vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2221 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ ###############################################################################
4
+ # Copyright (C) 2024 Habana Labs, Ltd. an Intel Company
5
+ ###############################################################################
6
+
7
+ import collections
8
+ import contextlib
9
+ import dataclasses
10
+ import functools
11
+ import gc
12
+ import itertools
13
+ import math
14
+ import os
15
+ import time
16
+ from array import array
17
+ from enum import IntEnum
18
+ from typing import (TYPE_CHECKING, Any, Callable, Dict, List, NamedTuple,
19
+ Optional, Set, Tuple, Type, TypeVar, Union)
20
+
21
+ import habana_frameworks.torch as htorch
22
+ import habana_frameworks.torch.internal.bridge_config as bc
23
+ import torch
24
+ import torch.nn as nn
25
+ import vllm_hpu_extension.environment as environment
26
+ from vllm_hpu_extension.bucketing.common import get_bucketing_context
27
+ from vllm_hpu_extension.ops import LoraMask as LoraMask
28
+ from vllm_hpu_extension.profiler import (HabanaHighLevelProfiler,
29
+ HabanaMemoryProfiler, format_bytes)
30
+
31
+ import vllm.envs as envs
32
+ from vllm.attention import AttentionMetadata, get_attn_backend
33
+ from vllm.config import DeviceConfig, VllmConfig
34
+ from vllm.distributed import broadcast_tensor_dict
35
+ from vllm.distributed.parallel_state import get_world_group
36
+ from vllm.forward_context import set_forward_context
37
+ from vllm.logger import init_logger
38
+ from vllm.lora.layers import LoRAMapping
39
+ from vllm.lora.request import LoRARequest
40
+ from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
41
+ from vllm.model_executor import SamplingMetadata
42
+ from vllm.model_executor.layers.layernorm import RMSNorm
43
+ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
44
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
45
+ VocabParallelEmbedding)
46
+ from vllm.model_executor.model_loader import get_model
47
+ from vllm.model_executor.sampling_metadata import SequenceGroupToSample
48
+ from vllm.multimodal import BatchedTensorInputs, MultiModalKwargs
49
+ from vllm.sampling_params import SamplingParams
50
+ from vllm.sequence import (CompletionSequenceGroupOutput, IntermediateTensors,
51
+ Logprob, SequenceData, SequenceGroupMetadata,
52
+ SequenceOutput)
53
+ from vllm.utils import (bind_kv_cache, is_pin_memory_available,
54
+ make_tensor_with_pad)
55
+ from vllm.worker.model_runner_base import (
56
+ ModelRunnerBase, ModelRunnerInputBase,
57
+ _add_attn_metadata_broadcastable_dict,
58
+ _add_sampling_metadata_broadcastable_dict,
59
+ _init_attn_metadata_from_tensor_dict,
60
+ _init_sampling_metadata_from_tensor_dict)
61
+
62
+ if TYPE_CHECKING:
63
+ from vllm.attention.backends.abstract import AttentionBackend
64
+
65
+ logger = init_logger(__name__)
66
+
67
+ _TYPE_CACHE = {}
68
+ # These values are assumed to be zero in several places.
69
+ # Use caution when updating them!
70
+ _PAD_SLOT_ID = 0
71
+ _PAD_BLOCK_ID = 0
72
+
73
+ LORA_WARMUP_RANK = 8
74
+
75
+ DUMMY_TOKEN_ID = -1
76
+
77
+
78
+ def subtuple(obj: object,
79
+ typename: str,
80
+ to_copy: List[str],
81
+ to_override: Optional[Dict[str, object]] = None):
82
+ if obj is None:
83
+ return None
84
+ if to_override is None:
85
+ to_override = {}
86
+ fields = set(to_copy) | set(to_override.keys())
87
+ if type(obj) is dict:
88
+ values = {key: obj[key] for key in fields if key in obj}
89
+ else:
90
+ values = {f: to_override.get(f, getattr(obj, f)) for f in fields}
91
+ if typename not in _TYPE_CACHE:
92
+ _TYPE_CACHE[typename] = collections.namedtuple(typename,
93
+ ' '.join(fields))
94
+ return _TYPE_CACHE[typename](**values)
95
+
96
+
97
+ def round_up(value: int, k: int):
98
+ return (value + k - 1) // k * k
99
+
100
+
101
+ def align_workers(value, op):
102
+ group = get_world_group().cpu_group
103
+ world_size = torch.distributed.get_world_size()
104
+ if world_size <= 1:
105
+ return value
106
+ value_t = torch.tensor(value, device='cpu')
107
+ torch.distributed.all_reduce(value_t, op=op, group=group)
108
+ return value_t.item()
109
+
110
+
111
+ def setup_profiler():
112
+ schedule = torch.profiler.schedule(wait=0, warmup=2, active=1, repeat=1)
113
+ DEVICE = 'hpu'
114
+ activities = [torch.profiler.ProfilerActivity.CPU]
115
+ activities.extend([torch.profiler.ProfilerActivity.HPU] if DEVICE ==
116
+ 'hpu' else [])
117
+ #from habana_frameworks.torch.activity_profiler import DebugActivity
118
+ #debug_activities=[DebugActivity.BRIDGE_FUNCTION_CALLS]
119
+
120
+ profiler = torch.profiler.profile(
121
+ schedule=schedule,
122
+ activities=activities,
123
+ #debug_activities=debug_activities,
124
+ on_trace_ready=torch.profiler.tensorboard_trace_handler('.',
125
+ use_gzip=True),
126
+ record_shapes=False,
127
+ with_stack=True)
128
+ return profiler
129
+
130
+
131
+ def pad_list(input, k, v):
132
+ input_len = len(input)
133
+ target_len = round_up(input_len, k)
134
+ padding = target_len - input_len
135
+ return input + [v] * padding
136
+
137
+
138
+ def gather_list(input, indices, v):
139
+ return [input[i] if i is not None else v for i in indices]
140
+
141
+
142
+ def flatten(in_list):
143
+ return list(itertools.chain(*in_list))
144
+
145
+
146
+ def precompute_indices_and_offsets(block_size, slot_mapping, is_prompt):
147
+ slot_mapping = slot_mapping.flatten()
148
+ indices = torch.div(slot_mapping, block_size, rounding_mode="floor")
149
+ if is_prompt:
150
+ indices = indices.unflatten(0, (-1, block_size))[:, 0]
151
+ offsets = None
152
+ else:
153
+ offsets = torch.fmod(slot_mapping, block_size)
154
+ return indices, offsets
155
+
156
+
157
+ def modify_decoder_layer(module: torch.nn.Module, suffix="DecoderLayer"):
158
+ if module.__class__.__name__.endswith(suffix):
159
+
160
+ def forward_hook(module, args, output):
161
+ htorch.core.mark_step()
162
+ return output
163
+
164
+ module.register_forward_hook(forward_hook)
165
+
166
+ for child_name, child_module in module.named_children():
167
+ modify_decoder_layer(child_module)
168
+
169
+
170
+ class HpuModelAdapter:
171
+
172
+ def __init__(self, model, vllm_config):
173
+ self.model = model
174
+ self.sampler = get_sampler()
175
+ self.prefill_use_fusedsdpa = os.getenv('VLLM_PROMPT_USE_FUSEDSDPA',
176
+ '0').lower() in ['1', 'true']
177
+ self.vllm_config = vllm_config
178
+ self.block_size = vllm_config.cache_config.block_size
179
+ self.dtype = vllm_config.model_config.dtype
180
+ enforce_eager = vllm_config.model_config.enforce_eager
181
+
182
+ if not htorch.utils.internal.is_lazy() and not enforce_eager:
183
+ if os.getenv('VLLM_REGIONAL_COMPILATION',
184
+ 'true').lower() == 'true':
185
+ self.regional_compilation_layers_list = [
186
+ RMSNorm, VocabParallelEmbedding
187
+ ]
188
+ self._regional_compilation(self.model)
189
+ else:
190
+ self.model = torch.compile(self.model,
191
+ backend='hpu_backend',
192
+ dynamic=False)
193
+
194
+ def _regional_compilation(self,
195
+ module,
196
+ parent_module=None,
197
+ module_name=None):
198
+ if isinstance(module, torch.nn.ModuleList):
199
+ for children_name, children_module in module.named_children():
200
+ self._compile_region(module, children_name, children_module)
201
+ elif any(
202
+ isinstance(module, layer)
203
+ for layer in self.regional_compilation_layers_list):
204
+ self._compile_region(parent_module, module_name, module)
205
+ else:
206
+ for children_name, children_module in module.named_children():
207
+ self._regional_compilation(children_module, module,
208
+ children_name)
209
+
210
+ def _compile_region(self, model, name, module):
211
+ module = torch.compile(module, backend='hpu_backend', dynamic=False)
212
+ setattr(model, name, module)
213
+
214
+ def _set_attn_bias(self, attn_metadata, batch_size, seq_len, device,
215
+ dtype):
216
+ prefill_metadata = attn_metadata
217
+ if prefill_metadata is None or self.prefill_use_fusedsdpa:
218
+ return attn_metadata
219
+
220
+ seq_lens_t = prefill_metadata.seq_lens_tensor
221
+ len_mask = (torch.arange(0, seq_len, device=device,
222
+ dtype=torch.int32).view(1, seq_len).ge(
223
+ seq_lens_t.unsqueeze(-1)).view(
224
+ batch_size, 1, 1, seq_len))
225
+ causal_mask = torch.triu(torch.ones((batch_size, 1, seq_len, seq_len),
226
+ device=device,
227
+ dtype=torch.bool),
228
+ diagonal=1)
229
+ mask = causal_mask.logical_or(len_mask)
230
+ attn_bias = (torch.zeros_like(mask, dtype=dtype).masked_fill_(
231
+ mask, -math.inf))
232
+ attn_metadata = prefill_metadata._replace(attn_bias=attn_bias)
233
+ return attn_metadata
234
+
235
+ def _set_block_mapping(self, metadata, batch_size, device, dtype):
236
+ mask = torch.arange(0,
237
+ self.block_size,
238
+ device=device,
239
+ dtype=torch.int32).unsqueeze(0)
240
+ mask = mask >= metadata.block_usage.unsqueeze(-1)
241
+ attn_bias = (torch.zeros_like(mask, dtype=dtype).masked_fill_(
242
+ mask, -math.inf))
243
+ if os.environ.get('VLLM_USE_FAKE_HPU',
244
+ '0') == '0' and htorch.utils.internal.is_lazy():
245
+ block_mapping = torch.nn.functional.one_hot(metadata.block_groups,
246
+ num_classes=batch_size)
247
+ else:
248
+ # Unfortunately one_hot on CPU/torch.compile mode/eager mode
249
+ # doesn't handle out of bounds classes so we need to convert
250
+ # all negative values to 0 (block_mapping) or bs (block_groups)
251
+ block_groups = metadata.block_groups.to(torch.long)
252
+ block_mapping = torch.nn.functional.relu(block_groups)
253
+ block_mapping = torch.nn.functional.one_hot(block_mapping,
254
+ num_classes=batch_size)
255
+ oob_values = block_groups.lt(0)
256
+ block_mapping.masked_fill_(oob_values.unsqueeze(-1), 0)
257
+ block_groups.masked_fill_(oob_values, batch_size)
258
+ metadata = metadata._replace(block_groups=block_groups)
259
+ block_mapping = block_mapping.to(dtype)
260
+ metadata = metadata._replace(block_mapping=block_mapping,
261
+ attn_bias=attn_bias)
262
