+
"VLLM_XLA_CACHE_PATH",
|
|
450
|
+
os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
|
|
451
|
+
)),
|
|
452
|
+
|
|
453
|
+
# If set, assert on XLA recompilation after each execution step.
|
|
454
|
+
"VLLM_XLA_CHECK_RECOMPILATION":
|
|
455
|
+
lambda: bool(int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))),
|
|
456
|
+
"VLLM_FUSED_MOE_CHUNK_SIZE":
|
|
457
|
+
lambda: int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768")),
|
|
458
|
+
|
|
459
|
+
# If set, vllm will skip the deprecation warnings.
|
|
460
|
+
"VLLM_NO_DEPRECATION_WARNING":
|
|
461
|
+
lambda: bool(int(os.getenv("VLLM_NO_DEPRECATION_WARNING", "0"))),
|
|
462
|
+
|
|
463
|
+
# If set, the OpenAI API server will stay alive even after the underlying
|
|
464
|
+
# AsyncLLMEngine errors and stops serving requests
|
|
465
|
+
"VLLM_KEEP_ALIVE_ON_ENGINE_DEATH":
|
|
466
|
+
lambda: bool(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", 0)),
|
|
467
|
+
|
|
468
|
+
# If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
|
|
469
|
+
# the user to specify a max sequence length greater than
|
|
470
|
+
# the max length derived from the model's config.json.
|
|
471
|
+
# To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
|
|
472
|
+
"VLLM_ALLOW_LONG_MAX_MODEL_LEN":
|
|
473
|
+
lambda:
|
|
474
|
+
(os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in
|
|
475
|
+
("1", "true")),
|
|
476
|
+
|
|
477
|
+
# If set, forces FP8 Marlin to be used for FP8 quantization regardless
|
|
478
|
+
# of the hardware support for FP8 compute.
|
|
479
|
+
"VLLM_TEST_FORCE_FP8_MARLIN":
|
|
480
|
+
lambda:
|
|
481
|
+
(os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in
|
|
482
|
+
("1", "true")),
|
|
483
|
+
"VLLM_TEST_FORCE_LOAD_FORMAT":
|
|
484
|
+
lambda: os.getenv("VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"),
|
|
485
|
+
|
|
486
|
+
# Time in ms for the zmq client to wait for a response from the backend
|
|
487
|
+
# server for simple data operations
|
|
488
|
+
"VLLM_RPC_TIMEOUT":
|
|
489
|
+
lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),
|
|
490
|
+
|
|
491
|
+
# a list of plugin names to load, separated by commas.
|
|
492
|
+
# if this is not set, it means all plugins will be loaded
|
|
493
|
+
# if this is set to an empty string, no plugins will be loaded
|
|
494
|
+
"VLLM_PLUGINS":
|
|
495
|
+
lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ[
|
|
496
|
+
"VLLM_PLUGINS"].split(","),
|
|
497
|
+
|
|
498
|
+
# Enables torch profiler if set. Path to the directory where torch profiler
|
|
499
|
+
# traces are saved. Note that it must be an absolute path.
|
|
500
|
+
"VLLM_TORCH_PROFILER_DIR":
|
|
501
|
+
lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os
|
|
502
|
+
.path.expanduser(os.getenv("VLLM_TORCH_PROFILER_DIR", "."))),
|
|
503
|
+
|
|
504
|
+
# If set, vLLM will use Triton implementations of AWQ.
|
|
505
|
+
"VLLM_USE_TRITON_AWQ":
|
|
506
|
+
lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),
|
|
507
|
+
|
|
508
|
+
# If set, allow loading or unloading lora adapters in runtime,
|
|
509
|
+
"VLLM_ALLOW_RUNTIME_LORA_UPDATING":
|
|
510
|
+
lambda:
