vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1598 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ # Adapted from
4
+ # https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/models/llama/modeling_llama.py
5
+ # Copyright 2023 The vLLM team.
6
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
7
+ #
8
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
9
+ # and OPT implementations in this library. It has been modified from its
10
+ # original forms to accommodate minor architectural differences compared
11
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
12
+ #
13
+ # Licensed under the Apache License, Version 2.0 (the "License");
14
+ # you may not use this file except in compliance with the License.
15
+ # You may obtain a copy of the License at
16
+ #
17
+ # http://www.apache.org/licenses/LICENSE-2.0
18
+ #
19
+ # Unless required by applicable law or agreed to in writing, software
20
+ # distributed under the License is distributed on an "AS IS" BASIS,
21
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
+ # See the License for the specific language governing permissions and
23
+ # limitations under the License.
24
+ """Rotary Positional Embeddings."""
25
+ import math
26
+ from typing import Any, Dict, List, Optional, Tuple, Union
27
+
28
+ import torch
29
+ import torch.nn as nn
30
+ from transformers import PretrainedConfig
31
+
32
+ from vllm.model_executor.custom_op import CustomOp
33
+ from vllm.platforms import current_platform
34
+
35
+
36
+ def _rotate_neox(x: torch.Tensor) -> torch.Tensor:
37
+ x1 = x[..., :x.shape[-1] // 2]
38
+ x2 = x[..., x.shape[-1] // 2:]
39
+ return torch.cat((-x2, x1), dim=-1)
40
+
41
+
42
+ def _rotate_gptj(x: torch.Tensor) -> torch.Tensor:
43
+ x1 = x[..., ::2]
44
+ x2 = x[..., 1::2]
45
+ x = torch.stack((-x2, x1), dim=-1)
46
+ return x.flatten(-2)
47
+
48
+
49
+ def _apply_rotary_emb_torch(
50
+ x: torch.Tensor,
51
+ cos: torch.Tensor,
52
+ sin: torch.Tensor,
53
+ is_neox_style: bool,
54
+ ) -> torch.Tensor:
55
+ cos = cos.unsqueeze(-2).to(x.dtype)
56
+ sin = sin.unsqueeze(-2).to(x.dtype)
57
+ if is_neox_style:
58
+ x1, x2 = torch.chunk(x, 2, dim=-1)
59
+ else:
60
+ x1 = x[..., ::2]
61
+ x2 = x[..., 1::2]
62
+ o1 = x1 * cos - x2 * sin
63
+ o2 = x2 * cos + x1 * sin
64
+ if is_neox_style:
65
+ return torch.cat((o1, o2), dim=-1)
66
+ else:
67
+ return torch.stack((o1, o2), dim=-1).flatten(-2)
68
+
69
+
70
+ def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
71
+ is_neox_style: bool) -> torch.Tensor:
72
+ """
73
+ Args:
74
+ x: [num_tokens, num_heads, head_size]
75
+ cos: [num_tokens, head_size // 2]
76
+ sin: [num_tokens, head_size // 2]
77
+ is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
78
+ positional embeddings.
79
+ """
80
+ if current_platform.is_cuda_alike():
81
+ from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
82
+ return apply_rotary_emb(x.unsqueeze(0), cos, sin,
83
+ not is_neox_style).squeeze(0)
84
+ else:
85
+ return _apply_rotary_emb_torch(x, cos, sin, is_neox_style)
86
+
87
+
88
+ @CustomOp.register("rotary_embedding")
89
+ class RotaryEmbedding(CustomOp):
90
+ """Original rotary positional embedding."""
91
+
92
+ def __init__(
93
+ self,
94
+ head_size: int,
95
+ rotary_dim: int,
96
+ max_position_embeddings: int,
97
+ base: int,
98
+ is_neox_style: bool,
99
+ dtype: torch.dtype,
100
+ ) -> None:
101
+ super().__init__()
102
+ self.head_size = head_size
103
+ self.rotary_dim = rotary_dim
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.base = base
106
+ self.is_neox_style = is_neox_style
107
+ self.dtype = dtype
108
+
109
+ cache = self._compute_cos_sin_cache()
110
+ cache = cache.to(dtype)
111
+ self.cos_sin_cache: torch.Tensor
112
+ self.register_buffer("cos_sin_cache", cache, persistent=False)
113
+
114
+ def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
115
+ """Compute the inverse frequency."""
116
+ # NOTE(woosuk): To exactly match the HF implementation, we need to
117
+ # use CPU to compute the cache and then move it to GPU. However, we
118
+ # create the cache on GPU for faster initialization. This may cause
119
+ # a slight numerical difference between the HF implementation and ours.
120
+ inv_freq = 1.0 / (base**(torch.arange(
121
+ 0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
122
+ return inv_freq
123
+
124
+ def _compute_cos_sin_cache(self) -> torch.Tensor:
125
+ """Compute the cos and sin cache."""
126
+ inv_freq = self._compute_inv_freq(self.base)
127
+ t = torch.arange(self.max_position_embeddings, dtype=torch.float)
128
+
129
+ freqs = torch.einsum("i,j -> ij", t, inv_freq)
130
+ cos = freqs.cos()
131
+ sin = freqs.sin()
132
+ cache = torch.cat((cos, sin), dim=-1)
133
+ return cache
134
+
135
+ def forward_native(
136
+ self,
137
+ positions: torch.Tensor,
138
+ query: torch.Tensor,
139
+ key: torch.Tensor,
140
+ offsets: Optional[torch.Tensor] = None,
141
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
142
+ """A PyTorch-native implementation of forward()."""
143
+ if offsets is not None:
144
+ positions = positions + offsets
145
+ positions = positions.flatten()
146
+ num_tokens = positions.shape[0]
147
+ cos_sin = self.cos_sin_cache.index_select(0, positions)
148
+ cos, sin = cos_sin.chunk(2, dim=-1)
149
+
150
+ query_shape = query.shape
151
+ query = query.view(num_tokens, -1, self.head_size)
152
+ query_rot = query[..., :self.rotary_dim]
153
+ query_pass = query[..., self.rotary_dim:]
154
+ query_rot = _apply_rotary_emb_torch(query_rot, cos, sin,
155
+ self.is_neox_style)
156
+ query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
157
+
158
+ key_shape = key.shape
159
+ key = key.view(num_tokens, -1, self.head_size)
160
+ key_rot = key[..., :self.rotary_dim]
161
+ key_pass = key[..., self.rotary_dim:]
162
+ key_rot = _apply_rotary_emb_torch(key_rot, cos, sin,
163
+ self.is_neox_style)
164
+ key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
165
+ return query, key
166
+
167
+ def forward_cuda(
168
+ self,
169
+ positions: torch.Tensor,
170
+ query: torch.Tensor,
171
+ key: torch.Tensor,
172
+ offsets: Optional[torch.Tensor] = None,
173
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
174
+ from vllm import _custom_ops as ops
175
+
176
+ # __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
177
+ # is expensive, so avoid calling it if possible
178
+ if self.cos_sin_cache.device != query.device or \
179
+ self.cos_sin_cache.dtype != query.dtype:
180
+ self.cos_sin_cache = self.cos_sin_cache.to(query.device,
181
+ dtype=query.dtype)
182
+
183
+ # ops.rotary_embedding()/batched_rotary_embedding()
184
+ # are in-place operations that update the query and key tensors.
185
+ if offsets is not None:
186
+ ops.batched_rotary_embedding(positions, query, key, self.head_size,
187
+ self.cos_sin_cache,
188
+ self.is_neox_style, self.rotary_dim,
189
+ offsets)
190
+ else:
191
+ ops.rotary_embedding(positions, query, key, self.head_size,
192
+ self.cos_sin_cache, self.is_neox_style)
193
+ return query, key
194
+
195
+ def forward_xpu(
196
+ self,
197
+ positions: torch.Tensor,
198
+ query: torch.Tensor,
199
+ key: torch.Tensor,
200
+ offsets: Optional[torch.Tensor] = None,
201
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
202
+ from vllm._ipex_ops import ipex_ops as ops
203
+
204
+ self.cos_sin_cache = self.cos_sin_cache.to(positions.device,
205
+ dtype=query.dtype)
206
+ # ops.rotary_embedding()/batched_rotary_embedding()
207
+ # are in-place operations that update the query and key tensors.