+ return metadata
263
+
264
+ def _update_metadata(self, attn_metadata, batch_size, seq_len, device,
265
+ dtype):
266
+ if attn_metadata.is_prompt:
267
+ meta = attn_metadata
268
+ attn_metadata = self._set_attn_bias(meta, batch_size, seq_len,
269
+ device, dtype)
270
+ else:
271
+ meta = attn_metadata
272
+ attn_metadata = self._set_block_mapping(meta, batch_size, device,
273
+ dtype)
274
+ return attn_metadata
275
+
276
+ def forward(self, *args, **kwargs):
277
+ kwargs = kwargs.copy()
278
+ selected_token_indices = kwargs.pop('selected_token_indices')
279
+ if 'warmup_mode' in kwargs:
280
+ kwargs.pop('warmup_mode')
281
+ virtual_engine = 0
282
+ if 'virtual_engine' in kwargs:
283
+ virtual_engine = kwargs.pop('virtual_engine')
284
+ input_ids = kwargs['input_ids']
285
+ attn_metadata = self._update_metadata(kwargs.pop('attn_metadata'),
286
+ input_ids.size(0),
287
+ input_ids.size(1),
288
+ input_ids.device, self.dtype)
289
+ LoraMask.setLoraMask(kwargs.pop('lora_mask'))
290
+ with set_forward_context(attn_metadata, self.vllm_config,
291
+ virtual_engine):
292
+ hidden_states = self.model(*args, **kwargs)
293
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
294
+ hidden_states = hidden_states.index_select(0,
295
+ selected_token_indices)
296
+ return hidden_states
297
+
298
+ def compute_logits(self, *args, **kwargs):
299
+ return self.model.compute_logits(*args, **kwargs)
300
+
301
+ def sample(self, *args, **kwargs):
302
+ return self.sampler(*args, **kwargs)
303
+
304
+
305
+ class PreparePromptMetadata(NamedTuple):
306
+ input_tokens: torch.Tensor
307
+ input_positions: List[List[int]]
308
+ attn_metadata: Optional[AttentionMetadata]
309
+ seq_lens: List[int]
310
+ query_lens: List[int]
311
+ lora_index_mapping: List[List[int]]
312
+ lora_prompt_mapping: List[List[int]]
313
+ lora_requests: Set[LoRARequest]
314
+ multi_modal_kwargs: Optional[Dict[str, BatchedTensorInputs]]
315
+ slot_mapping: List[List[int]]
316
+ lora_ids: List[int]
317
+
318
+ @classmethod
319
+ def empty(cls):
320
+ return PreparePromptMetadata(input_tokens=[],
321
+ input_positions=[],
322
+ attn_metadata=None,
323
+ seq_lens=[],
324
+ query_lens=[],
325
+ lora_index_mapping=[],
326
+ lora_prompt_mapping=[],
327
+ lora_requests=set(),
328
+ multi_modal_kwargs=None,
329
+ slot_mapping=[],
330
+ lora_ids=[])
331
+
332
+
333
+ class PrepareDecodeMetadata(NamedTuple):
334
+ input_tokens: torch.Tensor
335
+ input_positions: List[List[int]]
336
+ attn_metadata: Optional[AttentionMetadata]
337
+ lora_index_mapping: List[List[int]]
338
+ lora_prompt_mapping: List[List[int]]
339
+ lora_requests: Set[LoRARequest]
340
+ slot_mapping: List[List[int]]
341
+ lora_ids: List[int]
342
+
343
+ @classmethod
344
+ def empty(cls):
345
+ return PrepareDecodeMetadata(input_tokens=[],
346
+ input_positions=[],
347
+ attn_metadata=None,
348
+ lora_index_mapping=[],
349
+ lora_prompt_mapping=[],
350
+ lora_requests=set(),
351
+ slot_mapping=[],
352
+ lora_ids=[])
353
+
354
+
355
+ # How batches are constructed.
356
+ class BatchType(IntEnum):
357
+ # Every batch is prefill.
358
+ PREFILL = 0
359
+ # Every batch is decode.
360
+ DECODE = 1
361
+ # Batch is a mixture of prefill and decode.
362
+ MIXED = 2
363
+
364
+
365
+ TModelInputForHPU = TypeVar('TModelInputForHPU', bound="ModelInputForHPU")
366
+
367
+
368
+ @dataclasses.dataclass(frozen=True)
369
+ class ModelInputForHPU(ModelRunnerInputBase):
370
+ """
371
+ This base class contains metadata needed for the base model forward pass
372
+ but not metadata for possible additional steps, e.g., sampling. Model
373
+ runners that run additional steps should subclass this method to add
374
+ additional fields.
375
+ """
376
+ input_tokens: Optional[torch.Tensor] = None
377
+ input_positions: Optional[torch.Tensor] = None
378
+ seq_lens: Optional[List[int]] = None
379
+ query_lens: Optional[List[int]] = None
380
+ lora_mapping: Optional["LoRAMapping"] = None
381
+ lora_requests: Optional[Set[LoRARequest]] = None
382
+ attn_metadata: Optional["AttentionMetadata"] = None
383
+ multi_modal_kwargs: Optional[Dict[str, torch.Tensor]] = None
384
+ real_batch_size: Optional[int] = None
385
+ batch_size_padded: Optional[int] = None
386
+ virtual_engine: int = 0
387
+ lora_ids: Optional[List[int]] = None
388
+ async_callback: Optional[Callable] = None
389
+ is_first_multi_step: bool = True
390
+ is_last_step: bool = True
391
+
392
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
393
+ tensor_dict = {
394
+ "input_tokens": self.input_tokens,
395
+ "input_positions": self.input_positions,
396
+ "lora_requests": self.lora_requests,
397
+ "lora_mapping": self.lora_mapping,
398
+ "multi_modal_kwargs": self.multi_modal_kwargs,
399
+ "real_batch_size": self.real_batch_size,
400
+ "batch_size_padded": self.batch_size_padded,
401
+ "virtual_engine": self.virtual_engine,
402
+ "lora_ids": self.lora_ids,
403
+ "is_first_multi_step": self.is_first_multi_step,
404
+ "is_last_step": self.is_last_step,
405
+ }
406
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
407
+ return tensor_dict
408
+
409
+ @classmethod
410
+ def from_broadcasted_tensor_dict(
411
+ cls: Type[TModelInputForHPU],
412
+ tensor_dict: Dict[str, Any],
413
+ attn_backend: Optional["AttentionBackend"] = None,
414
+ ) -> TModelInputForHPU:
415
+ if attn_backend is not None:
416
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
417
+ attn_backend, tensor_dict)
418
+ return cls(**tensor_dict)
419
+
420
+
421
+ @dataclasses.dataclass(frozen=True)
422
+ class ModelInputForHPUWithSamplingMetadata(ModelInputForHPU):
423
+ """
424
+ Used by the ModelRunner.
425
+ """
426
+ sampling_metadata: Optional["SamplingMetadata"] = None
427
+ # Used for speculative decoding. We do not broadcast it because it is only
428
+ # used by the driver worker.
429
+ is_prompt: Optional[bool] = None
430
+
431
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
432
+ tensor_dict = {
433
+ "input_tokens": self.input_tokens,
434
+ "input_positions": self.input_positions,
435
+ "lora_requests": self.lora_requests,
436
+ "lora_mapping": self.lora_mapping,
437
+ "multi_modal_kwargs": self.multi_modal_kwargs,
438
+ "lora_ids": self.lora_ids,
439
+ }
440
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
441
+ _add_sampling_metadata_broadcastable_dict(tensor_dict,
442
+ self.sampling_metadata)
443
+ return tensor_dict
444
+
445
+ @classmethod
446
+ def from_broadcasted_tensor_dict(
447
+ cls,
448
+ tensor_dict: Dict[str, Any],
449
+ attn_backend: Optional["AttentionBackend"] = None,
450
+ ) -> "ModelInputForHPUWithSamplingMetadata":
451
+ tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
452
+ # FIXME(kzawora): this fails for whatever reason - why?
453
+ if attn_backend is not None:
454
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
455
+ attn_backend, tensor_dict)
456
+ return cls(**tensor_dict)
457
+
458
+
459
+ class HPUModelRunnerBase(ModelRunnerBase[TModelInputForHPU]):
460
+ """
461
+ Helper class for shared methods between GPU model runners.
462
+ """
463
+ _model_input_cls: Type[TModelInputForHPU]
464
+
465
+ def __init__(
466
+ self,
467
+ vllm_config: VllmConfig,
468
+ is_driver_worker: bool = False,
469
+ return_hidden_states: bool = False,
470
+ ):
471
+ ModelRunnerBase.__init__(self, vllm_config=vllm_config)
472
+ environment.set_model_config(self.model_config)
473
+ self.is_driver_worker = is_driver_worker
474
+ self.return_hidden_states = return_hidden_states
475
+
476
+ self.sliding_window = (self.model_config.get_sliding_window()
477
+ if self.model_config is not None else None)
478
+ self.device_config = (self.device_config if self.device_config
479
+ is not None else DeviceConfig())
480
+ self.device = self.device_config.device
481
+ self.enforce_eager = self.model_config.enforce_eager
482
+ self.max_num_seqs = self.scheduler_config.max_num_seqs
483
+ # NOTE(kzawora): Change that to scheduler_config.max_num_prefill_seqs
484
+ # once padding-aware scheduling gets merged
485
+ self.max_num_prefill_seqs = 64
486
+ self.max_model_len = self.scheduler_config.max_model_len
487
+ self.max_num_batched_tokens = \
488
+ self.scheduler_config.max_num_batched_tokens
489
+ self.block_size = self.cache_config.block_size
490
+
491
+ self.pin_memory = is_pin_memory_available()
492
+ self.kv_cache_dtype = self.cache_config.cache_dtype
493
+
494
+ self.attn_backend = get_attn_backend(
495
+ self.model_config.get_head_size(),
496
+ self.model_config.dtype,
497
+ self.kv_cache_dtype,
498
+ self.block_size,
499
+ self.model_config.is_attention_free,
500
+ )
501
+
502
+ # Lazy initialization
503
+ self.lora_manager: LRUCacheWorkerLoRAManager = None
504
+ self.model: torch.nn.Module = None
505
+ self.inc_initialized_successfully = False
506
+
507
+ # Profiler stats
508
+ self.profiler = HabanaHighLevelProfiler()
509
+ self.profiler_counter_helper = HabanaProfilerCounterHelper()
510
+ self.seen_configs: set = set()
511
+ self._mem_margin: Optional[int] = None
512
+ HPUBucketingContext = get_bucketing_context()
513
+ self.bucketing_ctx = HPUBucketingContext(self.max_num_seqs,
514
+ self.max_num_prefill_seqs,
515
+ self.block_size,
516
+ self.max_num_batched_tokens,
517
+ False, self.max_model_len)
518
+ self.graphed_buckets: Set[Any] = set()
519
+ self._set_gc_threshold()
520
+ self.use_contiguous_pa = envs.VLLM_USE_HPU_CONTIGUOUS_CACHE_FETCH
521
+
522
+ # For multi-step scheduling
523
+ self.cached_step_outputs: List[torch.Tensor] = []
524
+ # For delayed sampling
525
+ self.cached_step_inputs: List[
526
+ ModelInputForHPUWithSamplingMetadata] = []
527
+
528
+ def _set_gc_threshold(self) -> None:
529
+ # Read https://docs.python.org/3/library/gc.html#gc.set_threshold
530
+ # for comprehensive description of gc generations.
531
+ # We can either use VLLM_GC_THR_GEN[0-2] (this has higher priority)
532
+ # to set particular generation threshold or use simpler
533
+ # VLLM_GC_THR_MULTIPLIER to multiply default values.