|
|
511
|
+
(os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in
|
|
512
|
+
("1", "true")),
|
|
513
|
+
|
|
514
|
+
# By default, vLLM will check the peer-to-peer capability itself,
|
|
515
|
+
# in case of broken drivers. See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa
|
|
516
|
+
# If this env var is set to 1, vLLM will skip the peer-to-peer check,
|
|
517
|
+
# and trust the driver's peer-to-peer capability report.
|
|
518
|
+
"VLLM_SKIP_P2P_CHECK":
|
|
519
|
+
lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "0") == "1",
|
|
520
|
+
|
|
521
|
+
# List of quantization kernels that should be disabled, used for testing
|
|
522
|
+
# and performance comparisons. Currently only affects MPLinearKernel
|
|
523
|
+
# selection
|
|
524
|
+
# (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
|
|
525
|
+
"VLLM_DISABLED_KERNELS":
|
|
526
|
+
lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ[
|
|
527
|
+
"VLLM_DISABLED_KERNELS"].split(","),
|
|
528
|
+
|
|
529
|
+
# If set, use the V1 code path.
|
|
530
|
+
"VLLM_USE_V1":
|
|
531
|
+
lambda: bool(int(os.getenv("VLLM_USE_V1", "1"))),
|
|
532
|
+
|
|
533
|
+
# Disable aiter ops unless specifically enabled.
|
|
534
|
+
# Acts as a parent switch to enable the rest of the other operations.
|
|
535
|
+
"VLLM_ROCM_USE_AITER":
|
|
536
|
+
lambda: (os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in
|
|
537
|
+
("true", "1")),
|
|
538
|
+
|
|
539
|
+
# Whether to use aiter paged attention.
|
|
540
|
+
# By default is disabled.
|
|
541
|
+
"VLLM_ROCM_USE_AITER_PAGED_ATTN":
|
|
542
|
+
lambda: (os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in
|
|
543
|
+
("true", "1")),
|
|
544
|
+
|
|
545
|
+
# use aiter linear op if aiter ops are enabled
|
|
546
|
+
# The following list of related ops
|
|
547
|
+
# - scaled_mm (per-tensor / rowwise)
|
|
548
|
+
"VLLM_ROCM_USE_AITER_LINEAR":
|
|
549
|
+
lambda: (os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in
|
|
550
|
+
("true", "1")),
|
|
551
|
+
|
|
552
|
+
# Whether to use aiter moe ops.
|
|
553
|
+
# By default is enabled.
|
|
554
|
+
"VLLM_ROCM_USE_AITER_MOE":
|
|
555
|
+
lambda: (os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in
|
|
556
|
+
("true", "1")),
|
|
557
|
+
|
|
558
|
+
# use aiter rms norm op if aiter ops are enabled.
|
|
559
|
+
"VLLM_ROCM_USE_AITER_RMSNORM":
|
|
560
|
+
lambda: (os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in
|
|
561
|
+
("true", "1")),
|
|
562
|
+
|
|
563
|
+
# Whether to use aiter mla ops.
|
|
564
|
+
# By default is enabled.
|
|
565
|
+
"VLLM_ROCM_USE_AITER_MLA":
|
|
566
|
+
lambda: (os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in
|
|
567
|
+
("true", "1")),
|
|
568
|
+
# use rocm skinny gemms
|
|
569
|
+
"VLLM_ROCM_USE_SKINNY_GEMM":
|
|
570
|
+
lambda: (os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in
|
|
571
|
+
("true", "1")),
|
|
572
|
+
|
|
573
|
+
# Pad the fp8 weights to 256 bytes for ROCm
|
|
574
|
+
"VLLM_ROCM_FP8_PADDING":
|
|
575
|
+
lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),
|
|
576
|
+
|
|
577
|
+
# Pad the weights for the moe kernel
|
|
578
|
+
"VLLM_ROCM_MOE_PADDING":
|
|
579
|
+
lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))),
|
|
580
|
+
|
|
581
|
+
# custom paged attention kernel for MI3* cards
|
|
582
|
+
"VLLM_ROCM_CUSTOM_PAGED_ATTN":
|
|
583
|
+
lambda: (os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in
|
|
584
|
+
("true", "1")),
|
|
585
|
+
|
|
586
|
+
# Divisor for dynamic query scale factor calculation for FP8 KV Cache
|
|
587
|
+
"Q_SCALE_CONSTANT":
|
|
588
|
+
lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
|
|
589
|
+
# Divisor for dynamic key scale factor calculation for FP8 KV Cache
|
|
590
|
+
"K_SCALE_CONSTANT":
|
|
591
|
+
lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
|
|
592
|
+
# Divisor for dynamic value scale factor calculation for FP8 KV Cache
|
|
593
|
+
"V_SCALE_CONSTANT":