208
+ if offsets is not None:
209
+ ops.batched_rotary_embedding(positions, query, key, self.head_size,
210
+ self.cos_sin_cache,
211
+ self.is_neox_style, self.rotary_dim,
212
+ offsets)
213
+ else:
214
+ ops.rotary_embedding(positions, query, key, self.head_size,
215
+ self.cos_sin_cache, self.is_neox_style)
216
+ return query, key
217
+
218
+ def forward_hpu(
219
+ self,
220
+ positions: torch.Tensor,
221
+ query: torch.Tensor,
222
+ key: torch.Tensor,
223
+ offsets: Optional[torch.Tensor] = None,
224
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
225
+ from habana_frameworks.torch.hpex.kernels import (
226
+ RotaryPosEmbeddingMode, apply_rotary_pos_emb)
227
+ if offsets is not None:
228
+ offsets = offsets.view(positions.shape[0], -1)
229
+ positions = positions + offsets
230
+ positions = positions.flatten()
231
+ num_tokens = positions.shape[0]
232
+ cos_sin = self.cos_sin_cache.index_select(0, positions).view(
233
+ num_tokens, 1, -1)
234
+ cos, sin = cos_sin.chunk(2, dim=-1)
235
+ # HPU RoPE kernel requires hidden dimension for cos and sin to be equal
236
+ # to query hidden dimension, so the original tensors need to be
237
+ # expanded
238
+ # GPT-NeoX kernel requires position_ids = None, offset, mode = BLOCKWISE
239
+ # and expansion of cos/sin tensors via concatenation
240
+ # GPT-J kernel requires position_ids = None, offset = 0, mode = PAIRWISE
241
+ # and expansion of cos/sin tensors via repeat_interleave
242
+ rope_mode: RotaryPosEmbeddingMode
243
+ if self.is_neox_style:
244
+ rope_mode = RotaryPosEmbeddingMode.BLOCKWISE
245
+ cos = torch.cat((cos, cos), dim=-1)
246
+ sin = torch.cat((sin, sin), dim=-1)
247
+ else:
248
+ rope_mode = RotaryPosEmbeddingMode.PAIRWISE
249
+ sin = torch.repeat_interleave(sin,
250
+ 2,
251
+ dim=-1,
252
+ output_size=cos_sin.shape[-1])
253
+ cos = torch.repeat_interleave(cos,
254
+ 2,
255
+ dim=-1,
256
+ output_size=cos_sin.shape[-1])
257
+
258
+ query_shape = query.shape
259
+ query = query.view(num_tokens, -1, self.head_size)
260
+ query_rot = query[..., :self.rotary_dim]
261
+ query_pass = query[..., self.rotary_dim:]
262
+ query_rot = apply_rotary_pos_emb(query_rot, cos, sin, None, 0,
263
+ rope_mode)
264
+ query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
265
+
266
+ key_shape = key.shape
267
+ key = key.view(num_tokens, -1, self.head_size)
268
+ key_rot = key[..., :self.rotary_dim]
269
+ key_pass = key[..., self.rotary_dim:]
270
+ key_rot = apply_rotary_pos_emb(key_rot, cos, sin, None, 0, rope_mode)
271
+ key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
272
+ return query, key
273
+
274
+ def forward_neuron(
275
+ self,
276
+ positions: torch.Tensor,
277
+ query: torch.Tensor,
278
+ key: torch.Tensor,
279
+ offsets: Optional[torch.Tensor] = None,
280
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
281
+
282
+ def _apply_rotary_emb_neuron(
283
+ x: torch.Tensor,
284
+ cos: torch.Tensor,
285
+ sin: torch.Tensor,
286
+ is_neox_style: bool,
287
+ ) -> torch.Tensor:
288
+ cos = cos.unsqueeze(-2).to(x.dtype)
289
+ sin = sin.unsqueeze(-2).to(x.dtype)
290
+ if is_neox_style:
291
+ x1, x2 = torch.chunk(x, 2, dim=-1)
292
+ else:
293
+ # x1 = x[..., ::2]
294
+
295
+ # x2 = x[..., 1::2]
296
+ d = x.shape[-1] // 2
297
+ x_reshaped = x.view(-1, x.shape[-1])
298
+ x1 = x_reshaped[:, ::2].view(*x.shape[:-1], d)
299
+ x2 = x_reshaped[:, 1::2].view(*x.shape[:-1], d)
300
+ o1 = x1 * cos - x2 * sin
301
+ o2 = x2 * cos + x1 * sin
302
+ if is_neox_style:
303
+ return torch.cat((o1, o2), dim=-1)
304
+ else:
305
+ return torch.stack((o1, o2), dim=-1).flatten(-2)
306
+
307
+ if offsets is not None:
308
+ positions = positions + offsets
309
+
310
+ self.cos_sin_cache = self.cos_sin_cache.to(query.device,
311
+ dtype=query.dtype)
312
+
313
+ positions = positions.flatten()
314
+ num_tokens = positions.shape[0]
315
+ cos_sin = self.cos_sin_cache.index_select(0, positions)
316
+ cos, sin = cos_sin.chunk(2, dim=-1)
317
+
318
+ query_shape = query.shape
319
+ query = query.view(num_tokens, -1, self.head_size)
320
+ key_shape = key.shape
321
+ key = key.view(num_tokens, -1, self.head_size)
322
+
323
+ if self.rotary_dim == self.head_size:
324
+ query = _apply_rotary_emb(query, cos, sin, self.is_neox_style)
325
+ query = query.reshape(query_shape)
326
+ key = _apply_rotary_emb(key, cos, sin, self.is_neox_style)
327
+ key = key.reshape(key_shape)
328
+ else:
329
+ head_size = query.shape[-1]
330
+ query_reshaped = query.view(-1, head_size)
331
+ query_pass = query_reshaped[:, self.rotary_dim:].view(
332
+ *query.shape[:-1], head_size - self.rotary_dim)
333
+ query_rot = query_reshaped[:, :self.rotary_dim].view(
334
+ *query.shape[:-1], self.rotary_dim)
335
+ query_rot = _apply_rotary_emb_neuron(query_rot, cos, sin,
336
+ self.is_neox_style)
337
+ query = torch.cat((query_rot, query_pass),
338
+ dim=-1).reshape(query_shape)
339
+
340
+ key_reshaped = key.view(-1, head_size)
341
+ key_pass = key_reshaped[:, self.rotary_dim:].view(
342
+ *key.shape[:-1], head_size - self.rotary_dim)
343
+ key_rot = key_reshaped[:, :self.rotary_dim].view(
344
+ *key.shape[:-1], self.rotary_dim)
345
+ key_rot = _apply_rotary_emb_neuron(key_rot, cos, sin,
346
+ self.is_neox_style)
347
+ key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
348
+ return query, key
349
+
350
+ def extra_repr(self) -> str:
351
+ s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}"
352
+ s += f", max_position_embeddings={self.max_position_embeddings}"
353
+ s += f", base={self.base}, is_neox_style={self.is_neox_style}"
354
+ return s
355
+
356
+
357
+ class LinearScalingRotaryEmbedding(RotaryEmbedding):
358
+ """RotaryEmbedding extended with linear scaling.
359
+
360
+ It supports multiple scaling factors. Since multiple LoRA adapters may have
361
+ different scaling factors, we need multiple cos/sin caches. In this way,
362
+ instead of running rotary embedding kernel per lora, we can run multiple
363
+ lora in a batched way.
364
+
365
+ In addition to that, we also keep the cos/sin cache for the scaling factor
366
+ of 1 (default) at all times.
367
+
368
+ Exemplary for two scaling factors x=1, y and z with embeddings
369
+ [[x11, x12, ... x1m], ..., [xn1, xn2, ..., xnm]] and
370
+ [[y11, y12, ... y1o], ..., [yn1, yn2, ..., yno]], and
371
+ [[z11, z12, ... z1p], ..., [zn1, zn2, ..., znp]],
372
+
373
+ we construct the cos/sin cache as follows:
374
+ [[x11, x12, ... x1m, y11, y12, ... y1o, z11, z12, ... z1p],
375
+ ...
376
+ [xn1, xn2, ... xnm, yn1, yn2, ... yno, zn1, zn2, ... znp]]
377
+
378
+ We then use offsets to index into the cos/sin cache for
379
+ the respective scaling factors.
380
+
381
+ The offset to cache can be accessed via `scaling_factor_to_offset` API.
382
+
383
+ Credits to the Reddit user /u/kaiokendev
384
+ """
385
+
386
+ def __init__(
387
+ self,
388
+ head_size: int,
389
+ rotary_dim: int,
390
+ max_position_embeddings: int,
391
+ base: int,
392
+ is_neox_style: bool,
393
+ scaling_factors: Union[List[float], float],
394
+ dtype: torch.dtype,
395
+ ) -> None:
396
+ if isinstance(scaling_factors, float):
397
+ scaling_factors = [scaling_factors]
398
+ self.scaling_factors: List[float] = scaling_factors # noqa
399
+ super().__init__(head_size, rotary_dim, max_position_embeddings, base,
400
+ is_neox_style, dtype)
401
+ # Lazy initialized.
402
+ self._scaling_factor_to_offset: Dict[float, int]
403
+
404
+ def _compute_cos_sin_cache(self) -> torch.Tensor:
405
+ inv_freq = self._compute_inv_freq(self.base)
406
+ cache_list: List[torch.Tensor] = []
407
+ # offsets to the next cache in a tensor.
408
+ # Each offset corresponds to the same index in scaling_factors.
409
+ offsets: List[int] = []
410
+ for scaling_factor in self.scaling_factors:
411
+ # NOTE(woosuk): self.max_position_embeddings is the original
412
+ # maximum length before applying the rope scaling.
413
+ # Thus, the maximum length after applying the rope scaling is
414
+ # self.max_position_embeddings * self.scaling_factor.