534
+ default_gc_thrs = list(gc.get_threshold())
535
+ requested_gc_thrs = [0] * len(default_gc_thrs)
536
+ for i in range(len(default_gc_thrs)):
537
+ requested_gc_thrs[i] = int(
538
+ os.environ.get(f'VLLM_GC_THR_GEN{i}', default_gc_thrs[i]))
539
+ if requested_gc_thrs == default_gc_thrs:
540
+ gc_thr_multiplier = int(os.environ.get('VLLM_GC_THR_MULTIPLIER',
541
+ 2))
542
+ requested_gc_thrs = [
543
+ t * gc_thr_multiplier for t in default_gc_thrs
544
+ ]
545
+ gc.set_threshold(*requested_gc_thrs)
546
+
547
+ self.skip_warmup = os.environ.get('VLLM_SKIP_WARMUP',
548
+ 'false').lower() == 'true'
549
+
550
+ def load_model(self) -> None:
551
+ import habana_frameworks.torch.core as htcore
552
+ if self.model_config.quantization == 'inc' or \
553
+ self.model_config.quantization == 'fp8':
554
+ htcore.hpu_set_env()
555
+ with HabanaMemoryProfiler() as m:
556
+ with HabanaMemoryProfiler() as m_getmodel:
557
+ self.model = get_model(vllm_config=self.vllm_config)
558
+ msg = ("Pre-loading model weights on "
559
+ f"{next(self.model.parameters()).device} "
560
+ f"took {m_getmodel.get_summary_string()}")
561
+ logger.info(msg)
562
+
563
+ if self.lora_config:
564
+ assert hasattr(self.model, "embedding_modules"
565
+ ), "Model does not have embedding_modules"
566
+ assert hasattr(
567
+ self.model, "embedding_padding_modules"
568
+ ), "Model does not have embedding_padding_modules"
569
+ assert not self.lora_config.bias_enabled, \
570
+ "Bias support in LoRA is not enabled in HPU yet."
571
+ assert not self.lora_config.fully_sharded_loras, \
572
+ "Fully sharded LoRAs is not enabled in HPU yet."
573
+
574
+ # Use get_text_config() in case of multimodal models
575
+ text_config = self.model_config.hf_config.get_text_config()
576
+
577
+ self.lora_manager = LRUCacheWorkerLoRAManager(
578
+ self.scheduler_config.max_num_seqs,
579
+ self.scheduler_config.max_num_batched_tokens,
580
+ self.vocab_size,
581
+ self.lora_config,
582
+ self.device,
583
+ self.model.embedding_modules,
584
+ self.model.embedding_padding_modules,
585
+ max_position_embeddings=text_config.
586
+ max_position_embeddings,
587
+ )
588
+ self.model = self.lora_manager.create_lora_manager(self.model)
589
+
590
+ if self.model_config.quantization == 'inc':
591
+ logger.info("Preparing model with INC..")
592
+ with HabanaMemoryProfiler() as m_inc:
593
+ from neural_compressor.torch.quantization import (
594
+ FP8Config, convert, prepare)
595
+ config = FP8Config.from_json_file(
596
+ os.getenv("QUANT_CONFIG", ""))
597
+ if config.measure:
598
+ self.model = prepare(self.model, config)
599
+ elif config.quantize:
600
+ self.model = convert(self.model, config)
601
+ htcore.hpu_initialize(self.model,
602
+ mark_only_scales_as_const=True)
603
+ self.inc_initialized_successfully = True
604
+ logger.info("Preparing model with INC took %s",
605
+ m_inc.get_summary_string())
606
+ else:
607
+ self.model = self.model.to("hpu")
608
+ htcore.mark_step()
609
+ modify_decoder_layer(self.model)
610
+ torch.hpu.synchronize()
611
+
612
+ with HabanaMemoryProfiler() as m_wrap:
613
+ self.model = _maybe_wrap_in_hpu_graph(
614
+ self.model, vllm_config=self.vllm_config)
615
+ msg = f"Wrapping in HPU Graph took {m_wrap.get_summary_string()}"
616
+ logger.info(msg)
617
+
618
+ self.model_memory_usage = m.consumed_device_memory
619
+ msg = f"Loading model weights took in total {m.get_summary_string()}"
620
+ logger.info(msg)
621
+
622
+ def _add_dummy_seq(self, seq_group_metadata_list, is_prompt):
623
+ real_batch_size = len(seq_group_metadata_list)
624
+ batch_size_padded = self.bucketing_ctx.get_padded_batch_size(
625
+ real_batch_size, is_prompt)
626
+ batch_size_padding = batch_size_padded - real_batch_size
627
+
628
+ seq_group_metadata_list = seq_group_metadata_list.copy()
629
+
630
+ if batch_size_padding > 0:
631
+ dummy_seq_group_metadata = self.create_dummy_seq_group_metadata(
632
+ 0, 0, is_prompt)
633
+ seq_group_metadata_list.extend(dummy_seq_group_metadata
634
+ for _ in range(batch_size_padding))
635
+ return seq_group_metadata_list, real_batch_size, batch_size_padded
636
+
637
+ def _maybe_wrap_in_hpu_graph(self, *args, **kwargs):
638
+ return htorch.hpu.wrap_in_hpu_graph(
639
+ HpuModelAdapter(*args, **kwargs), disable_tensor_cache=True
640
+ ) if htorch.utils.internal.is_lazy() else HpuModelAdapter(
641
+ *args, **kwargs)
642
+
643
+ def get_model(self) -> nn.Module:
644
+ return self.model
645
+
646
+ def _use_graphs(self, batch_size, seq_len, is_prompt):
647
+ if self.enforce_eager:
648
+ return False
649
+ if self.skip_warmup:
650
+ return True
651
+ return (batch_size, seq_len, is_prompt) in self.graphed_buckets
652
+
653
+ def _is_valid_bucket(self, bucket):
654
+ return bucket[0] * bucket[1] <= self.max_num_batched_tokens
655
+
656
+ def _prepare_prompt(
657
+ self,
658
+ seq_group_metadata_list: List[SequenceGroupMetadata],
659
+ ) -> PreparePromptMetadata:
660
+ input_tokens: List[List[int]] = []
661
+ input_positions: List[List[int]] = []
662
+ slot_mapping: List[List[int]] = []
663
+ lora_index_mapping: List[List[int]] = []
664
+ lora_prompt_mapping: List[List[int]] = []
665
+ lora_requests: Set[LoRARequest] = set()
666
+
667
+ seq_lens: List[int] = []
668
+ context_lens: List[int] = []
669
+ query_lens: List[int] = []
670
+ prefix_block_tables: List[List[int]] = []
671
+ multi_modal_kwargs_list: List[MultiModalKwargs] = []
672
+
673
+ if len(seq_group_metadata_list) == 0:
674
+ return PreparePromptMetadata.empty()
675
+
676
+ for seq_group_metadata in seq_group_metadata_list:
677
+ assert seq_group_metadata.is_prompt
678
+ seq_ids = list(seq_group_metadata.seq_data.keys())
679
+ assert len(seq_ids) == 1
680
+ seq_id = seq_ids[0]
681
+
682
+ computed_block_nums = seq_group_metadata.computed_block_nums
683
+ if (self.scheduler_config is not None
684
+ and self.scheduler_config.chunked_prefill_enabled
685
+ and not (computed_block_nums is None
686
+ or computed_block_nums == [])):
687
+ raise RuntimeError(
688
+ "chunked prefill cannot be used with prefix caching "
689
+ "now.")
690
+
691
+ token_chunk_size = seq_group_metadata.token_chunk_size
692
+ seq_data = seq_group_metadata.seq_data[seq_id]
693
+ context_len = seq_data.get_num_computed_tokens()
694
+ # We should use get_len here because in case of preemption
695
+ # it contains output tokens.
696
+ seq_len = min(seq_data.get_len(), context_len + token_chunk_size)
697
+ prompt_tokens = seq_data.get_token_ids()[context_len:seq_len]
698
+ seq_lens.append(seq_len)
699
+
700
+ # NOTE: This only works for oooooooxxx style attention.
701
+ if computed_block_nums is not None and len(
702
+ computed_block_nums) > 0 and self.sliding_window is None:
703
+ # Prefix is not supported with sliding_window
704
+ context_len = len(computed_block_nums) * self.block_size
705
+ prompt_tokens = prompt_tokens[context_len:]
706
+ prefix_block_tables.append(computed_block_nums)
707
+ elif self.scheduler_config.chunked_prefill_enabled:
708
+ if seq_group_metadata.block_tables is not None:
709
+ # Prefill has chunked before.
710
+ block_table = seq_group_metadata.block_tables[seq_id]
711
+ prefix_block_tables.append(block_table)
712
+ else:
713
+ # The first prefill.
714
+ prefix_block_tables.append([])
715
+ else:
716
+ prefix_block_tables.append([])
717
+ # Right now, prefill start is always 0. However, this
718
+ # assumption can be changed once chunked prefill is introduced.
719
+ assert context_len == 0
720
+
721
+ # actual prompt lens
722
+ context_lens.append(context_len)
723
+ query_lens.append(seq_len - context_len)
724
+ input_tokens.append(prompt_tokens)
725
+ # NOTE(woosuk): Here we assume that the first token in the prompt
726
+ # is always the first token in the sequence.
727
+ input_positions.append(list(range(context_len, seq_len)))
728
+
729
+ mm_kwargs = seq_group_metadata.multi_modal_data
730
+ if mm_kwargs:
731
+ multi_modal_kwargs_list.append(mm_kwargs)
732
+
733
+ if seq_group_metadata.block_tables is None:
734
+ # During memory profiling, the block tables are not initialized
735
+ # yet. In this case, we just use a dummy slot mapping.
736
+ slot_mapping.append([_PAD_SLOT_ID] * seq_len)
737
+ continue
738
+
739
+ # Compute the slot mapping.
740
+ slot_mapping.append([])
741
+ block_table = seq_group_metadata.block_tables[seq_id]
742
+
743
+ # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
744
+ # where start_idx is max(0, seq_len - sliding_window).