|
|
594
|
+
lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),
|
|
595
|
+
|
|
596
|
+
# If set, enable multiprocessing in LLM for the V1 code path.
|
|
597
|
+
"VLLM_ENABLE_V1_MULTIPROCESSING":
|
|
598
|
+
lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))),
|
|
599
|
+
"VLLM_LOG_BATCHSIZE_INTERVAL":
|
|
600
|
+
lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")),
|
|
601
|
+
"VLLM_DISABLE_COMPILE_CACHE":
|
|
602
|
+
lambda: bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))),
|
|
603
|
+
|
|
604
|
+
# If set, vllm will run in development mode, which will enable
|
|
605
|
+
# some additional endpoints for developing and debugging,
|
|
606
|
+
# e.g. `/reset_prefix_cache`
|
|
607
|
+
"VLLM_SERVER_DEV_MODE":
|
|
608
|
+
lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))),
|
|
609
|
+
|
|
610
|
+
# Controls the maximum number of requests to handle in a
|
|
611
|
+
# single asyncio task when processing per-token outputs in the
|
|
612
|
+
# V1 AsyncLLM interface. It is applicable when handling a high
|
|
613
|
+
# concurrency of streaming requests.
|
|
614
|
+
# Setting this too high can result in a higher variance of
|
|
615
|
+
# inter-message latencies. Setting it too low can negatively impact
|
|
616
|
+
# TTFT and overall throughput.
|
|
617
|
+
"VLLM_V1_OUTPUT_PROC_CHUNK_SIZE":
|
|
618
|
+
lambda: int(os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")),
|
|
619
|
+
|
|
620
|
+
# If set, vLLM will disable the MLA attention optimizations.
|
|
621
|
+
"VLLM_MLA_DISABLE":
|
|
622
|
+
lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))),
|
|
623
|
+
|
|
624
|
+
# If set, vLLM will use the Triton implementation of moe_align_block_size,
|
|
625
|
+
# i.e. moe_align_block_size_triton in fused_moe.py.
|
|
626
|
+
"VLLM_ENABLE_MOE_ALIGN_BLOCK_SIZE_TRITON":
|
|
627
|
+
lambda: bool(int(os.getenv("VLLM_ENABLE_MOE_ALIGN_BLOCK_SIZE_TRITON", "0"))
|
|
628
|
+
),
|
|
629
|
+
|
|
630
|
+
# Number of GPUs per worker in Ray, if it is set to be a fraction,
|
|
631
|
+
# it allows ray to schedule multiple actors on a single GPU,
|
|
632
|
+
# so that users can colocate other actors on the same GPUs as vLLM.
|
|
633
|
+
"VLLM_RAY_PER_WORKER_GPUS":
|
|
634
|
+
lambda: float(os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")),
|
|
635
|
+
|
|
636
|
+
# Bundle indices for Ray, if it is set, it can control precisely
|
|
637
|
+
# which indices are used for the Ray bundle, for every worker.
|
|
638
|
+
# Format: comma-separated list of integers, e.g. "0,1,2,3"
|
|
639
|
+
"VLLM_RAY_BUNDLE_INDICES":
|
|
640
|
+
lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""),
|
|
641
|
+
|
|
642
|
+
# In some system, find_loaded_library() may not work. So we allow users to
|
|
643
|
+
# specify the path through environment variable VLLM_CUDART_SO_PATH.
|
|
644
|
+
"VLLM_CUDART_SO_PATH":
|
|
645
|
+
lambda: os.getenv("VLLM_CUDART_SO_PATH", None),
|
|
646
|
+
|
|
647
|
+
# Contiguous cache fetching to avoid using costly gather operation on
|
|
648
|
+
# Gaudi3. This is only applicable to HPU contiguous cache. If set to true,
|
|
649
|
+
# contiguous cache fetch will be used.
|
|
650
|
+
"VLLM_USE_HPU_CONTIGUOUS_CACHE_FETCH":