415
+ max_len = self.max_position_embeddings * scaling_factor
416
+ t = torch.arange(max_len, dtype=torch.float)
417
+ t = t / scaling_factor
418
+
419
+ freqs = torch.einsum("i,j -> ij", t, inv_freq)
420
+ cos = freqs.cos()
421
+ sin = freqs.sin()
422
+ cache = torch.cat((cos, sin), dim=-1)
423
+ if not cache_list:
424
+ offset = 0
425
+ else:
426
+ last_offset = offsets[-1]
427
+ next_max_len = cache_list[-1].shape[0]
428
+ offset = last_offset + next_max_len
429
+ offsets.append(offset)
430
+ cache_list.append(cache)
431
+ self._scaling_factor_to_offset = {
432
+ float(scaling_factor): offsets[i]
433
+ for i, scaling_factor in enumerate(self.scaling_factors)
434
+ }
435
+ assert len(self.scaling_factors) == len(offsets)
436
+ return torch.cat(cache_list, dim=0)
437
+
438
+ @property
439
+ def scaling_factor_to_offset(self) -> Dict[float, int]:
440
+ return self._scaling_factor_to_offset
441
+
442
+
443
+ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
444
+ """RotaryEmbedding extended with Dynamic NTK scaling.
445
+
446
+ Credits to the Reddit users /u/bloc97 and /u/emozilla
447
+ """
448
+
449
+ def __init__(
450
+ self,
451
+ head_size: int,
452
+ rotary_dim: int,
453
+ max_position_embeddings: int,
454
+ base: int,
455
+ is_neox_style: bool,
456
+ scaling_factor: float,
457
+ dtype: torch.dtype,
458
+ ) -> None:
459
+ self.scaling_factor = scaling_factor
460
+ super().__init__(head_size, rotary_dim, max_position_embeddings, base,
461
+ is_neox_style, dtype)
462
+
463
+ def _compute_cos_sin_cache(self) -> torch.Tensor:
464
+ # NOTE(woosuk): self.max_position_embeddings is the original
465
+ # maximum length before applying the rope scaling.
466
+ # Thus, the maximum length after applying the rope scaling is
467
+ # self.max_position_embeddings * self.scaling_factor.
468
+ max_len = self.max_position_embeddings * self.scaling_factor
469
+ base = self.base * (
470
+ (self.scaling_factor * max_len / self.max_position_embeddings) -
471
+ (self.scaling_factor - 1))**(self.rotary_dim /
472
+ (self.rotary_dim - 2))
473
+ inv_freq = self._compute_inv_freq(base)
474
+ t = torch.arange(max_len, dtype=torch.float)
475
+
476
+ freqs = torch.einsum("i,j -> ij", t, inv_freq)
477
+ cos = freqs.cos()
478
+ sin = freqs.sin()
479
+ cache = torch.cat((cos, sin), dim=-1)
480
+ return cache
481
+
482
+
483
+ # Inverse dim formula to find dim based on number of rotations
484
+ def _yarn_find_correction_dim(num_rotations: int,
485
+ dim: int,
486
+ base: float = 10000,
487
+ max_position_embeddings: int = 2048) -> float:
488
+ return (dim * math.log(max_position_embeddings /
489
+ (num_rotations * 2 * math.pi))) / (2 *
490
+ math.log(base))
491
+
492
+
493
+ # Find dim range bounds based on rotations
494
+ def _yarn_find_correction_range(
495
+ low_rot: int,
496
+ high_rot: int,
497
+ dim: int,
498
+ base: float = 10000,
499
+ max_position_embeddings: int = 2048) -> Tuple[int, int]:
500
+ low = math.floor(
501
+ _yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
502
+ high = math.ceil(
503
+ _yarn_find_correction_dim(high_rot, dim, base,
504
+ max_position_embeddings))
505
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
506
+
507
+
508
+ def _yarn_linear_ramp_mask(low: float, high: float, dim: int,
509
+ dtype: torch.dtype) -> torch.Tensor:
510
+ if low == high:
511
+ high += 0.001 # Prevent singularity
512
+
513
+ linear_func = (torch.arange(dim, dtype=dtype) - low) / (high - low)
514
+ ramp_func = torch.clamp(linear_func, 0, 1)
515
+ return ramp_func
516
+
517
+
518
+ def _yarn_get_mscale(scale: float = 1) -> float:
519
+ if scale <= 1:
520
+ return 1.0
521
+ return 0.1 * math.log(scale) + 1.0
522
+
523
+
524
+ class YaRNScalingRotaryEmbedding(RotaryEmbedding):
525
+ """RotaryEmbedding extended with YaRN method.
526
+
527
+ Credits to Peng et al. github.com/jquesnelle/yarn
528
+ """
529
+
530
+ def __init__(
531
+ self,
532
+ head_size: int,
533
+ rotary_dim: int,
534
+ max_position_embeddings: int,
535
+ base: int,
536
+ is_neox_style: bool,
537
+ scaling_factor: float,
538
+ dtype: torch.dtype,
539
+ *,
540
+ extrapolation_factor: float = 1,
541
+ attn_factor: float = 1,
542
+ beta_fast: int = 32,
543
+ beta_slow: int = 1,
544
+ ) -> None:
545
+ self.scaling_factor = scaling_factor
546
+ self.extrapolation_factor = extrapolation_factor
547
+ self.attn_factor = attn_factor
548
+ self.beta_fast = beta_fast
549
+ self.beta_slow = beta_slow
550
+ # Get n-d magnitude scaling corrected for interpolation
551
+ self.mscale = float(
552
+ _yarn_get_mscale(self.scaling_factor) * attn_factor)
553
+ super().__init__(head_size, rotary_dim, max_position_embeddings, base,
554
+ is_neox_style, dtype)
555
+
556
+ def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
557
+ pos_freqs = self.base**(
558
+ torch.arange(0, self.rotary_dim, 2, dtype=torch.float) /
559
+ self.rotary_dim)
560
+ inv_freq_extrapolation = 1.0 / pos_freqs
561
+ inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
562
+
563
+ low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
564
+ self.rotary_dim, self.base,
565
+ self.max_position_embeddings)
566
+ # Get n-d rotational scaling corrected for extrapolation
567
+ inv_freq_mask = (1 - _yarn_linear_ramp_mask(
568
+ low, high, self.rotary_dim // 2,
569
+ dtype=torch.float)) * self.extrapolation_factor
570
+ inv_freq = inv_freq_interpolation * (
571
+ 1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
572
+ return inv_freq
573
+
574
+ def _compute_cos_sin_cache(self) -> torch.Tensor:
575
+ inv_freq = self._compute_inv_freq(self.scaling_factor)
576
+ t = torch.arange(self.max_position_embeddings * self.scaling_factor,
577
+ dtype=torch.float32)
578
+ freqs = torch.einsum("i,j -> ij", t, inv_freq)
579
+ cos = (freqs.cos() * self.mscale)
580
+ sin = (freqs.sin() * self.mscale)
581
+ cache = torch.cat((cos, sin), dim=-1)
582
+ return cache
583
+
584
+
585
+ class Phi3LongRoPEScaledRotaryEmbedding(nn.Module):
586
+ """Phi3 family of models scaled rotary embedding.
587
+
588
+ Based on the original RotaryEmbedding implementation.
589
+ """
590
+
591
+ def __init__(
592
+ self,
593
+ head_size: int,
594
+ rotary_dim: int,
595
+ max_position_embeddings: int,
596
+ original_max_position_embeddings: int,
597
+ base: int,
598
+ is_neox_style: bool,
599
+ dtype: torch.dtype,
600
+ short_factor: List[float],
601
+ long_factor: List[float],
602
+ short_mscale: Optional[float] = None,
603
+ long_mscale: Optional[float] = None,
604
+ ):
605
+ super().__init__()
606
+
607
+ if is_neox_style is False:
608
+ raise ValueError(
609
+ "`Phi3LongRoPEScaledRotaryEmbedding` only supports neox_style."