745
+ # For example, if the prompt len is 10, sliding window is 8, and
746
+ # block size is 4, the first two tokens are masked and the slot
747
+ # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
748
+ start_idx = 0
749
+ if self.sliding_window is not None:
750
+ assert context_len == 0, (
751
+ "Prefix caching is currently not supported with "
752
+ "sliding window attention")
753
+ start_idx = max(0, seq_len - self.sliding_window)
754
+ for i in range(context_len, seq_len):
755
+ if i < start_idx:
756
+ slot_mapping[-1].append(_PAD_SLOT_ID)
757
+ continue
758
+
759
+ block_number = block_table[i // self.block_size]
760
+ block_offset = i % self.block_size
761
+ slot = block_number * self.block_size + block_offset
762
+ slot_mapping[-1].append(slot)
763
+
764
+ max_query_len = max(query_lens)
765
+ sum_query_len = sum(query_lens)
766
+ real_num_seqs = len(query_lens)
767
+ assert max_query_len > 0
768
+
769
+ max_prompt_len = max(
770
+ self.bucketing_ctx.get_padded_prompt_seq_len(max_query_len),
771
+ self.block_size)
772
+
773
+ lora_ids: List[int] = []
774
+ for seq_group_metadata, context_len in zip(seq_group_metadata_list,
775
+ context_lens):
776
+ lora_id = seq_group_metadata.lora_int_id
777
+ lora_ids.append(lora_id)
778
+
779
+ if lora_id > 0:
780
+ lora_requests.add(seq_group_metadata.lora_request)
781
+
782
+ lora_index_mapping += [lora_id] * (max_prompt_len - context_len)
783
+ lora_prompt_mapping.extend(
784
+ [lora_id] *
785
+ (max_prompt_len - context_len
786
+ if seq_group_metadata.sampling_params.prompt_logprobs else 1))
787
+
788
+ input_tokens = make_tensor_with_pad(input_tokens,
789
+ max_len=max_prompt_len,
790
+ pad=0,
791
+ dtype=torch.long,
792
+ device=self.device)
793
+
794
+ input_positions = make_tensor_with_pad(input_positions,
795
+ max_len=max_prompt_len,
796
+ pad=0,
797
+ dtype=torch.long,
798
+ device=self.device)
799
+
800
+ slot_mapping = make_tensor_with_pad(slot_mapping,
801
+ max_len=max_prompt_len,
802
+ pad=_PAD_SLOT_ID,
803
+ dtype=torch.long,
804
+ device=self.device)
805
+
806
+ seq_lens_tensor = torch.tensor(seq_lens,
807
+ dtype=torch.long,
808
+ device=self.device)
809
+
810
+ block_indices, block_offsets = precompute_indices_and_offsets(
811
+ self.block_size, slot_mapping, True)
812
+ attn_metadata = self.attn_backend.make_metadata(
813
+ is_prompt=True,
814
+ block_list=None,
815
+ block_mapping=None,
816
+ block_usage=None,
817
+ block_indices=block_indices,
818
+ block_offsets=block_offsets,
819
+ block_groups=None,
820
+ attn_bias=None,
821
+ seq_lens_tensor=seq_lens_tensor,
822
+ num_prefills=real_num_seqs,
823
+ num_prefill_tokens=sum_query_len,
824
+ num_decode_tokens=0,
825
+ slot_mapping=slot_mapping,
826
+ multi_modal_placeholder_index_maps=
827
+ None, # FIXME(kzawora): mutli-modality will not work here
828
+ enable_kv_scales_calculation=False,
829
+ )
830
+ multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
831
+
832
+ return PreparePromptMetadata(input_tokens=input_tokens,
833
+ input_positions=input_positions,
834
+ attn_metadata=attn_metadata,
835
+ seq_lens=seq_lens,
836
+ query_lens=query_lens,
837
+ lora_index_mapping=lora_index_mapping,
838
+ lora_prompt_mapping=lora_prompt_mapping,
839
+ lora_requests=lora_requests,
840
+ multi_modal_kwargs=multi_modal_kwargs,
841
+ slot_mapping=slot_mapping,
842
+ lora_ids=lora_ids)
843
+
844
+ def _prepare_decode(
845
+ self,
846
+ seq_group_metadata_list: List[SequenceGroupMetadata],
847
+ output=None,
848
+ ) -> PrepareDecodeMetadata:
849
+ input_tokens: List[List[int]] = []
850
+ input_positions: List[List[int]] = []
851
+ slot_mapping: List[List[int]] = []
852
+ seq_lens: List[int] = []
853
+ block_tables: List[List[int]] = []
854
+ lora_index_mapping: List[List[int]] = []
855
+ lora_prompt_mapping: List[List[int]] = []
856
+ lora_requests: Set[LoRARequest] = set()
857
+
858
+ if len(seq_group_metadata_list) == 0:
859
+ return PrepareDecodeMetadata.empty()
860
+ lora_ids: List[int] = []
861
+
862
+ dummy_slots = itertools.cycle(
863
+ range(_PAD_SLOT_ID, _PAD_SLOT_ID + self.block_size))
864
+
865
+ for seq_group_metadata in seq_group_metadata_list:
866
+ assert not seq_group_metadata.is_prompt
867
+ assert seq_group_metadata.token_chunk_size == 1
868
+
869
+ seq_ids = list(seq_group_metadata.seq_data.keys())
870
+ lora_id = seq_group_metadata.lora_int_id
871
+ lora_ids.append(lora_id)
872
+
873
+ if lora_id > 0:
874
+ lora_requests.add(seq_group_metadata.lora_request)
875
+
876
+ for seq_id in seq_ids:
877
+ seq_data = seq_group_metadata.seq_data[seq_id]
878
+ if output is None:
879
+ generation_token = seq_data.get_last_token_id()
880
+ input_tokens.append([generation_token])
881
+
882
+ seq_len = seq_data.get_len()
883
+ position = seq_len - 1
884
+ input_positions.append([position])
885
+
886
+ seq_len = seq_len if self.sliding_window is None else min(
887
+ seq_len, self.sliding_window)
888
+ seq_lens.append(seq_len)
889
+
890
+ block_table = seq_group_metadata.block_tables[seq_id]
891
+ num_fully_occupied_blocks = position // self.block_size
892
+ block_table = block_table[:num_fully_occupied_blocks + 1]
893
+
894
+ if len(block_table) == 0:
895
+ block_number = _PAD_BLOCK_ID
896
+ else:
897
+ block_number = block_table[position // self.block_size]
898
+ if block_number == _PAD_BLOCK_ID:
899
+ slot = next(dummy_slots)
900
+ else:
901
+ block_offset = position % self.block_size
902
+ slot = block_number * self.block_size + block_offset
903
+ slot_mapping.append([slot])
904
+ lora_index_mapping.append(lora_id)
905
+ lora_prompt_mapping.append(lora_id)
906
+
907
+ if self.sliding_window is not None:
908
+ sliding_window_blocks = (self.sliding_window //
909
+ self.block_size)
910
+ block_table = block_table[-sliding_window_blocks:]
911
+ block_tables.append(block_table)
912
+
913
+ if output is None:
914
+ input_tokens = torch.tensor(input_tokens,
915
+ dtype=torch.long,
916
+ device=self.device)
917
+ else:
918
+ real_batch_size = len(seq_group_metadata_list)
919
+ input_tokens = output[:real_batch_size]
920
+
921
+ input_positions = torch.tensor(input_positions,
922
+ dtype=torch.long,
923
+ device=self.device)
924
+
925
+ num_decode_tokens = sum(seq_lens)
926
+
927
+ last_block_usage = [
928
+ slot[0] % self.block_size + 1 for slot in slot_mapping
929
+ ]
930
+ block_groups = [[i] * len(bt) for i, bt in enumerate(block_tables)]
931
+ block_usage = [[self.block_size] * (len(bt) - 1) + [lbu]
932
+ for bt, lbu in zip(block_tables, last_block_usage)
933
+ if bt]
934
+
935
+ block_list = flatten(block_tables)
936
+ block_groups = flatten(block_groups)
937
+ block_usage = flatten(block_usage)
938
+
939
+ assert len(block_list) == len(block_groups)
940
+ assert len(block_list) == len(block_usage)
941
+
942
+ padding_fn = None
943
+ if self.use_contiguous_pa:
944
+ block_bucket_size = max(max(block_list) + 1, len(block_list))
945
+ block_bucket_size = self.bucketing_ctx.get_padded_decode_num_blocks(
946
+ block_bucket_size)
947
+ indices: List[Any]
948
+ indices = [None] * block_bucket_size
949
+ for i, bid in enumerate(block_list):
950
+ indices[bid] = i
951
+ padding_fn = lambda tensor, pad_value: gather_list(
952
+ tensor, indices, pad_value)
953
+ else:
954
+ block_bucket_size = \
955
+ self.bucketing_ctx.get_padded_decode_num_blocks(
956
+ len(block_list))
957
+ padding_fn = lambda tensor, pad_value: pad_list(
958
+ tensor, block_bucket_size, pad_value)
959
+
960
+ block_list = padding_fn(block_list, _PAD_BLOCK_ID)
961
+ block_groups = padding_fn(block_groups, -1)
962
+ block_usage = padding_fn(block_usage, 1)
963
+
964
+ block_list = torch.tensor(block_list,
965
+ dtype=torch.int,
966
+ device=self.device)
967
+ block_groups = torch.tensor(block_groups,
968
+ dtype=torch.int,
969
+ device=self.device)
970
+ block_usage = torch.tensor(block_usage,
971
+ dtype=self.model_config.dtype,
972
+ device=self.device)
973
+ slot_mapping = torch.tensor(slot_mapping,
974
+ dtype=torch.long,
975
+ device=self.device)
976
+
977
+ block_indices, block_offsets = precompute_indices_and_offsets(
978
+ self.block_size, slot_mapping, False)
979
+
980
+ attn_metadata = self.attn_backend.make_metadata(
981
+ is_prompt=False,
982
+ block_list=block_list,
983
+ block_mapping=None,
984
+ block_usage=block_usage,
985
+ block_indices=block_indices,
986
+ block_offsets=block_offsets,
987
+ block_groups=block_groups,
988
+ attn_bias=None,
989
+ seq_lens_tensor=None,
990
+ num_prefills=0,
991
+ num_prefill_tokens=0,
992
+ num_decode_tokens=num_decode_tokens,
993
+ slot_mapping=slot_mapping,
994
+ multi_modal_placeholder_index_maps=None,
995
+ enable_kv_scales_calculation=False,
996
+ )
997
+ return PrepareDecodeMetadata(input_tokens=input_tokens,
998
+ input_positions=input_positions,
999
+ attn_metadata=attn_metadata,
1000
+ lora_index_mapping=lora_index_mapping,
1001
+ lora_prompt_mapping=lora_prompt_mapping,
1002
+ lora_requests=lora_requests,
1003
+ slot_mapping=slot_mapping,
1004
+ lora_ids=lora_ids)
1005
+
1006
+ def prepare_input_tensors(
1007
+ self,
1008
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1009
+ ) -> Tuple[TModelInputForHPU, SamplingMetadata]:
1010
+ if len(seq_group_metadata_list) == 0:
1011
+ return self._model_input_cls(), None
1012
+
1013
+ input_tokens = None
1014
+ input_positions = None
1015
+ lora_mapping = None
1016
+ lora_requests = None
1017
+ multi_modal_kwargs = None
1018
+ batch_type = None
1019
+ seq_lens = None
1020
+ query_lens = None
1021
+ real_batch_size = None
1022
+ batch_size_padded = None
1023
+
1024
+ self.event_start = self.profiler.get_timestamp_us()
1025
+ is_prompt = seq_group_metadata_list[0].is_prompt
1026
+ base_event_name = 'prompt' if is_prompt else 'decode'
1027
+ self.profiler.start('internal', base_event_name)
1028
+
1029
+ seq_group_metadata_list, real_batch_size, batch_size_padded = (
1030
+ self._add_dummy_seq(seq_group_metadata_list, is_prompt))
1031
+
1032
+ prefill_reqs = []
1033
+ decode_reqs = []
1034
+ for seq_group_meta in seq_group_metadata_list:
1035
+ if seq_group_meta.is_prompt:
1036
+ prefill_reqs.append(seq_group_meta)
1037
+ else:
1038
+ decode_reqs.append(seq_group_meta)
1039
+
1040
+ # Prepare input tensors.
1041
+ (
1042
+ input_tokens,
1043
+ input_positions,
1044
+ prefill_attn_metadata,
1045
+ seq_lens,
1046
+ query_lens,
1047
+ lora_index_mapping,
1048
+ lora_prompt_mapping,
1049
+ lora_requests,
1050
+ multi_modal_kwargs,
1051
+ slot_mapping,
1052
+ lora_ids,
1053
+ ) = self._prepare_prompt(prefill_reqs)
1054
+ (
1055
+ decode_input_tokens,
1056
+ decode_input_positions,
1057
+ decode_attn_metadata,
1058
+ decode_lora_index_mapping,
1059
+ decode_lora_prompt_mapping,
1060
+ decode_lora_requests,
1061
+ decode_slot_mapping,
1062
+ decode_lora_ids,
1063
+ ) = self._prepare_decode(decode_reqs)
1064
+ sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
1065
+ seq_lens, query_lens,
1066
+ self.device,
1067
+ self.pin_memory)
1068
+
1069
+ if not self.scheduler_config.chunked_prefill_enabled:
1070
+ assert (len(prefill_reqs) and len(decode_reqs)) == 0
1071
+
1072
+ num_prefills = len(seq_lens)
1073
+ num_prefill_tokens = len(input_tokens)
1074
+ num_decode_tokens = len(decode_input_tokens)
1075
+
1076
+ # NOTE(kzawora): Here we diverge from GPU code - we don't
1077
+ # support mixed batches, so we either use decode or prefill
1078
+ # inputs, without coalescing.