|
|
651
|
+
lambda: os.environ.get("VLLM_CONTIGUOUS_PA", "true").lower() in
|
|
652
|
+
("1", "true"),
|
|
653
|
+
|
|
654
|
+
# Use delayed sampling for HPU to reduce host cpu overhead
|
|
655
|
+
# between each step.
|
|
656
|
+
"VLLM_HPU_USE_DELAYED_SAMPLING":
|
|
657
|
+
lambda: os.environ.get("VLLM_DELAYED_SAMPLING", "false").lower() in
|
|
658
|
+
("1", "true"),
|
|
659
|
+
|
|
660
|
+
# Rank of the process in the data parallel setting
|
|
661
|
+
"VLLM_DP_RANK":
|
|
662
|
+
lambda: int(os.getenv("VLLM_DP_RANK", "0")),
|
|
663
|
+
|
|
664
|
+
# Rank of the process in the data parallel setting.
|
|
665
|
+
# Defaults to VLLM_DP_RANK when not set.
|
|
666
|
+
"VLLM_DP_RANK_LOCAL":
|
|
667
|
+
lambda: int(
|
|
668
|
+
os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)),
|
|
669
|
+
|
|
670
|
+
# World size of the data parallel setting
|
|
671
|
+
"VLLM_DP_SIZE":
|
|
672
|
+
lambda: int(os.getenv("VLLM_DP_SIZE", "1")),
|
|
673
|
+
|
|
674
|
+
# IP address of the master node in the data parallel setting
|
|
675
|
+
"VLLM_DP_MASTER_IP":
|
|
676
|
+
lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"),
|
|
677
|
+
|
|
678
|
+
# Port of the master node in the data parallel setting
|
|
679
|
+
"VLLM_DP_MASTER_PORT":
|
|
680
|
+
lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")),
|
|
681
|
+
|
|
682
|
+
# Whether to use S3 path for model loading in CI via RunAI Streamer
|
|
683
|
+
"VLLM_CI_USE_S3":
|
|
684
|
+
lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1",
|
|
685
|
+
|
|
686
|
+
# Use model_redirect to redirect the model name to a local folder.
|
|
687
|
+
# `model_redirect` can be a json file mapping the model between
|
|
688
|
+
# repo_id and local folder:
|
|
689
|
+
# {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"}
|
|
690
|
+
# or a space separated values table file:
|
|
691
|
+
# meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B
|
|
692
|
+
"VLLM_MODEL_REDIRECT_PATH":
|
|
693
|
+
lambda: os.environ.get("VLLM_MODEL_REDIRECT_PATH", None),
|
|
694
|
+
|
|
695
|
+
# Whether to use atomicAdd reduce in gptq/awq marlin kernel.
|
|
696
|
+
"VLLM_MARLIN_USE_ATOMIC_ADD":
|
|
697
|
+
lambda: os.environ.get("VLLM_MARLIN_USE_ATOMIC_ADD", "0") == "1",
|
|
698
|
+
|
|
699
|
+
# Whether to turn on the outlines cache for V0
|
|
700
|
+
# This cache is unbounded and on disk, so it's not safe to use in
|
|
701
|
+
# an environment with potentially malicious users.
|
|
702
|
+
"VLLM_V0_USE_OUTLINES_CACHE":
|
|
703
|
+
lambda: os.environ.get("VLLM_V0_USE_OUTLINES_CACHE", "0") == "1",
|
|
704
|
+
|
|
705
|
+
# Gap between padding buckets for the forward pass. So we have
|
|
706
|
+
# 8, we will run forward pass with [16, 24, 32, ...].
|
|
707
|
+
"VLLM_TPU_BUCKET_PADDING_GAP":
|
|
708
|
+
lambda: int(os.environ["VLLM_TPU_BUCKET_PADDING_GAP"])
|
|
709
|
+
if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ else 0,
|
|
710
|
+
|
|
711
|
+
# Allow use of DeepGemm kernels for fused moe ops.
|
|
712
|
+
"VLLM_USE_DEEP_GEMM":
|
|
713
|
+
lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "0"))),
|
|
714
|
+
|
|
715
|
+
# Control the cache sized used by the xgrammar compiler. The default
|
|
716
|
+
# of 512 MB should be enough for roughly 1000 JSON schemas.
|
|
717
|
+
# It can be changed with this variable if needed for some reason.
|
|
718
|
+
"VLLM_XGRAMMAR_CACHE_MB":