610
+ )
611
+
612
+ self.rotary_dim = rotary_dim
613
+ self.head_size = head_size
614
+ self.max_position_embeddings = max_position_embeddings
615
+ self.original_max_position_embeddings = original_max_position_embeddings
616
+ self.base = base
617
+ self.short_factor = short_factor
618
+ self.long_factor = long_factor
619
+
620
+ scale = self.max_position_embeddings / \
621
+ self.original_max_position_embeddings
622
+ if scale <= 1.0:
623
+ scaling_factor = 1.0
624
+ else:
625
+ scaling_factor = math.sqrt(
626
+ 1 + math.log(scale) /
627
+ math.log(self.original_max_position_embeddings))
628
+ if short_mscale is None:
629
+ short_mscale = scaling_factor
630
+ if long_mscale is None:
631
+ long_mscale = scaling_factor
632
+
633
+ self.short_mscale = short_mscale
634
+ self.long_mscale = long_mscale
635
+
636
+ short_cache = self._compute_cos_sin_cache(
637
+ original_max_position_embeddings, short_factor, short_mscale)
638
+ short_cache = short_cache.to(dtype)
639
+
640
+ long_cache = self._compute_cos_sin_cache(max_position_embeddings,
641
+ long_factor, long_mscale)
642
+ long_cache = long_cache.to(dtype)
643
+
644
+ long_short_cache = torch.cat([short_cache, long_cache], dim=0)
645
+ self.register_buffer("long_short_cos_sin_cache",
646
+ long_short_cache,
647
+ persistent=False)
648
+
649
+ def _compute_inv_freq(self, rescale_factors: List[float]) -> torch.Tensor:
650
+ rescale_factors = torch.tensor(rescale_factors, dtype=torch.float32)
651
+ inv_freq = 1.0 / (rescale_factors * (self.base**(torch.arange(
652
+ 0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim)))
653
+ return inv_freq
654
+
655
+ def _compute_cos_sin_cache(
656
+ self,
657
+ max_position_embeddings: int,
658
+ rescale_factors: List[float],
659
+ mscale: float,
660
+ ) -> torch.Tensor:
661
+ inv_freq = self._compute_inv_freq(rescale_factors)
662
+ t = torch.arange(max_position_embeddings, dtype=torch.float)
663
+ freqs = torch.einsum("i,j -> ij", t, inv_freq)
664
+ cos = freqs.cos() * mscale
665
+ sin = freqs.sin() * mscale
666
+ cache = torch.cat((cos, sin), dim=-1)
667
+ return cache
668
+
669
+ def forward(
670
+ self,
671
+ positions: torch.Tensor,
672
+ query: torch.Tensor,
673
+ key: torch.Tensor,
674
+ offsets: Optional[torch.Tensor] = None,
675
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
676
+ query = query.view(*query.shape[:-1], -1, self.head_size)
677
+ key = key.view(*key.shape[:-1], -1, self.head_size)
678
+
679
+ k = self.original_max_position_embeddings
680
+ long_prompt_offset = (torch.any(positions > k).float() *
681
+ torch.full_like(positions, k)).long()
682
+ idx = (torch.add(positions, long_prompt_offset)
683
+ if long_prompt_offset is not None else positions)
684
+ idx = torch.add(idx, offsets) if offsets is not None else idx
685
+ cos_sin = torch.index_select(self.long_short_cos_sin_cache, 0, idx)
686
+
687
+ cos, sin = cos_sin.chunk(2, dim=-1)
688
+ cos = cos.repeat(1, 2).unsqueeze(-2)
689
+ sin = sin.repeat(1, 2).unsqueeze(-2)
690
+
691
+ query_rot = query[..., :self.rotary_dim]
692
+ query_pass = query[..., self.rotary_dim:]
693
+ query_rot = query_rot * cos + _rotate_neox(query_rot) * sin
694
+ query = torch.cat((query_rot, query_pass), dim=-1)
695
+
696
+ key_rot = key[..., :self.rotary_dim]
697
+ key_pass = key[..., self.rotary_dim:]
698
+ key_rot = key_rot * cos + _rotate_neox(key_rot) * sin
699
+ key = torch.cat((key_rot, key_pass), dim=-1)
700
+
701
+ return query.flatten(-2), key.flatten(-2)
702
+
703
+
704
+ def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
705
+ if scale <= 1:
706
+ return 1.0
707
+ return 0.1 * mscale * math.log(scale) + 1.0
708
+
709
+
710
+ class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
711
+ """RotaryEmbedding extended with YaRN method.
712
+
713
+ Credits to Peng et al. github.com/jquesnelle/yarn
714
+ """
715
+
716
+ def __init__(
717
+ self,
718
+ head_size: int,
719
+ rotary_dim: int,
720
+ max_position_embeddings: int,
721
+ base: int,
722
+ is_neox_style: bool,
723
+ scaling_factor: float,
724
+ dtype: torch.dtype,
725
+ *,
726
+ extrapolation_factor: float = 1,
727
+ attn_factor: float = 1,
728
+ beta_fast: int = 32,
729
+ beta_slow: int = 1,
730
+ mscale: float = 1,
731
+ mscale_all_dim: float = 0,
732
+ ) -> None:
733
+ self.scaling_factor = scaling_factor
734
+ self.extrapolation_factor = extrapolation_factor
735
+ self.attn_factor = attn_factor
736
+ self.beta_fast = beta_fast
737
+ self.beta_slow = beta_slow
738
+ # Get n-d magnitude scaling corrected for interpolation.
739
+ self.mscale = float(
740
+ yarn_get_mscale(self.scaling_factor, float(mscale)) /
741
+ yarn_get_mscale(self.scaling_factor, float(mscale_all_dim)) *
742
+ attn_factor)
743
+ super().__init__(head_size, rotary_dim, max_position_embeddings, base,
744
+ is_neox_style, dtype)
745
+
746
+ def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
747
+ pos_freqs = self.base**(
748
+ torch.arange(0,
749
+ self.rotary_dim,
750
+ 2,
751
+ dtype=torch.float,
752
+ device=current_platform.device_type) /
753
+ self.rotary_dim)
754
+ inv_freq_extrapolation = 1.0 / pos_freqs
755
+ inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
756
+
757
+ low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
758
+ self.rotary_dim, self.base,
759
+ self.max_position_embeddings)
760
+ # Get n-d rotational scaling corrected for extrapolation
761
+ inv_freq_mask = (1 - _yarn_linear_ramp_mask(
762
+ low, high, self.rotary_dim // 2,
763
+ dtype=torch.float)) * self.extrapolation_factor
764
+ inv_freq = inv_freq_interpolation * (
765
+ 1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
766
+ return inv_freq
767
+
768
+ def _compute_cos_sin_cache(self) -> torch.Tensor:
769
+ inv_freq = self._compute_inv_freq(self.scaling_factor)
770
+ t = torch.arange(self.max_position_embeddings * self.scaling_factor,
771
+ device=current_platform.device_type,
772
+ dtype=torch.float32)
773
+ freqs = torch.einsum("i,j -> ij", t, inv_freq)
774
+ cos = (freqs.cos() * self.mscale)
775
+ sin = (freqs.sin() * self.mscale)
776
+ cache = torch.cat((cos, sin), dim=-1)
777
+ return cache
778
+
779
+ def forward(
780
+ self,
781
+ positions: torch.Tensor,
782
+ query: torch.Tensor,
783
+ key: torch.Tensor,
784
+ offsets: Optional[torch.Tensor] = None,
785
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
786
+ """PyTorch-native implementation equivalent to forward()."""
787
+ query_rot = query[..., :self.rotary_dim]
788
+ key_rot = key[..., :self.rotary_dim]
789
+ if self.rotary_dim < self.head_size:
790
+ query_pass = query[..., self.rotary_dim:]
791
+ key_pass = key[..., self.rotary_dim:]
792
+
793
+ self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(
794
+ positions.device)
795
+ cos_sin = self.cos_sin_cache[torch.add(positions, offsets)
796
+ if offsets is not None else positions]
797
+ cos, sin = cos_sin.chunk(2, dim=-1)
798
+ if self.is_neox_style:
799
+ # NOTE(woosuk): Here we assume that the positions tensor has the
800
+ # shape [batch_size, seq_len].