1079
+ assert (num_prefills == 0 and num_decode_tokens > 0) or (
1080
+ num_prefills > 0
1081
+ and num_decode_tokens == 0), "HPU does not support mixed batches!"
1082
+ if num_decode_tokens > 0:
1083
+ input_tokens = decode_input_tokens
1084
+ input_positions = decode_input_positions
1085
+ slot_mapping = decode_slot_mapping
1086
+ lora_index_mapping = decode_lora_index_mapping
1087
+ lora_prompt_mapping = decode_lora_prompt_mapping
1088
+ lora_requests = decode_lora_requests
1089
+ lora_ids = decode_lora_ids
1090
+
1091
+ # FIXME: We need to adjust selected_token_indices to accommodate
1092
+ # for padding
1093
+ max_len = input_tokens.size(1)
1094
+ paddings = [max_len - s for s in seq_lens]
1095
+ paddings = [0] + paddings[:-1]
1096
+ paddings = list(itertools.accumulate(paddings))
1097
+ paddings_prompt_logprobs = []
1098
+ for i, seq_group_metadata in enumerate(seq_group_metadata_list):
1099
+ if seq_group_metadata.sampling_params.prompt_logprobs is not None \
1100
+ and seq_group_metadata.is_prompt:
1101
+ paddings_prompt_logprobs += ([paddings[i]] * seq_lens[i])
1102
+ paddings = torch.tensor(
1103
+ paddings_prompt_logprobs if paddings_prompt_logprobs else paddings,
1104
+ dtype=sampling_metadata.selected_token_indices.dtype,
1105
+ device=sampling_metadata.selected_token_indices.device)
1106
+ sampling_metadata.selected_token_indices.add_(paddings)
1107
+
1108
+ if self.lora_config:
1109
+ lora_mapping = LoRAMapping(
1110
+ **dict(index_mapping=lora_index_mapping,
1111
+ prompt_mapping=lora_prompt_mapping,
1112
+ is_prefill=(num_prefills > 0)))
1113
+ else:
1114
+ lora_mapping = None
1115
+
1116
+ if (prefill_attn_metadata is not None
1117
+ and decode_attn_metadata is not None):
1118
+ batch_type = BatchType.MIXED
1119
+ raise NotImplementedError("Mixed batch is not supported on HPU")
1120
+ elif prefill_attn_metadata is not None:
1121
+ batch_type = BatchType.PREFILL
1122
+ else:
1123
+ batch_type = BatchType.DECODE
1124
+
1125
+ metadata_dict = {
1126
+ "input_tokens": input_tokens,
1127
+ "input_positions": input_positions,
1128
+ "selected_token_indices": sampling_metadata.selected_token_indices,
1129
+ "lora_requests": lora_requests,
1130
+ "lora_mapping": lora_mapping,
1131
+ "multi_modal_kwargs": multi_modal_kwargs,
1132
+ "num_prefill_tokens": num_prefill_tokens,
1133
+ "num_decode_tokens": num_decode_tokens,
1134
+ "slot_mapping": slot_mapping,
1135
+ "num_prefills": num_prefills,
1136
+ "batch_type": batch_type,
1137
+ "seq_lens": seq_lens,
1138
+ "query_lens": query_lens
1139
+ }
1140
+ if prefill_attn_metadata is not None:
1141
+ metadata_dict.update(prefill_attn_metadata.asdict_zerocopy())
1142
+ else:
1143
+ assert decode_attn_metadata is not None
1144
+ metadata_dict.update(decode_attn_metadata.asdict_zerocopy())
1145
+
1146
+ attn_metadata = prefill_attn_metadata if \
1147
+ prefill_attn_metadata is not None else decode_attn_metadata
1148
+
1149
+ return self._model_input_cls(input_tokens=input_tokens,
1150
+ seq_lens=seq_lens,
1151
+ query_lens=query_lens,
1152
+ input_positions=input_positions,
1153
+ attn_metadata=attn_metadata,
1154
+ lora_requests=lora_requests,
1155
+ lora_mapping=lora_mapping,
1156
+ multi_modal_kwargs=multi_modal_kwargs,
1157
+ real_batch_size=real_batch_size,
1158
+ batch_size_padded=batch_size_padded,
1159
+ lora_ids=lora_ids), \
1160
+ sampling_metadata
1161
+
1162
+ def _seq_len(self, attn_metadata):
1163
+ if attn_metadata.num_prefills != 0:
1164
+ return attn_metadata.slot_mapping.size(1)
1165
+ else:
1166
+ return attn_metadata.block_list.numel()
1167
+
1168
+ def trim_attn_metadata(self, metadata: AttentionMetadata) -> object:
1169
+ # NOTE(kzawora): To anyone working on this in the future:
1170
+ # Trimming metadata is required when using HPUGraphs.
1171
+ # Attention metadata is going to be hashed by PT bridge, and
1172
+ # appropriate HPUGraphs will be matched based on all inputs' hash.
1173
+
1174
+ # Before you put more keys in here, make sure you know their
1175
+ # value type and make sure you know how it's going to be hashed.
1176
+ # You can find that information in input_hash function
1177
+ # in habana_frameworks/torch/hpu/graphs.py. You can also hash
1178
+ # it manually with torch.hpu.graphs.input_hash(attention_metadata)
1179
+
1180
+ # If you use primitive types here - they will get hashed based
1181
+ # on their value. You *will* get lots of excessive graph captures
1182
+ # (and an OOM eventually) if you decide to put something like
1183
+ # seq_len int here.
1184
+ # If you absolutely need a scalar, put it in a tensor. Tensors
1185
+ # get hashed using their metadata, not their values:
1186
+ # input_hash(torch.tensor(123)) == input_hash(torch.tensor(321))
1187
+ # input_hash(123) != input_hash(321)
1188
+ # input_hash("abc") != input_hash("cba")
1189
+ attention_metadata = subtuple(metadata, 'TrimmedAttentionMetadata', [
1190
+ 'attn_bias', 'seq_lens_tensor', 'block_list', 'block_mapping',
1191
+ 'block_usage', 'slot_mapping', 'is_prompt', 'block_indices',
1192
+ 'block_offsets', 'block_groups'
1193
+ ])
1194
+ return attention_metadata
1195
+
1196
+ def create_dummy_seq_group_metadata(self,
1197
+ group_id,
1198
+ seq_len,
1199
+ is_prompt,
1200
+ lora_request=None):
1201
+ sampling_params = SamplingParams(temperature=0)
1202
+ num_blocks = math.ceil(seq_len / self.block_size)
1203
+ seq_len = max(seq_len, 1)
1204
+ if is_prompt:
1205
+ input_len = seq_len
1206
+ output_len = 0
1207
+ block_tables = None
1208
+ else:
1209
+ input_len = seq_len - 1
1210
+ output_len = 1
1211
+ block_tables = {group_id: [_PAD_BLOCK_ID] * num_blocks}
1212
+ prompt_token_ids = [0] * input_len
1213
+ output_token_ids = [1] * output_len
1214
+ prompt_token_ids_array = array('l', prompt_token_ids) # noqa: F821
1215
+ seq_data = SequenceData(prompt_token_ids_array)
1216
+ seq_data.output_token_ids = output_token_ids
1217
+ return SequenceGroupMetadata(request_id=str(group_id),
1218
+ is_prompt=(output_len == 0),
1219
+ seq_data={group_id: seq_data},
1220
+ sampling_params=sampling_params,
1221
+ block_tables=block_tables,
1222
+ lora_request=lora_request)
1223
+
1224
+ def profile_run(self) -> None:
1225
+ num_layers = self.model_config.get_num_layers(self.parallel_config)
1226
+ kv_caches = [None] * num_layers
1227
+ bind_kv_cache(
1228
+ self.vllm_config.compilation_config.static_forward_context,
1229
+ [kv_caches])
1230
+ _, max_seq_len = self.bucketing_ctx.get_max_prompt_shape()
1231
+ max_batch_size = min(self.max_num_seqs,
1232
+ self.max_num_batched_tokens // max_seq_len)
1233
+ self.warmup_scenario(max_batch_size, max_seq_len, True, kv_caches,
1234
+ False, True)
1235
+ return
1236
+
1237
+ def warmup_scenario(self,
1238
+ batch_size,
1239
+ seq_len,
1240
+ is_prompt,
1241
+ kv_caches,
1242
+ is_pt_profiler_run=False,
1243
+ is_lora_profile_run=False) -> None:
1244
+ use_graphs = self._use_graphs(batch_size, seq_len, is_prompt)
1245
+ scenario_name = ("warmup_"
1246
+ f"{'prompt' if is_prompt else 'decode'}_"
1247
+ f"bs{batch_size}_"
1248
+ f"seq{seq_len}_"
1249
+ f"graphs{'T' if use_graphs else 'F'}")
1250
+ # This represents the maximum number of different requests
1251
+ # that will have unique loras, an therefore the max amount of memory
1252
+ # consumption create dummy lora request copies from the lora request
1253
+ # passed in, which contains a lora from the lora warmup path.
1254
+ dummy_lora_requests: List[LoRARequest] = []
1255
+ dummy_lora_requests_per_seq: List[LoRARequest] = []
1256
+ if self.lora_config and is_lora_profile_run:
1257
+ assert self.lora_manager is not None
1258
+ with self.lora_manager.dummy_lora_cache():
1259
+ for idx in range(self.lora_config.max_loras):
1260
+ lora_id = idx + 1
1261
+ dummy_lora_request = LoRARequest(
1262
+ lora_name=f"warmup_{lora_id}",
1263
+ lora_int_id=lora_id,
1264
+ lora_local_path="/not/a/real/path",
1265
+ )
1266
+ self.lora_manager.add_dummy_lora(dummy_lora_request,
1267
+ rank=LORA_WARMUP_RANK)
1268
+ dummy_lora_requests.append(dummy_lora_request)
1269
+ dummy_lora_requests_per_seq = [
1270
+ dummy_lora_requests[idx % len(dummy_lora_requests)]
1271
+ for idx in range(batch_size)
1272
+ ]
1273
+ self.profiler.start('internal', scenario_name)
1274
+ times = 3 if use_graphs or is_pt_profiler_run else 1
1275
+ if is_prompt:
1276
+ seqs = [
1277
+ self.create_dummy_seq_group_metadata(
1278
+ i,
1279
+ seq_len,
1280
+ is_prompt,
1281
+ lora_request=dummy_lora_requests_per_seq[i]
1282
+ if dummy_lora_requests_per_seq else None)
1283
+ for i in range(batch_size)
1284
+ ]
1285
+ else:
1286
+ # FIXME: seq_len is actually number of blocks
1287
+ blocks = [seq_len // batch_size for _ in range(batch_size)]
1288
+ blocks[0] += seq_len % batch_size
1289
+ seqs = [
1290
+ self.create_dummy_seq_group_metadata(
1291
+ i,
1292
+ b * self.block_size - 1,
1293
+ is_prompt,
1294
+ lora_request=dummy_lora_requests_per_seq[i]
1295
+ if dummy_lora_requests_per_seq else None)
1296
+ for i, b in enumerate(blocks)
1297
+ ]
1298
+ torch.hpu.synchronize()
1299
+ profiler = None
1300
+ if is_pt_profiler_run and self.is_driver_worker:
1301
+ profiler = setup_profiler()
1302
+ profiler.start()
1303
+ for _ in range(times):
1304
+ inputs = self.prepare_model_input(seqs)
1305
+ is_single_step = \
1306
+ self.vllm_config.scheduler_config.num_scheduler_steps == 1
1307
+ if is_prompt or is_single_step:
1308
+ self.execute_model(inputs, None, warmup_mode=True)
1309
+ else: # decode with multi-step
1310
+ inputs = dataclasses.replace(inputs,
1311
+ is_first_multi_step=True,
1312
+ is_last_step=False)
1313
+ self.execute_model(inputs,
1314
+ None,
1315
+ warmup_mode=True,
1316
+ num_steps=2,
1317
+ seqs=seqs)
1318
+ inputs = dataclasses.replace(inputs,
1319
+ is_first_multi_step=False,
1320
+ is_last_step=True)
1321
+ self.execute_model(inputs,
1322
+ None,
1323
+ warmup_mode=True,
1324
+ num_steps=2,
1325
+ seqs=seqs)
1326
+ torch.hpu.synchronize()
1327
+ if profiler:
1328
+ profiler.step()
1329
+ if profiler:
1330
+ profiler.stop()
1331
+ self.profiler.end()
1332
+ gc.collect()
1333
+
1334
+ def remove_all_loras(self):
1335
+ if not self.lora_manager:
1336
+ raise RuntimeError("LoRA is not enabled.")