|
|
719
|
+
lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")),
|
|
720
|
+
|
|
721
|
+
# Control the threshold for msgspec to use 'zero copy' for
|
|
722
|
+
# serialization/deserialization of tensors. Tensors below
|
|
723
|
+
# this limit will be encoded into the msgpack buffer, and
|
|
724
|
+
# tensors above will instead be sent via a separate message.
|
|
725
|
+
# While the sending side still actually copies the tensor
|
|
726
|
+
# in all cases, on the receiving side, tensors above this
|
|
727
|
+
# limit will actually be zero-copy decoded.
|
|
728
|
+
"VLLM_MSGPACK_ZERO_COPY_THRESHOLD":
|
|
729
|
+
lambda: int(os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")),
|
|
730
|
+
}
|
|
731
|
+
|
|
732
|
+
# end-env-vars-definition
|
|
733
|
+
|
|
734
|
+
|
|
735
|
+
def __getattr__(name: str):
|
|
736
|
+
# lazy evaluation of environment variables
|
|
737
|
+
if name in environment_variables:
|
|
738
|
+
return environment_variables[name]()
|
|
739
|
+
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
|
740
|
+
|
|
741
|
+
|
|
742
|
+
def __dir__():
|
|
743
|
+
return list(environment_variables.keys())
|
|
744
|
+
|
|
745
|
+
|
|
746
|
+
def is_set(name: str):
|
|
747
|
+
"""Check if an environment variable is explicitly set."""
|
|
748
|
+
if name in environment_variables:
|
|
749
|
+
return name in os.environ
|
|
750
|
+
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
|
751
|
+
|
|
752
|
+
|
|
753
|
+
def set_vllm_use_v1(use_v1: bool):
|
|
754
|
+
if is_set("VLLM_USE_V1"):
|
|
755
|
+
raise ValueError(
|
|
756
|
+
"Should not call set_vllm_use_v1() if VLLM_USE_V1 is set "
|
|
757
|
+
"explicitly by the user. Please raise this as a Github "
|
|
758
|
+
"Issue and explicitly set VLLM_USE_V1=0 or 1.")
|
|
759
|
+
os.environ["VLLM_USE_V1"] = "1" if use_v1 else "0"
|
|
760
|
+
|
|
761
|
+
|
|
762
|
+
def compute_hash() -> str:
|
|
763
|
+
"""
|
|
764
|
+
WARNING: Whenever a new key is added to this environment
|
|
765
|
+
variables, ensure that it is included in the factors list if
|
|
766
|
+
it affects the computation graph. For example, different values
|
|
767
|
+
of VLLM_PP_LAYER_PARTITION will generate different computation
|
|
768
|
+
graphs, so it is included in the factors list. The env vars that
|
|
769
|
+
affect the choice of different kernels or attention backends should
|
|
770
|
+
also be included in the factors list.
|
|
771
|
+
"""
|
|
772
|
+
factors: list[Any] = []
|
|
773
|
+
|
|
774
|
+
# summarize environment variables
|
|
775
|
+
def factorize(name: str):
|
|
776
|
+
if __getattr__(name):
|
|
777
|
+
factors.append(__getattr__(name))
|
|
778
|
+
else:
|
|
779
|
+
factors.append("None")
|
|
780
|
+
|
|
781
|
+
# The values of envs may affects the computation graph.
|
|
782
|
+
# TODO(DefTruth): hash all environment variables?
|
|
783
|
+
# for key in environment_variables:
|
|
784
|
+
# factorize(key)
|
|
785
|
+
environment_variables_to_hash = [
|
|
786
|
+
"VLLM_PP_LAYER_PARTITION",
|
|
787
|
+
"VLLM_MLA_DISABLE",
|
|
788
|
+
"VLLM_USE_TRITON_FLASH_ATTN",
|
|
789
|
+
"VLLM_USE_TRITON_AWQ",
|
|
790
|
+
"VLLM_DP_RANK",
|
|
791
|
+
"VLLM_DP_SIZE",
|
|
792
|
+
]
|
|
793
|
+
for key in environment_variables_to_hash:
|
|
794
|
+
if key in environment_variables:
|
|
795
|
+
factorize(key)
|
|
796
|
+
|
|
797
|
+
hash_str = hashlib.md5(str(factors).encode(),
|
|
798
|
+
usedforsecurity=False).hexdigest()
|
|
799
|
+
|
|
800
|
+
return hash_str
|