801
+ cos = cos.repeat(1, 1, 2).unsqueeze(-2)
802
+ sin = sin.repeat(1, 1, 2).unsqueeze(-2)
803
+ else:
804
+ cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2)
805
+ sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2)
806
+
807
+ rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj
808
+ query_rot = query_rot * cos + rotate_fn(query_rot) * sin
809
+ key_rot = key_rot * cos + rotate_fn(key_rot) * sin
810
+
811
+ if self.rotary_dim < self.head_size:
812
+ query = torch.cat((query_rot, query_pass), dim=-1)
813
+ key = torch.cat((key_rot, key_pass), dim=-1)
814
+ else:
815
+ query = query_rot
816
+ key = key_rot
817
+ return query, key
818
+
819
+
820
+ class Llama3RotaryEmbedding(RotaryEmbedding):
821
+
822
+ def __init__(
823
+ self,
824
+ head_size: int,
825
+ rotary_dim: int,
826
+ max_position_embeddings: int,
827
+ base: int,
828
+ is_neox_style: bool,
829
+ dtype: torch.dtype,
830
+ scaling_factor: float,
831
+ low_freq_factor: float,
832
+ high_freq_factor: float,
833
+ orig_max_position: int,
834
+ ) -> None:
835
+ self.scaling_factor = scaling_factor
836
+ self.low_freq_factor = low_freq_factor
837
+ self.high_freq_factor = high_freq_factor
838
+ self.orig_max_position = orig_max_position
839
+ super().__init__(head_size, rotary_dim, max_position_embeddings, base,
840
+ is_neox_style, dtype)
841
+
842
+ def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
843
+ inv_freqs = super()._compute_inv_freq(base)
844
+ low_freq_wavelen = self.orig_max_position / self.low_freq_factor
845
+ high_freq_wavelen = self.orig_max_position / self.high_freq_factor
846
+
847
+ wave_len = 2 * math.pi / inv_freqs
848
+ if self.low_freq_factor != self.high_freq_factor:
849
+ smooth = (self.orig_max_position / wave_len - self.low_freq_factor
850
+ ) / (self.high_freq_factor - self.low_freq_factor)
851
+ else:
852
+ smooth = 0
853
+ new_freqs = torch.where(
854
+ wave_len < high_freq_wavelen,
855
+ inv_freqs,
856
+ torch.where(
857
+ wave_len > low_freq_wavelen,
858
+ inv_freqs / self.scaling_factor,
859
+ (1 - smooth) * inv_freqs / self.scaling_factor +
860
+ smooth * inv_freqs,
861
+ ),
862
+ )
863
+ return new_freqs
864
+
865
+
866
+ class Llama4VisionRotaryEmbedding(RotaryEmbedding):
867
+
868
+ def __init__(
869
+ self,
870
+ head_size: int,
871
+ rotary_dim: int,
872
+ max_position_embeddings: int,
873
+ base: int,
874
+ is_neox_style: bool,
875
+ dtype: torch.dtype,
876
+ ):
877
+ super().__init__(head_size, rotary_dim, max_position_embeddings, base,
878
+ is_neox_style, dtype)
879
+
880
+ def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
881
+ inv_freqs = super()._compute_inv_freq(base)
882
+ inv_freqs = inv_freqs[:(self.rotary_dim // 2)]
883
+ return inv_freqs
884
+
885
+ def _compute_cos_sin_cache(self) -> torch.Tensor:
886
+ inv_freq = self._compute_inv_freq(self.base)
887
+
888
+ # self.max_position_embeddings here is number of image patches
889
+ # i.e. (image_size // patch_size) ** 2
890
+ num_patches = self.max_position_embeddings
891
+ img_idx = torch.arange(num_patches,
892
+ dtype=torch.int32) \
893
+ .reshape(num_patches, 1)
894
+ img_idx = torch.cat([img_idx, img_idx[:1]], dim=0)
895
+ img_idx[-1, -1] = -2 # set to ID_CLS_TOKEN
896
+ num_patches_single_dim = int(math.sqrt(num_patches))
897
+ frequencies_x = img_idx % num_patches_single_dim
898
+ frequencies_y = img_idx // num_patches_single_dim
899
+ freqs_x = ((frequencies_x + 1)[..., None] *
900
+ inv_freq[None, None, :]).repeat_interleave(2, dim=-1)
901
+ freqs_y = ((frequencies_y + 1)[..., None] *
902
+ inv_freq[None, None, :]).repeat_interleave(2, dim=-1)
903
+ freqs = torch.cat([freqs_x, freqs_y],
904
+ dim=-1).float().contiguous()[..., ::2]
905
+ freqs = freqs.masked_fill(img_idx.reshape(-1, 1, 1) < 0, 0)
906
+ cache = torch.view_as_complex(
907
+ torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1))
908
+ return cache
909
+
910
+ def forward(
911
+ self,
912
+ query: torch.Tensor,
913
+ key: torch.Tensor,
914
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
915
+ self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(query.device)
916
+ query_ = torch.view_as_complex(query.float().reshape(
917
+ *query.shape[:-1], -1, 2))
918
+ key_ = torch.view_as_complex(key.float().reshape(
919
+ *key.shape[:-1], -1, 2))
920
+ broadcast_shape = [
921
+ d if i == 1 or i == (query_.ndim - 1) else 1
922
+ for i, d in enumerate(query_.shape)
923
+ ]
924
+ freqs_ci = self.cos_sin_cache.view(*broadcast_shape)
925
+ query_out = torch.view_as_real(query_ * freqs_ci).flatten(3)
926
+ key_out = torch.view_as_real(key_ * freqs_ci).flatten(3)
927
+ return query_out.type_as(query), key_out.type_as(key)
928
+
929
+
930
+ class MRotaryEmbedding(RotaryEmbedding):
931
+ """Rotary Embedding with Multimodal Sections."""
932
+
933
+ def __init__(
934
+ self,
935
+ head_size: int,
936
+ rotary_dim: int,
937
+ max_position_embeddings: int,
938
+ base: int,
939
+ is_neox_style: bool,
940
+ dtype: torch.dtype,
941
+ mrope_section: Optional[List[int]] = None,
942
+ ) -> None:
943
+ # In Qwen2.5-VL, the maximum index value is related to the duration of
944
+ # the input video. We enlarge max_position_embeddings to 4 times to get
945
+ # a larger the cos and sin cache.
946
+ self.cache_max_position_num = max_position_embeddings * 4
947
+ super().__init__(head_size, rotary_dim, self.cache_max_position_num,
948
+ base, is_neox_style, dtype)
949
+
950
+ self.mrope_section = mrope_section
951
+ if self.mrope_section:
952
+ assert sum(self.mrope_section) == rotary_dim // 2
953
+
954
+ def forward(
955
+ self,
956
+ positions: torch.Tensor,
957
+ query: torch.Tensor,
958
+ key: torch.Tensor,
959
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
960
+ """PyTorch-native implementation equivalent to forward().
961
+
962
+ Args:
963
+ positions:
964
+ [num_tokens,] (text only) or
965
+ [3, num_tokens] (T/H/W positions with multimodal inputs)
966
+ query: [num_tokens, num_heads * head_size]
967
+ key: [num_tokens, num_kv_heads * head_size]
968
+ """
969
+ assert positions.ndim == 1 or positions.ndim == 2
970
+
971
+ num_tokens = positions.shape[-1]
972
+ cos_sin = self.cos_sin_cache[positions]
973
+ cos, sin = cos_sin.chunk(2, dim=-1)
974
+ if positions.ndim == 2:
975
+ assert self.mrope_section
976
+
977
+ cos = torch.cat([
978
+ m[i]
979
+ for i, m in enumerate(cos.split(self.mrope_section, dim=-1))
980
+ ],
981
+ dim=-1)
982
+ sin = torch.cat([
983
+ m[i]
984
+ for i, m in enumerate(sin.split(self.mrope_section, dim=-1))
985
+ ],
986
+ dim=-1)
987
+
988
+ query_shape = query.shape
989
+ query = query.view(num_tokens, -1, self.head_size)
990
+ query_rot = query[..., :self.rotary_dim]
991
+ query_pass = query[..., self.rotary_dim:]
992
+ query_rot = _apply_rotary_emb(query_rot, cos, sin, self.is_neox_style)
993
+ query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
994
+
995
+ key_shape = key.shape
996
+ key = key.view(num_tokens, -1, self.head_size)
997
+ key_rot = key[..., :self.rotary_dim]
998
+ key_pass = key[..., self.rotary_dim:]
999
+ key_rot = _apply_rotary_emb(key_rot, cos, sin, self.is_neox_style)
1000
+ key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
1001
+ return query, key
1002
+
1003
+ @classmethod
1004
+ def get_input_positions(
1005
+ cls,
1006
+ input_tokens: List[int],
1007
+ hf_config: PretrainedConfig,
1008
+ image_grid_thw: Optional[Union[List[List[int]], torch.Tensor]],
1009
+ video_grid_thw: Optional[Union[List[List[int]], torch.Tensor]],
1010
+ second_per_grid_ts: Optional[List[float]],
1011
+ context_len: int = 0,
1012
+ seq_len: Optional[int] = None,
1013
+ audio_feature_lengths: Optional[torch.Tensor] = None,
1014
+ use_audio_in_video: bool = False,
1015
+ ) -> Tuple[List[List[int]], int]:
1016
+ """Get mrope input positions and delta value."""