1337
+ self.lora_manager.remove_all_adapters()
1338
+
1339
+ def set_active_loras(self, lora_requests: Set[LoRARequest],
1340
+ lora_mapping: LoRAMapping) -> None:
1341
+ if not self.lora_manager:
1342
+ raise RuntimeError("LoRA is not enabled.")
1343
+ self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
1344
+
1345
+ def add_lora(self, lora_request: LoRARequest) -> bool:
1346
+ if not self.lora_manager:
1347
+ raise RuntimeError("LoRA is not enabled.")
1348
+ return self.lora_manager.add_adapter(lora_request)
1349
+
1350
+ def remove_lora(self, lora_id: int) -> bool:
1351
+ if not self.lora_manager:
1352
+ raise RuntimeError("LoRA is not enabled.")
1353
+ return self.lora_manager.remove_adapter(lora_id)
1354
+
1355
+ def pin_lora(self, lora_id: int) -> bool:
1356
+ if not self.lora_manager:
1357
+ raise RuntimeError("LoRA is not enabled.")
1358
+ return self.lora_manager.pin_adapter(lora_id)
1359
+
1360
+ def list_loras(self) -> Set[int]:
1361
+ if not self.lora_manager:
1362
+ raise RuntimeError("LoRA is not enabled.")
1363
+ return self.lora_manager.list_adapters()
1364
+
1365
+ def log_warmup(self, phase, i, max_i, batch_size, seq_len):
1366
+ free_mem = format_bytes(
1367
+ HabanaMemoryProfiler.current_free_device_memory())
1368
+ dim = "num_blocks"
1369
+ if phase == "Prompt":
1370
+ dim = "seq_len"
1371
+ msg = (f"[Warmup][{phase}][{i+1}/{max_i}] "
1372
+ f"batch_size:{batch_size} "
1373
+ f"{dim}:{seq_len} "
1374
+ f"free_mem:{free_mem}")
1375
+ logger.info(msg)
1376
+
1377
+ def warmup_all_buckets(self, buckets, is_prompt, kv_caches):
1378
+ for i, (batch_size, seq_len) in enumerate(reversed(buckets)):
1379
+ self.log_warmup('Prompt' if is_prompt else 'Decode', i,
1380
+ len(buckets), batch_size, seq_len)
1381
+ self.warmup_scenario(batch_size, seq_len, is_prompt, kv_caches)
1382
+
1383
+ def warmup_graphs(self,
1384
+ strategy,
1385
+ buckets,
1386
+ is_prompt,
1387
+ kv_caches,
1388
+ available_mem,
1389
+ starting_mem=0,
1390
+ total_batch_seq=0.001):
1391
+ total_mem = starting_mem
1392
+ idx = 0
1393
+ phase = f'Graph/{"Prompt" if is_prompt else "Decode"}'
1394
+ num_candidates = len(buckets)
1395
+ ordering : Union[Callable[[Any], Tuple[Any, Any]], \
1396
+ Callable[[Any], Tuple[Any, Any, Any]]]
1397
+ if strategy == 'min_tokens':
1398
+ ordering = lambda b: (b[0] * b[1], b[1], b[0])
1399
+ elif strategy == 'max_bs':
1400
+ ordering = lambda b: (-b[0], b[1])
1401
+ else:
1402
+ raise NotImplementedError(
1403
+ f'Unsupported graph allocation strategy: {strategy}')
1404
+ buckets = list(sorted(buckets, key=ordering))
1405
+ captured_all = True
1406
+ for idx, (batch_size, seq_len) in enumerate(buckets):
1407
+ # Graph memory usage is proportional to seq dimension in a batch
1408
+ batch_seq = batch_size * seq_len if is_prompt else batch_size
1409
+ mem_estimate = batch_seq / total_batch_seq * total_mem
1410
+ if mem_estimate >= available_mem:
1411
+ captured_all = False
1412
+ continue
1413
+ graphed_bucket = (batch_size, seq_len, is_prompt)
1414
+ if graphed_bucket in self.graphed_buckets:
1415
+ continue
1416
+ self.graphed_buckets.add(graphed_bucket)
1417
+ self.log_warmup(phase, idx, num_candidates, batch_size, seq_len)
1418
+ with HabanaMemoryProfiler() as mem_prof:
1419
+ self.warmup_scenario(batch_size, seq_len, is_prompt, kv_caches)
1420
+ used_mem = align_workers(mem_prof.consumed_device_memory,
1421
+ torch.distributed.ReduceOp.MAX)
1422
+ available_mem -= used_mem
1423
+ total_mem += used_mem
1424
+ total_batch_seq += batch_seq
1425
+
1426
+ return total_mem, total_batch_seq, captured_all
1427
+
1428
+ def log_graph_warmup_summary(self, buckets, is_prompt, total_mem):
1429
+ num_candidates = len(buckets)
1430
+ phase = f'Graph/{"Prompt" if is_prompt else "Decode"}'
1431
+ graphed = list(c[:2] for c in self.graphed_buckets
1432
+ if c[2] == is_prompt)
1433
+ if num_candidates == 0:
1434
+ num_candidates = 1
1435
+ msg = (f'{phase} captured:{len(graphed)} '
1436
+ f'({100 * len(graphed) / num_candidates:.1f}%) '
1437
+ f'used_mem:{format_bytes(total_mem)} '
1438
+ f'buckets:{sorted(list(graphed))}')
1439
+ logger.info(msg)
1440
+
1441
+ @torch.inference_mode()
1442
+ def warmup_model(self, kv_caches: List[torch.Tensor]) -> None:
1443
+ max_blocks = kv_caches[0][0].size(0)
1444
+ self.bucketing_ctx.generate_decode_buckets(max_blocks)
1445
+ if profile := os.environ.get('VLLM_PT_PROFILE', None):
1446
+ phase, bs, seq_len, graph = profile.split('_')
1447
+ is_prompt = phase == 'prompt'
1448
+ graphs = graph == 't'
1449
+ if graphs:
1450
+ self.graphed_buckets.add((int(bs), int(seq_len), is_prompt))
1451
+ self.warmup_scenario(int(bs), int(seq_len), is_prompt, kv_caches,
1452
+ True)
1453
+ raise AssertionError("Finished profiling")
1454
+ if not htorch.utils.internal.is_lazy() and not self.enforce_eager:
1455
+ cache_size_limit = 1 + 3 * (
1456
+ len(self.bucketing_ctx.prompt_buckets) +
1457
+ len(self.bucketing_ctx.decode_buckets))
1458
+ torch._dynamo.config.cache_size_limit = max(
1459
+ cache_size_limit, torch._dynamo.config.cache_size_limit)
1460
+ # Multiply by 8 to follow the original default ratio between
1461
+ # the cache_size_limit and accumulated_cache_size_limit
1462
+ torch._dynamo.config.accumulated_cache_size_limit = max(
1463
+ cache_size_limit * 8,
1464
+ torch._dynamo.config.accumulated_cache_size_limit)
1465
+ if self.skip_warmup:
1466
+ logger.info("Skipping warmup...")
1467
+ return
1468
+ self.profiler.start('internal', 'warmup')
1469
+ start_mem = HabanaMemoryProfiler.current_device_memory_usage()
1470
+ start_time = time.perf_counter()
1471
+
1472
+ compile_only_mode_context = functools.partial(bc.env_setting,
1473
+ "PT_COMPILE_ONLY_MODE",
1474
+ True)
1475
+ can_use_compile_only_mode = True
1476
+ try:
1477
+ with compile_only_mode_context():
1478
+ pass
1479
+ logger.debug("Using PT_COMPILE_ONLY_MODE.")
1480
+ except KeyError:
1481
+ can_use_compile_only_mode = False
1482
+ logger.warning('Cannot use PT_COMPILE_ONLY_MODE. '
1483
+ 'Warmup time will be negatively impacted. '
1484
+ 'Please update Gaudi Software Suite.')
1485
+ with compile_only_mode_context(
1486
+ ) if can_use_compile_only_mode else contextlib.nullcontext():
1487
+ print("aa")
1488
+ self.warmup_all_buckets(self.bucketing_ctx.prompt_buckets, True,
1489
+ kv_caches)
1490
+ print("bb")
1491
+ self.warmup_all_buckets(self.bucketing_ctx.decode_buckets, False,
1492
+ kv_caches)
1493
+
1494
+ if not self.enforce_eager and htorch.utils.internal.is_lazy():
1495
+ assert self.mem_margin is not None, \
1496
+ ("HabanaWorker.determine_num_available_blocks needs "
1497
+ "to be called before warming up the model.")
1498
+ free_mem = HabanaMemoryProfiler.current_free_device_memory()
1499
+ graph_free_mem = free_mem - self.mem_margin
1500
+ graph_free_mem = align_workers(graph_free_mem,
1501
+ torch.distributed.ReduceOp.MIN)
1502
+ prompt_graph_mem_ratio = float(
1503
+ os.environ.get('VLLM_GRAPH_PROMPT_RATIO', '0.3'))
1504
+ prompt_available_memory = (prompt_graph_mem_ratio *
1505
+ graph_free_mem)
1506
+ decode_available_memory = (graph_free_mem -
1507
+ prompt_available_memory)
1508
+ msg = (
1509
+ f"Using {format_bytes(graph_free_mem)}"
1510
+ f"/{format_bytes(free_mem)} "
1511
+ "of free device memory for HPUGraphs, "
1512
+ f"{format_bytes(prompt_available_memory)} for prompt and "
1513
+ f"{format_bytes(decode_available_memory)} for decode "
1514
+ f"(VLLM_GRAPH_PROMPT_RATIO={prompt_graph_mem_ratio})")
1515
+ logger.info(msg)
1516
+ prompt_strategy = os.environ.get('VLLM_GRAPH_PROMPT_STRATEGY',
1517
+ 'min_tokens')
1518
+ decode_strategy = os.environ.get('VLLM_GRAPH_DECODE_STRATEGY',
1519
+ 'max_bs')
1520
+ mem_post_prompt, prompt_batch_seq, prompt_captured_all = \
1521
+ self.warmup_graphs(
1522
+ prompt_strategy, self.bucketing_ctx.prompt_buckets,
1523
+ True, kv_caches, prompt_available_memory)
1524
+ mem_post_decode, decode_batch_seq, decode_captured_all = \
1525
+ self.warmup_graphs(
1526
+ decode_strategy, self.bucketing_ctx.decode_buckets,
1527
+ False, kv_caches, decode_available_memory)
1528
+
1529
+ # Not all prompt buckets were captured, but all decode buckets
1530
+ # were captured and we have some free graph-allocated space
1531
+ # left. Let's try to use it for capturing more prompt buckets.