1017
+
1018
+ image_grid_thw = [] if image_grid_thw is None else image_grid_thw
1019
+ video_grid_thw = [] if video_grid_thw is None else video_grid_thw
1020
+ second_per_grid_ts = [] if second_per_grid_ts is None else \
1021
+ second_per_grid_ts
1022
+
1023
+ llm_positions, mrope_position_delta = \
1024
+ cls.get_input_positions_tensor(
1025
+ input_tokens=input_tokens,
1026
+ hf_config=hf_config,
1027
+ image_grid_thw=image_grid_thw,
1028
+ video_grid_thw=video_grid_thw,
1029
+ second_per_grid_ts=second_per_grid_ts,
1030
+ context_len=context_len,
1031
+ seq_len=seq_len,
1032
+ audio_feature_lengths=audio_feature_lengths,
1033
+ use_audio_in_video=use_audio_in_video,
1034
+ )
1035
+
1036
+ return llm_positions.tolist(), mrope_position_delta
1037
+
1038
+ @classmethod
1039
+ def get_input_positions_tensor(
1040
+ cls,
1041
+ input_tokens: List[int],
1042
+ hf_config: PretrainedConfig,
1043
+ image_grid_thw: Union[List[List[int]], torch.Tensor],
1044
+ video_grid_thw: Union[List[List[int]], torch.Tensor],
1045
+ second_per_grid_ts: List[float],
1046
+ context_len: int = 0,
1047
+ seq_len: Optional[int] = None,
1048
+ audio_feature_lengths: Optional[torch.Tensor] = None,
1049
+ use_audio_in_video: bool = False,
1050
+ ) -> Tuple[torch.Tensor, int]:
1051
+ from vllm.transformers_utils.config import thinker_uses_mrope
1052
+ if thinker_uses_mrope(hf_config):
1053
+ return cls._omni_get_input_positions_tensor(
1054
+ input_tokens=input_tokens,
1055
+ hf_config=hf_config,
1056
+ image_grid_thw=image_grid_thw,
1057
+ video_grid_thw=video_grid_thw,
1058
+ second_per_grid_ts=second_per_grid_ts,
1059
+ context_len=context_len,
1060
+ seq_len=seq_len,
1061
+ audio_feature_lengths=audio_feature_lengths,
1062
+ use_audio_in_video=use_audio_in_video,
1063
+ )
1064
+ else:
1065
+ return cls._vl_get_input_positions_tensor(
1066
+ input_tokens=input_tokens,
1067
+ hf_config=hf_config,
1068
+ image_grid_thw=image_grid_thw,
1069
+ video_grid_thw=video_grid_thw,
1070
+ second_per_grid_ts=second_per_grid_ts,
1071
+ context_len=context_len,
1072
+ seq_len=seq_len,
1073
+ )
1074
+
1075
+ @classmethod
1076
+ def _vl_get_input_positions_tensor(
1077
+ cls,
1078
+ input_tokens: List[int],
1079
+ hf_config: PretrainedConfig,
1080
+ image_grid_thw: Union[List[List[int]], torch.Tensor],
1081
+ video_grid_thw: Union[List[List[int]], torch.Tensor],
1082
+ second_per_grid_ts: List[float],
1083
+ context_len: int = 0,
1084
+ seq_len: Optional[int] = None,
1085
+ ) -> Tuple[torch.Tensor, int]:
1086
+ """Get mrope input positions and delta value."""
1087
+
1088
+ image_token_id = hf_config.image_token_id
1089
+ video_token_id = hf_config.video_token_id
1090
+ vision_start_token_id = hf_config.vision_start_token_id
1091
+ spatial_merge_size = hf_config.vision_config.spatial_merge_size
1092
+ tokens_per_second = getattr(hf_config.vision_config,
1093
+ "tokens_per_second", 1.0)
1094
+
1095
+ input_tokens_tensor = torch.tensor(input_tokens)
1096
+ vision_start_indices = torch.argwhere(
1097
+ input_tokens_tensor == vision_start_token_id).squeeze(1)
1098
+ vision_tokens = input_tokens_tensor[vision_start_indices + 1]
1099
+ image_nums = (vision_tokens == image_token_id).sum()
1100
+ video_nums = (vision_tokens == video_token_id).sum()
1101
+ llm_pos_ids_list: list = []
1102
+
1103
+ st = 0
1104
+ remain_images, remain_videos = image_nums, video_nums
1105
+
1106
+ image_index, video_index = 0, 0
1107
+ for _ in range(image_nums + video_nums):
1108
+ video_second_per_grid_t = 0.0
1109
+ if image_token_id in input_tokens and remain_images > 0:
1110
+ ed_image = input_tokens.index(image_token_id, st)
1111
+ else:
1112
+ ed_image = len(input_tokens) + 1
1113
+ if video_token_id in input_tokens and remain_videos > 0:
1114
+ ed_video = input_tokens.index(video_token_id, st)
1115
+ else:
1116
+ ed_video = len(input_tokens) + 1
1117
+ if ed_image < ed_video:
1118
+ t, h, w = (
1119
+ image_grid_thw[image_index][0],
1120
+ image_grid_thw[image_index][1],
1121
+ image_grid_thw[image_index][2],
1122
+ )
1123
+ image_index += 1
1124
+ remain_images -= 1
1125
+ ed = ed_image
1126
+ else:
1127
+ t, h, w = (
1128
+ video_grid_thw[video_index][0],
1129
+ video_grid_thw[video_index][1],
1130
+ video_grid_thw[video_index][2],
1131
+ )
1132
+ video_second_per_grid_t = 1.0
1133
+ if second_per_grid_ts:
1134
+ video_second_per_grid_t = second_per_grid_ts[video_index]
1135
+ video_index += 1
1136
+ remain_videos -= 1
1137
+ ed = ed_video
1138
+
1139
+ llm_grid_t, llm_grid_h, llm_grid_w = \
1140
+ t, h // spatial_merge_size, w // spatial_merge_size
1141
+ text_len = ed - st
1142
+
1143
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(
1144
+ llm_pos_ids_list) > 0 else 0
1145
+ llm_pos_ids_list.append(
1146
+ torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
1147
+
1148
+ t_index = (torch.arange(llm_grid_t).view(-1, 1).expand(
1149
+ -1, llm_grid_h * llm_grid_w) * video_second_per_grid_t *
1150
+ tokens_per_second).long().flatten()
1151
+
1152
+ h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
1153
+ llm_grid_t, -1, llm_grid_w).flatten()
1154
+ w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
1155
+ llm_grid_t, llm_grid_h, -1).flatten()
1156
+ llm_pos_ids_list.append(
1157
+ torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
1158
+ st = ed + llm_grid_t * llm_grid_h * llm_grid_w
1159
+
1160
+ if st < len(input_tokens):
1161
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(
1162
+ llm_pos_ids_list) > 0 else 0
1163
+ text_len = len(input_tokens) - st
1164
+ llm_pos_ids_list.append(
1165
+ torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
1166
+
1167
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
1168
+ mrope_position_delta = (llm_positions.max() + 1 -
1169
+ len(input_tokens)).item()
1170
+ llm_positions = llm_positions[:, context_len:seq_len]
1171
+
1172
+ return llm_positions, mrope_position_delta
1173
+
1174
+ @classmethod
1175
+ def _omni_get_input_positions_tensor(
1176
+ cls,
1177
+ input_tokens: List[int],
1178
+ hf_config: PretrainedConfig,
1179
+ image_grid_thw: Union[List[List[int]], torch.Tensor],
1180
+ video_grid_thw: Union[List[List[int]], torch.Tensor],
1181
+ second_per_grid_ts: Optional[List[float]] = None,
1182
+ context_len: int = 0,
1183
+ seq_len: Optional[int] = None,
1184
+ audio_feature_lengths: Optional[torch.Tensor] = None,
1185
+ use_audio_in_video: bool = False,
1186
+ ) -> Tuple[torch.Tensor, int]:
1187
+ """Get mrope input positions and delta value (Qwen2.5-Omni version).
1188
+
1189
+ Differences from MRotaryEmbedding:
1190
+ 1. Add audio support (and related `audio_feature_lengths`).
1191
+ 2. Add `use_audio_in_video` option to read audio from video inputs.
1192
+ In this case, audio and vision position ids will be split into
1193
+ chunks and interleaved.
1194
+
1195
+ Example:
1196
+
1197
+ (V_i are vision position ids, A_i are audio position ids)
1198
+
1199
+ |V_1 ... V_n|A_1 ... A_n|V_n+1 ... V_2n|A_n+1 ... A_2n|...
1200
+ |vision chunk 1|audio chunk 1|vision chunk 2|audio chunk 2 |...
1201
+ """
1202
+
1203
+ # TODO(fyabc): refactor and share more code with
1204
+ # _vl_get_input_positions_tensor.