1532
+ if (mem_post_decode + mem_post_prompt < graph_free_mem
1533
+ and not prompt_captured_all and decode_captured_all):
1534
+ mem_post_prompt, _, prompt_captured_all = (
1535
+ self.warmup_graphs(
1536
+ prompt_strategy, self.bucketing_ctx.prompt_buckets,
1537
+ True, kv_caches,
1538
+ graph_free_mem - mem_post_prompt - mem_post_decode,
1539
+ mem_post_prompt, prompt_batch_seq))
1540
+
1541
+ # Not all decode buckets were captured, but all prompt buckets
1542
+ # were captured and we have some free graph-allocated space
1543
+ # left. Let's try to use it for capturing more decode buckets.
1544
+ if mem_post_decode + mem_post_prompt < graph_free_mem \
1545
+ and not decode_captured_all \
1546
+ and prompt_captured_all:
1547
+ mem_post_decode, _, _ = self.warmup_graphs(
1548
+ decode_strategy, self.bucketing_ctx.decode_buckets,
1549
+ False, kv_caches,
1550
+ graph_free_mem - mem_post_prompt - mem_post_decode,
1551
+ mem_post_decode, decode_batch_seq)
1552
+
1553
+ self.log_graph_warmup_summary(
1554
+ self.bucketing_ctx.prompt_buckets, True, mem_post_prompt)
1555
+ self.log_graph_warmup_summary(
1556
+ self.bucketing_ctx.decode_buckets, False, mem_post_decode)
1557
+
1558
+ end_time = time.perf_counter()
1559
+ end_mem = HabanaMemoryProfiler.current_device_memory_usage()
1560
+ elapsed_time = end_time - start_time
1561
+ msg = (
1562
+ f"Warmup finished in {elapsed_time:.0f} secs, "
1563
+ f"allocated {format_bytes(end_mem - start_mem)} of device memory")
1564
+ logger.info(msg)
1565
+ self.profiler.end()
1566
+
1567
+ @property
1568
+ def vocab_size(self) -> int:
1569
+ return self.model_config.get_vocab_size()
1570
+
1571
+ @property
1572
+ def mem_margin(self) -> Optional[int]:
1573
+ return self._mem_margin
1574
+
1575
+ @mem_margin.setter
1576
+ def mem_margin(self, value):
1577
+ self._mem_margin = value
1578
+
1579
+
1580
+ def _maybe_wrap_in_hpu_graph(*args, **kwargs):
1581
+ return htorch.hpu.wrap_in_hpu_graph(
1582
+ HpuModelAdapter(*args, **kwargs), disable_tensor_cache=True
1583
+ ) if htorch.utils.internal.is_lazy() else HpuModelAdapter(*args, **kwargs)
1584
+
1585
+
1586
+ class HabanaProfilerCounterHelper:
1587
+
1588
+ def __init__(self):
1589
+ self.niter = 0
1590
+ self.average_real_throughput = None
1591
+ self.logged_once = False
1592
+ self.real_seq_lens = []
1593
+ self.prompt_seq_lens = []
1594
+
1595
+ def capture_seq_group_metadata_stats(self, seq_group_metadata_list):
1596
+ self.real_seq_lens = [
1597
+ len(seq_data.prompt_token_ids) + len(seq_data.output_token_ids)
1598
+ for seq_group_metadata in seq_group_metadata_list
1599
+ for seq_data in seq_group_metadata.seq_data.values()
1600
+ ]
1601
+ self.prompt_seq_lens = [
1602
+ len(seq_data.prompt_token_ids)
1603
+ for seq_group_metadata in seq_group_metadata_list
1604
+ for seq_data in seq_group_metadata.seq_data.values()
1605
+ ]
1606
+
1607
+ def get_counter_dict(self, cache_config, duration, seq_len,
1608
+ batch_size_padded, real_batch_size, is_prompt):
1609
+ throughput = batch_size_padded / (duration / 1e6)
1610
+ throughput_effective = real_batch_size / (duration / 1e6)
1611
+
1612
+ real_max_seq_len = max(self.real_seq_lens)
1613
+ real_num_tokens = sum(self.real_seq_lens)
1614
+ padded_num_tokens = batch_size_padded * seq_len
1615
+ batch_token_utilization = real_num_tokens / padded_num_tokens
1616
+ if self.average_real_throughput is None:
1617
+ self.average_real_throughput = throughput_effective
1618
+ else: # https://www.heikohoffmann.de/htmlthesis/node134.html
1619
+ self.average_real_throughput = self.average_real_throughput + 1 / (
1620
+ self.niter + 1) * (throughput_effective -
1621
+ self.average_real_throughput)
1622
+ phase = "prompt" if is_prompt else "decode"
1623
+ counters = {
1624
+ f'{phase}_bucket_batch_size': batch_size_padded,
1625
+ f'{phase}_batch_size': real_batch_size,
1626
+ f'{phase}_bucket_seq_len': seq_len,
1627
+ f'{phase}_seq_len': real_max_seq_len,
1628
+ f'{phase}_bucket_gen_throughput': throughput,
1629
+ f'{phase}_real_gen_throughput': throughput_effective,
1630
+ f'{phase}_batch_token_utilization': batch_token_utilization,
1631
+ 'average_real_throughput': self.average_real_throughput,
1632
+ 'engine_iteration': self.niter,
1633
+ }
1634
+ self.niter += 1
1635
+ if is_prompt:
1636
+ prompt_bucket_in_throughput = (seq_len * batch_size_padded) / (
1637
+ duration / 1e6)
1638
+ prompt_real_in_throughput = sum(
1639
+ self.prompt_seq_lens) / (duration / 1e6)
1640
+ counters[
1641
+ f'{phase}_bucket_in_throughput'] = prompt_bucket_in_throughput
1642
+ counters[f'{phase}_real_in_throughput'] = prompt_real_in_throughput
1643
+
1644
+ # KV cache might not be created yet (e.g. for profiling run)
1645
+ if cache_config.num_gpu_blocks is not None and \
1646
+ cache_config.num_gpu_blocks != 0:
1647
+ cache_num_blocks_used = [
1648
+ math.ceil(sl / cache_config.block_size)
1649
+ for sl in self.real_seq_lens
1650
+ ]
1651
+ cache_total_num_blocks_used = sum(cache_num_blocks_used)
1652
+ num_cache_blocks = cache_config.num_gpu_blocks
1653
+ cache_total_num_free_blocks = \
1654
+ num_cache_blocks - cache_total_num_blocks_used
1655
+ cache_computed_utilization = \
1656
+ cache_total_num_blocks_used / num_cache_blocks
1657
+ max_blocks_per_seq = math.ceil(seq_len / cache_config.block_size)
1658
+ batch_block_utilization = cache_total_num_blocks_used / (
1659
+ batch_size_padded * max_blocks_per_seq)
1660
+ counters['cache_num_blocks_used'] = cache_total_num_blocks_used
1661
+ counters['cache_num_free_blocks'] = cache_total_num_free_blocks
1662
+ counters['cache_computed_utilization'] = cache_computed_utilization
1663
+ counters[
1664
+ f'{phase}_batch_block_utilization'] = batch_block_utilization
1665
+ if not self.logged_once:
1666
+ counters['const_cache_num_blocks'] = cache_config.num_gpu_blocks
1667
+ counters[
1668
+ 'const_gpu_memory_utilization'] = \
1669
+ cache_config.gpu_memory_utilization
1670
+ counters['const_block_size'] = cache_config.block_size
1671
+ self.logged_once = True
1672
+ return counters
1673
+
1674
+
1675
+ def unwrap_model(model):
1676
+ if isinstance(model, torch._dynamo.eval_frame.OptimizedModule):
1677
+ return unwrap_model(model._orig_mod)
1678
+ else:
1679
+ model = list(vars(model)['_modules'].values())[0]
1680
+ modules = list(vars(model)['_modules'].values())
1681
+ return modules
1682
+
1683
+
1684
+ class HPUModelRunner(HPUModelRunnerBase[ModelInputForHPUWithSamplingMetadata]):
1685
+ """
1686
+ GPU model runner with sampling step.
1687
+ """
1688
+ _model_input_cls: Type[ModelInputForHPUWithSamplingMetadata] = (
1689
+ ModelInputForHPUWithSamplingMetadata)
1690
+
1691
+ def make_model_input_from_broadcasted_tensor_dict(
1692
+ self,
1693
+ tensor_dict: Dict[str, Any],
1694
+ ) -> ModelInputForHPUWithSamplingMetadata:
1695
+ return (
1696
+ ModelInputForHPUWithSamplingMetadata.from_broadcasted_tensor_dict(
1697
+ tensor_dict,
1698
+ attn_backend=self.attn_backend,
1699
+ ))
1700
+
1701
+ @torch.inference_mode()
1702
+ def prepare_model_input(
1703
+ self,
1704
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1705
+ virtual_engine: int = 0,
1706
+ finished_requests_ids: Optional[List[str]] = None
1707
+ ) -> ModelInputForHPUWithSamplingMetadata:
1708
+ """Prepare the model input based on a given sequence group, including
1709
+ metadata for the sampling step.
1710
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1711
+ The result tensors and data structure also batches input in prefill
1712
+ -> decode order. For example,
1713
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1714
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1715
+ If cuda graph is required, this API automatically pads inputs.
1716
+ """
1717
+ with self.profiler.record_event('internal', 'prepare_input_tensors'):
1718
+ assert seq_group_metadata_list is not None
1719
+ if self.profiler.enabled:
1720
+ self.profiler_counter_helper.capture_seq_group_metadata_stats(
1721
+ seq_group_metadata_list=seq_group_metadata_list)
1722
+ model_input, sampling_metadata = self.prepare_input_tensors(
1723
+ seq_group_metadata_list)
1724
+ assert model_input.attn_metadata is not None
1725
+ is_prompt = model_input.attn_metadata.is_prompt
1726
+
1727
+ return dataclasses.replace(model_input,
1728
+ sampling_metadata=sampling_metadata,
1729
+ is_prompt=is_prompt,
1730
+ virtual_engine=virtual_engine)
1731
+
1732
+ def finish_measurements(self):
1733
+ from neural_compressor.torch.quantization import finalize_calibration
1734
+ finalize_calibration(self.model.model)
1735
+
1736
+ def _check_config(self, batch_size, seq_len, is_prompt, warmup_mode):
1737
+ cfg = (batch_size, seq_len, is_prompt)
1738
+ seen = cfg in self.seen_configs
1739
+ self.seen_configs.add(cfg)
1740
+ if not seen and not warmup_mode:
1741
+ phase = 'prompt' if is_prompt else 'decode'
1742
+ logger.warning("Configuration: (%s, %s, %s) was not warmed-up!",
1743
+ phase, batch_size, seq_len)
1744
+
1745
+ def create_lora_mask(self, input_tokens: torch.Tensor, lora_ids: List[int],
1746
+ is_prompt: bool):
1747
+ '''
1748
+ This is a helper function to create the mask for lora computations.
1749
+ Lora Mask is needed to ensure we match the correct lora weights for the
1750
+ for the request.