1205
+
1206
+ thinker_config = hf_config.thinker_config
1207
+ audio_token_id = thinker_config.audio_token_index
1208
+ image_token_id = thinker_config.image_token_index
1209
+ video_token_id = thinker_config.video_token_index
1210
+ audio_start_token_id = thinker_config.audio_start_token_id
1211
+ audio_end_token_id = thinker_config.audio_end_token_id
1212
+ vision_start_token_id = thinker_config.vision_start_token_id
1213
+ vision_end_token_id = thinker_config.vision_end_token_id
1214
+ seconds_per_chunk = thinker_config.seconds_per_chunk
1215
+ spatial_merge_size = thinker_config.vision_config.spatial_merge_size
1216
+ tokens_per_second = getattr(thinker_config.vision_config,
1217
+ "tokens_per_second", 25)
1218
+
1219
+ if isinstance(image_grid_thw, list):
1220
+ image_grid_thw = torch.tensor(image_grid_thw)
1221
+ if isinstance(video_grid_thw, list):
1222
+ video_grid_thw = torch.tensor(video_grid_thw)
1223
+
1224
+ src_item = input_tokens
1225
+ audio_seqlens = audio_feature_lengths
1226
+ if not second_per_grid_ts:
1227
+ second_per_grid_ts = [1] * video_grid_thw.shape[0]
1228
+ audio_idx = 0
1229
+ video_idx = 0
1230
+ image_idx = 0
1231
+ new_src_item: list[int] = []
1232
+ llm_pos_ids_list: list[torch.Tensor] = []
1233
+
1234
+ idx = 0
1235
+ while idx < len(src_item):
1236
+ new_src_item_len = len(new_src_item)
1237
+ start_idx = llm_pos_ids_list[-1].max() + 1 if len(
1238
+ llm_pos_ids_list) > 0 else 0
1239
+ if src_item[idx] not in [
1240
+ audio_token_id, video_token_id, image_token_id
1241
+ ]:
1242
+ if use_audio_in_video and idx > 0:
1243
+ if src_item[idx] == vision_end_token_id and \
1244
+ src_item[idx - 1] == audio_end_token_id:
1245
+ # processing the <|audio_eos|> before <|vision_eos|>
1246
+ start_idx -= 1
1247
+ elif src_item[idx] == audio_start_token_id and \
1248
+ src_item[idx - 1] == vision_start_token_id:
1249
+ # processing the <|audio_bos|> after <|vision_eos|>
1250
+ start_idx -= 1
1251
+ new_src_item.append(src_item[idx])
1252
+ llm_pos_ids = torch.tensor([start_idx],
1253
+ dtype=torch.long).expand(3, -1)
1254
+ llm_pos_ids_list.append(llm_pos_ids)
1255
+ elif src_item[idx] == audio_token_id:
1256
+ assert audio_seqlens is not None
1257
+ audio_seqlen = audio_seqlens[audio_idx]
1258
+ place_num = (((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1)
1259
+ new_src_item.extend([audio_token_id] * place_num)
1260
+ llm_pos_ids = torch.arange(place_num).expand(3, -1) + start_idx
1261
+ llm_pos_ids_list.append(llm_pos_ids)
1262
+ audio_idx += 1
1263
+ elif src_item[idx] == image_token_id:
1264
+ grid_t = image_grid_thw[image_idx][0]
1265
+ grid_hs = image_grid_thw[:, 1]
1266
+ grid_ws = image_grid_thw[:, 2]
1267
+ t_index = (torch.arange(grid_t) * 1 * tokens_per_second).long()
1268
+ llm_pos_ids = cls._get_llm_pos_ids_for_vision(
1269
+ start_idx, image_idx, spatial_merge_size, t_index, grid_hs,
1270
+ grid_ws)
1271
+ llm_pos_ids_list.append(llm_pos_ids)
1272
+ vision_seqlen = image_grid_thw[image_idx].prod() // (
1273
+ spatial_merge_size**2)
1274
+ new_src_item.extend([image_token_id] * vision_seqlen)
1275
+ image_idx += 1
1276
+ elif src_item[idx] == video_token_id and not use_audio_in_video:
1277
+ grid_t = video_grid_thw[video_idx][0]
1278
+ grid_hs = video_grid_thw[:, 1]
1279
+ grid_ws = video_grid_thw[:, 2]
1280
+ t_index = (torch.arange(grid_t) *
1281
+ second_per_grid_ts[video_idx] *
1282
+ tokens_per_second).long()
1283
+ llm_pos_ids = cls._get_llm_pos_ids_for_vision(
1284
+ start_idx, video_idx, spatial_merge_size, t_index, grid_hs,
1285
+ grid_ws)
1286
+ llm_pos_ids_list.append(llm_pos_ids)
1287
+ vision_seqlen = video_grid_thw[video_idx].prod() // (
1288
+ spatial_merge_size**2)
1289
+ new_src_item.extend([video_token_id] * vision_seqlen)
1290
+ video_idx += 1
1291
+ else:
1292
+ # read audio from video
1293
+ assert audio_seqlens is not None
1294
+ audio_seqlen = audio_seqlens[audio_idx]
1295
+ vision_seqlen = video_grid_thw[video_idx].prod() // (
1296
+ spatial_merge_size**2)
1297
+ grid_t = video_grid_thw[video_idx][0]
1298
+ grid_h = video_grid_thw[video_idx][1]
1299
+ grid_w = video_grid_thw[video_idx][2]
1300
+ grid_hs = video_grid_thw[:, 1]
1301
+ grid_ws = video_grid_thw[:, 2]
1302
+ t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
1303
+ t_index = (torch.arange(grid_t) *
1304
+ second_per_grid_ts[video_idx] *
1305
+ tokens_per_second).long()
1306
+ t_index_split_chunk = cls._split_list_into_ranges(
1307
+ t_index, t_ntoken_per_chunk)
1308
+ place_num = (((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1) + 2
1309
+ pure_audio_len = place_num - 2
1310
+ added_audio_len = 0
1311
+ audio_llm_pos_ids_list: List[torch.Tensor] = []
1312
+ for t_chunk in t_index_split_chunk:
1313
+ vision_ntoken_per_chunk = len(
1314
+ t_chunk) * grid_h * grid_w // (spatial_merge_size**2)
1315
+ new_src_item.extend([video_token_id] *
1316
+ vision_ntoken_per_chunk)
1317
+ vision_llm_pos_ids_list = cls._get_llm_pos_ids_for_vision(
1318
+ start_idx, video_idx, spatial_merge_size, t_chunk,
1319
+ grid_hs, grid_ws).split(1, dim=1)
1320
+ llm_pos_ids_list.extend(vision_llm_pos_ids_list)
1321
+ new_src_item.extend(
1322
+ min(t_ntoken_per_chunk, pure_audio_len -
1323
+ added_audio_len) * [audio_token_id])
1324
+ audio_start_idx = start_idx if len(
1325
+ audio_llm_pos_ids_list
1326
+ ) == 0 else audio_llm_pos_ids_list[-1][0].item() + 1
1327
+ if min(t_ntoken_per_chunk,
1328
+ pure_audio_len - added_audio_len) > 0:
1329
+ audio_llm_pos_ids_list = (torch.arange(
1330
+ min(t_ntoken_per_chunk, pure_audio_len -
1331
+ added_audio_len)).expand(3, -1) +
1332
+ audio_start_idx).split(1,
1333
+ dim=1)
1334
+ else:
1335
+ audio_llm_pos_ids_list = []
1336
+ added_audio_len += min(t_ntoken_per_chunk,
1337
+ pure_audio_len - added_audio_len)
1338
+ llm_pos_ids_list.extend(audio_llm_pos_ids_list)
1339
+ if added_audio_len < pure_audio_len:
1340
+ new_src_item.extend(
1341
+ (pure_audio_len - added_audio_len) * [audio_token_id])
1342
+ audio_llm_pos_ids_list = (
1343
+ torch.arange(pure_audio_len - added_audio_len).expand(
1344
+ 3, -1) + llm_pos_ids_list[-1].max() + 1).split(
1345
+ 1, dim=1)
1346
+ llm_pos_ids_list.extend(audio_llm_pos_ids_list)
1347
+ audio_idx += 1
1348
+ video_idx += 1
1349
+ # move to the next token
1350
+ idx += len(new_src_item) - new_src_item_len
1351
+
1352
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1)
1353
+ mrope_position_delta = torch.cat(llm_pos_ids_list,
1354
+ dim=1).max() + 1 - len(src_item)
1355
+ llm_positions = llm_positions[:, context_len:seq_len]
1356
+
1357
+ return llm_positions, mrope_position_delta
1358
+
1359
+ @staticmethod
1360
+ def _get_llm_pos_ids_for_vision(
1361
+ start_idx: int,
1362
+ vision_idx: int,
1363
+ spatial_merge_size: int,
1364
+ t_index: List[int],
1365
+ grid_hs: torch.Tensor,
1366
+ grid_ws: torch.Tensor,
1367
+ ) -> torch.Tensor:
1368
+ llm_pos_ids_list = []
1369
+ llm_grid_h = grid_hs[vision_idx] // spatial_merge_size
1370
+ llm_grid_w = grid_ws[vision_idx] // spatial_merge_size
1371
+ h_index = (torch.arange(llm_grid_h).view(1, -1, 1).expand(
1372
+ len(t_index), -1, llm_grid_w).flatten())
1373
+ w_index = (torch.arange(llm_grid_w).view(1, 1, -1).expand(
1374
+ len(t_index), llm_grid_h, -1).flatten())
1375
+ t_index_tensor = torch.Tensor(t_index).to(llm_grid_h.device).view(
1376
+ -1, 1).expand(-1, llm_grid_h * llm_grid_w).long().flatten()
1377
+ _llm_pos_ids = torch.stack([t_index_tensor, h_index, w_index])
1378
+ llm_pos_ids_list.append(_llm_pos_ids + start_idx)
1379
+ llm_pos_ids = torch.cat(llm_pos_ids_list, dim=1)
1380
+ return llm_pos_ids
1381
+
1382
+ @staticmethod
1383
+ def _split_list_into_ranges(lst: torch.Tensor,
1384
+ interval: int) -> List[List[int]]:
1385
+ ranges: List[List[int]] = [[]
1386
+ for _ in range((max(lst) // interval) + 1)]
1387
+ for num in lst:
1388
+ index = num // interval
1389
+ ranges[index].append(num)
1390
+ return ranges
1391
+
1392
+ @staticmethod
1393
+ def get_next_input_positions(
1394
+ mrope_position_delta: int,
1395
+ context_len: int,
1396
+ seq_len: int,
1397
+ ) -> List[List[int]]:
1398
+ return [
1399
+ list(
1400
+ range(context_len + mrope_position_delta,
1401
+ seq_len + mrope_position_delta)) for _ in range(3)
1402
+ ]
1403
+
1404
+ @staticmethod
1405
+ def get_next_input_positions_tensor(
1406
+ mrope_position_delta: int,
1407
+ context_len: int,
1408
+ seq_len: int,
1409
+ ) -> torch.Tensor:
1410
+ return torch.arange(
1411
+ mrope_position_delta + context_len,
1412
+ mrope_position_delta + seq_len,
1413
+ ).expand(3, -1)
1414
+
1415
+ @classmethod
1416
+ def omni_get_updates_use_audio_in_video(
1417
+ cls,
1418
+ thinker_config: PretrainedConfig,
1419
+ audio_len: int,
1420
+ video_grid_thw: Union[List[int], torch.Tensor],
1421
+ video_second_per_grid_t: float,
1422
+ ) -> List[int]:
1423
+ """Get video prompt updates when `use_audio_in_video` is True.
1424
+
1425
+ In this case, audio and vision update ids will be split into
1426
+ chunks and interleaved (details in `_omni_get_input_positions_tensor`).
1427
+
1428
+ <|video_bos|><|VIDEO|><|video_eos|> =>
1429
+ <|video_bos|><|audio_bos|>(... chunks ...)<|audio_eos|><|video_eos|>
1430
+ """
1431
+
1432
+ audio_token_id = thinker_config.audio_token_index
1433
+ video_token_id = thinker_config.video_token_index
1434
+ audio_start_token_id = thinker_config.audio_start_token_id
1435
+ audio_end_token_id = thinker_config.audio_end_token_id
1436
+ seconds_per_chunk = thinker_config.seconds_per_chunk
1437
+ spatial_merge_size = thinker_config.vision_config.spatial_merge_size
1438
+ tokens_per_second = getattr(thinker_config.vision_config,
1439
+ "tokens_per_second", 25)
1440
+
1441
+ grid_t = video_grid_thw[0]
1442
+ grid_h = video_grid_thw[1]
1443
+ grid_w = video_grid_thw[2]
1444
+ t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
1445
+ t_index = (torch.arange(grid_t) * video_second_per_grid_t *
1446
+ tokens_per_second).long()
1447
+ t_index_split_chunk = cls._split_list_into_ranges(
1448
+ t_index, t_ntoken_per_chunk)
1449
+
1450
+ updates = [audio_start_token_id]
1451
+ added_audio_len = 0
1452
+ for t_chunk in t_index_split_chunk:
1453
+ vision_ntoken_per_chunk = len(t_chunk) * grid_h * grid_w // (
1454
+ spatial_merge_size**2)
1455
+ updates.extend([video_token_id] * vision_ntoken_per_chunk)
1456
+
1457
+ audio_chunk_size = min(t_ntoken_per_chunk,
1458
+ audio_len - added_audio_len)
1459
+ updates.extend(audio_chunk_size * [audio_token_id])
1460
+ added_audio_len += audio_chunk_size
1461
+ if added_audio_len < audio_len:
1462
+ updates.extend((audio_len - added_audio_len) * [audio_token_id])
1463
+ updates.extend([audio_end_token_id])
1464
+
1465
+ return updates
1466
+
1467
+
1468
+ _ROPE_DICT: Dict[Tuple, RotaryEmbedding] = {}
1469
+
1470
+
1471
+ def get_rope(
1472
+ head_size: int,
1473
+ rotary_dim: int,
1474
+ max_position: int,
1475
+ base: int,
1476
+ is_neox_style: bool = True,
1477
+ rope_scaling: Optional[Dict[str, Any]] = None,
1478
+ dtype: Optional[torch.dtype] = None,
1479
+ partial_rotary_factor: float = 1.0,
1480
+ ) -> RotaryEmbedding:
1481
+ if dtype is None:
1482
+ dtype = torch.get_default_dtype()
1483
+ if rope_scaling is not None:
1484
+ # Transforms every value that is a list into a tuple for caching calls
1485
+ rope_scaling_tuple = {
1486
+ k: tuple(v) if isinstance(v, list) else v
1487
+ for k, v in rope_scaling.items()
1488
+ }
1489
+ rope_scaling_args = tuple(rope_scaling_tuple.items())
1490
+ else:
1491
+ rope_scaling_args = None
1492
+ if partial_rotary_factor < 1.0:
1493
+ rotary_dim = int(rotary_dim * partial_rotary_factor)
1494
+ key = (head_size, rotary_dim, max_position, base, is_neox_style,
1495
+ rope_scaling_args, dtype)
1496
+ if key in _ROPE_DICT:
1497
+ return _ROPE_DICT[key]
1498
+
1499
+ if rope_scaling is None:
1500
+ rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base,
1501
+ is_neox_style, dtype)
1502
+ else:
1503
+ scaling_type = rope_scaling["rope_type"]
1504
+
1505
+ if scaling_type == "llama3":
1506
+ scaling_factor = rope_scaling["factor"]
1507
+ low_freq_factor = rope_scaling["low_freq_factor"]
1508
+ high_freq_factor = rope_scaling["high_freq_factor"]
1509
+ original_max_position = rope_scaling[
1510
+ "original_max_position_embeddings"]
1511
+ rotary_emb = Llama3RotaryEmbedding(head_size, rotary_dim,
1512
+ max_position, base,
1513
+ is_neox_style, dtype,
1514
+ scaling_factor, low_freq_factor,
1515
+ high_freq_factor,
1516
+ original_max_position)
1517
+ elif scaling_type == "mllama4":
1518
+ rotary_emb = Llama4VisionRotaryEmbedding(head_size, rotary_dim,
1519
+ max_position, base,
1520
+ is_neox_style, dtype)
1521
+ elif scaling_type == "default":
1522
+ if "mrope_section" in rope_scaling:
1523
+ rotary_emb = MRotaryEmbedding(
1524
+ head_size,
1525
+ rotary_dim,
1526
+ max_position,
1527
+ base,
1528
+ is_neox_style,
1529
+ dtype,
1530
+ mrope_section=rope_scaling["mrope_section"],
1531
+ )
1532
+ else:
1533
+ rotary_emb = RotaryEmbedding(
1534
+ head_size,
1535
+ rotary_dim,
1536
+ max_position,
1537
+ base,
1538
+ is_neox_style,
1539
+ dtype,
1540
+ )
1541
+ elif scaling_type == "linear":
1542
+ scaling_factor = rope_scaling["factor"]
1543
+ rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim,
1544
+ max_position, base,
1545
+ is_neox_style,
1546
+ scaling_factor, dtype)
1547
+ elif scaling_type == "dynamic":
1548
+ scaling_factor = rope_scaling["factor"]
1549
+ rotary_emb = DynamicNTKScalingRotaryEmbedding(
1550
+ head_size, rotary_dim, max_position, base, is_neox_style,
1551
+ scaling_factor, dtype)
1552
+ elif scaling_type == "yarn":
1553
+ scaling_factor = rope_scaling["factor"]
1554
+ original_max_position = rope_scaling[
1555
+ "original_max_position_embeddings"]
1556
+ extra_kwargs = {
1557
+ k: v
1558
+ for k, v in rope_scaling.items()
1559
+ if k in ("extrapolation_factor", "attn_factor", "beta_fast",
1560
+ "beta_slow")
1561
+ }
1562
+ rotary_emb = YaRNScalingRotaryEmbedding(head_size, rotary_dim,
1563
+ original_max_position,
1564
+ base, is_neox_style,
1565
+ scaling_factor, dtype,
1566
+ **extra_kwargs)
1567
+ elif scaling_type == "deepseek_yarn":
1568
+ scaling_factor = rope_scaling["factor"]
1569
+ original_max_position = rope_scaling[
1570
+ "original_max_position_embeddings"]
1571
+ # assert max_position == original_max_position * scaling_factor
1572
+ extra_kwargs = {
1573
+ k: v
1574
+ for k, v in rope_scaling.items()
1575
+ if k in ("extrapolation_factor", "attn_factor", "beta_fast",
1576
+ "beta_slow", "mscale", "mscale_all_dim")
1577
+ }
1578
+ rotary_emb = DeepseekScalingRotaryEmbedding(
1579
+ head_size, rotary_dim, original_max_position, base,
1580
+ is_neox_style, scaling_factor, dtype, **extra_kwargs)
1581
+ elif scaling_type == "longrope":
1582
+ short_factor = rope_scaling["short_factor"]
1583
+ long_factor = rope_scaling["long_factor"]
1584
+ original_max_position = rope_scaling[
1585
+ "original_max_position_embeddings"]
1586
+ extra_kwargs = {
1587
+ k: v
1588
+ for k, v in rope_scaling.items()
1589
+ if k in ("short_mscale", "long_mscale")
1590
+ }
1591
+ rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(
1592
+ head_size, rotary_dim, max_position, original_max_position,
1593
+ base, is_neox_style, dtype, short_factor, long_factor,
1594
+ **extra_kwargs)
1595
+ else:
1596
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
1597
+ _ROPE_DICT[key] = rotary_emb
1598
+ return rotary_emb