1751
+ For Prompt phase we have
1752
+ lora_mask with shape (batch_size * seq_len, max_loras * max_rank)
1753
+ lora_logits_mask with shape (batch_size, max_loras * max_rank)
1754
+ For Decode phase we have both
1755
+ lora_mask and lora_logits_mask with shape
1756
+ (batch_size, max_loras * max_rank)
1757
+ '''
1758
+ lora_mask: torch.Tensor = None
1759
+ lora_logits_mask: torch.Tensor = None
1760
+ lora_index = 0
1761
+
1762
+ if self.lora_config:
1763
+ if is_prompt:
1764
+ lora_mask = torch.zeros(
1765
+ input_tokens.shape[0] * input_tokens.shape[1],
1766
+ (self.lora_config.max_loras) *\
1767
+ self.lora_config.max_lora_rank,
1768
+ dtype=self.lora_config.lora_dtype)
1769
+ lora_logits_mask = torch.zeros(
1770
+ input_tokens.shape[0], (self.lora_config.max_loras) *
1771
+ self.lora_config.max_lora_rank,
1772
+ dtype=self.lora_config.lora_dtype)
1773
+
1774
+ ones = torch.ones(input_tokens.shape[1],
1775
+ self.lora_config.max_lora_rank,
1776
+ dtype=self.lora_config.lora_dtype)
1777
+ logit_ones = torch.ones(1,
1778
+ self.lora_config.max_lora_rank,
1779
+ dtype=self.lora_config.lora_dtype)
1780
+
1781
+ for i in range(len(lora_ids)):
1782
+ if lora_ids[i] == 0:
1783
+ continue
1784
+ lora_index = self.lora_manager._adapter_manager.\
1785
+ lora_index_to_id.index(lora_ids[i])
1786
+ start_row = i * input_tokens.shape[1]
1787
+ end_row = start_row + input_tokens.shape[1]
1788
+ start_col = lora_index * self.lora_config.max_lora_rank
1789
+ end_col = start_col + self.lora_config.max_lora_rank
1790
+ lora_mask[start_row:end_row, start_col:end_col] = ones
1791
+ lora_logits_mask[i, start_col:end_col] = logit_ones
1792
+ lora_mask = lora_mask.to('hpu')
1793
+ lora_logits_mask = lora_logits_mask.to('hpu')
1794
+ else:
1795
+ lora_mask = torch.zeros(input_tokens.shape[0],
1796
+ (self.lora_config.max_loras) *
1797
+ self.lora_config.max_lora_rank,
1798
+ dtype=self.lora_config.lora_dtype)
1799
+ ones = torch.ones(1,
1800
+ self.lora_config.max_lora_rank,
1801
+ dtype=self.lora_config.lora_dtype)
1802
+ for i in range(len(lora_ids)):
1803
+ if lora_ids[i] == 0:
1804
+ continue
1805
+ lora_index = self.lora_manager._adapter_manager.\
1806
+ lora_index_to_id.index(lora_ids[i])
1807
+ start_pos = lora_index * self.lora_config.max_lora_rank
1808
+ end_pos = start_pos + self.lora_config.max_lora_rank
1809
+ lora_mask[i, start_pos:end_pos] = ones
1810
+ lora_mask = lora_mask.to('hpu')
1811
+ lora_logits_mask = lora_mask
1812
+
1813
+ return lora_mask, lora_logits_mask
1814
+
1815
+ def _get_seq_ids(self, model_input):
1816
+ return ([
1817
+ sg.seq_ids[0] for sg in model_input.sampling_metadata.seq_groups
1818
+ ])
1819
+
1820
+ def _pad_to_max_num_seqs(self, tensor, value):
1821
+ padding_needed = self.max_num_seqs - tensor.size(0)
1822
+ if padding_needed:
1823
+ padding = torch.full((padding_needed, *tensor.shape[1:]),
1824
+ value,
1825
+ device=tensor.device,
1826
+ dtype=tensor.dtype)
1827
+ tensor = torch.cat([tensor, padding])
1828
+ return tensor
1829
+
1830
+ @torch.inference_mode()
1831
+ def execute_model(
1832
+ self,
1833
+ model_input: ModelInputForHPUWithSamplingMetadata,
1834
+ kv_caches: List[torch.Tensor],
1835
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1836
+ num_steps: int = 1,
1837
+ warmup_mode=False,
1838
+ seqs=None,
1839
+ ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
1840
+ VLLM_DELAYED_SAMPLING = envs.VLLM_HPU_USE_DELAYED_SAMPLING
1841
+ use_delayed_sampling = VLLM_DELAYED_SAMPLING and not warmup_mode
1842
+ assert not (use_delayed_sampling and num_steps != 1), \
1843
+ 'Delayed sampling is not compatible with MSS!'
1844
+ assert model_input.input_tokens is not None
1845
+ if use_delayed_sampling and not model_input.is_prompt and \
1846
+ self.is_driver_worker:
1847
+ num_cached = len(self.cached_step_outputs)
1848
+ assert num_cached > 0
1849
+ cur_seq_ids = self._get_seq_ids(model_input)
1850
+ cur_seq_id_pos = {
1851
+ sid: idx
1852
+ for idx, sid in enumerate(cur_seq_ids) if sid >= 0
1853
+ }
1854
+ htorch.core.mark_step()
1855
+ for i in range(num_cached):
1856
+ prev_seq_ids = self._get_seq_ids(self.cached_step_inputs[i])
1857
+ target_indices = [
1858
+ cur_seq_id_pos.get(psi, -1) for psi in prev_seq_ids
1859
+ ]
1860
+ padding = self.cached_step_outputs[i].size(0) - len(
1861
+ target_indices)
1862
+ target_indices.extend([-1] * padding)
1863
+ target_indices = torch.tensor(
1864
+ target_indices,
1865
+ device=model_input.input_tokens.device,
1866
+ dtype=model_input.input_tokens.dtype)
1867
+ model_input.input_tokens.index_copy_(
1868
+ 0, target_indices, self.cached_step_outputs[i])
1869
+ htorch.core.mark_step()
1870
+
1871
+ if not model_input.is_first_multi_step:
1872
+ if not model_input.is_last_step:
1873
+ # not first or last multi-step
1874
+ return []
1875
+ # last multi-step
1876
+ output = self._decode_sampler_outputs(
1877
+ model_input) if self.is_driver_worker else []
1878
+ torch.hpu.synchronize()
1879
+ if model_input.is_first_multi_step:
1880
+ # first multi-step
1881
+ if self.lora_config:
1882
+ assert model_input.lora_requests is not None
1883
+ assert model_input.lora_mapping is not None
1884
+ self.set_active_loras(model_input.lora_requests,
1885
+ model_input.lora_mapping)
1886
+ # Rank!=0 workers has is_prompt==None
1887
+ if use_delayed_sampling and not model_input.is_prompt and \
1888
+ model_input.input_tokens.size(1) == 1:
1889
+ if self.is_driver_worker:
1890
+ model_kwargs_broadcast_data = {
1891
+ "input_tokens": model_input.input_tokens
1892
+ }
1893
+ broadcast_tensor_dict(model_kwargs_broadcast_data, src=0)
1894
+ input_tokens = model_input.input_tokens
1895
+
1896
+ else:
1897
+ model_kwargs_broadcast_data = broadcast_tensor_dict(src=0)
1898
+ input_tokens = model_kwargs_broadcast_data["input_tokens"]
1899
+ else:
1900
+ input_tokens = model_input.input_tokens
1901
+ input_positions = model_input.input_positions
1902
+ attn_metadata = model_input.attn_metadata
1903
+ sampling_metadata = model_input.sampling_metadata
1904
+ real_batch_size = model_input.real_batch_size
1905
+ batch_size_padded = model_input.batch_size_padded
1906
+ assert input_tokens is not None
1907
+ assert input_positions is not None
1908
+ assert sampling_metadata is not None
1909
+ assert attn_metadata is not None
1910
+ is_prompt = attn_metadata.is_prompt
1911
+ assert is_prompt is not None
1912
+ batch_size = input_tokens.size(0)
1913
+ seq_len = self._seq_len(attn_metadata)
1914
+ use_graphs = self._use_graphs(batch_size, seq_len, is_prompt)
1915
+ self._check_config(batch_size, seq_len, is_prompt, warmup_mode)
1916
+
1917
+ lora_mask: torch.Tensor = None
1918
+ lora_logits_mask: torch.Tensor = None
1919
+ if self.lora_config:
1920
+ assert model_input.lora_ids is not None
1921
+ lora_mask, lora_logits_mask = self.create_lora_mask(
1922
+ input_tokens, model_input.lora_ids,
1923
+ attn_metadata.is_prompt)
1924
+
1925
+ execute_model_kwargs = {
1926
+ "input_ids": input_tokens,
1927
+ "positions": input_positions,
1928
+ "attn_metadata": self.trim_attn_metadata(attn_metadata),
1929
+ "intermediate_tensors": intermediate_tensors,
1930
+ "lora_mask": lora_mask,
1931
+ "virtual_engine": model_input.virtual_engine,
1932
+ **(model_input.multi_modal_kwargs or {}),
1933
+ }
1934
+ if htorch.utils.internal.is_lazy():
1935
+ execute_model_kwargs.update(
1936
+ {"bypass_hpu_graphs": not use_graphs})
1937
+
1938
+ htorch.core.mark_step()
1939
+ if self.is_driver_worker:
1940
+ model_event_name = ("model_"
1941
+ f"{'prompt' if is_prompt else 'decode'}_"
1942
+ f"bs{batch_size}_"
1943
+ f"seq{seq_len}_"
1944
+ f"graphs{'T' if use_graphs else 'F'}")
1945
+ else:
1946
+ model_event_name = 'model_executable'
1947
+ if num_steps > 1 or use_delayed_sampling:
1948
+ # in case of multi-step scheduling
1949
+ # we only want to pythonize in the last step
1950
+ sampling_metadata.skip_sampler_cpu_output = True
1951
+ self.model.sampler.include_gpu_probs_tensor = True
1952
+ cache_orig_output_tokens_len: List[Dict] = []
1953
+
1954
+ def try_revert_dummy_output_tokens():
1955
+ if len(cache_orig_output_tokens_len) > 0:
1956
+ # Reuse the original output token ids length
1957
+ for i, seq_group_metadata in enumerate(
1958
+ seq_group_metadata_list):
1959
+ for j, data in seq_group_metadata.seq_data.items():
1960
+ orig_output_tokens_len = \
1961
+ cache_orig_output_tokens_len[i][j]
1962
+ data.output_token_ids = \
1963
+ data.output_token_ids[:orig_output_tokens_len]
1964
+
1965
+ for i in range(num_steps):
1966
+ if i != 0 and not self.is_driver_worker:
1967
+ broadcast_data = broadcast_tensor_dict(src=0)
1968
+ if 'early_exit' in broadcast_data and broadcast_data[
1969
+ 'early_exit']:
1970
+ return [output] if num_steps == 1 else []
1971
+ execute_model_kwargs.update({
1972
+ "input_ids":
1973
+ broadcast_data["input_ids"],
1974
+ "positions":
1975
+ broadcast_data["positions"],
1976
+ "attn_metadata":
1977
+ self.trim_attn_metadata(
1978
+ broadcast_data["attn_metadata"])
1979
+ })
1980
+ with self.profiler.record_event('internal', model_event_name):
1981
+ hidden_states = self.model.forward(
1982
+ **execute_model_kwargs,
1983
+ selected_token_indices=sampling_metadata.
1984
+ selected_token_indices)
1985
+
1986
+ if self.lora_config:
1987
+ LoraMask.setLoraMask(
1988
+ lora_logits_mask.index_select(
1989
+ 0, sampling_metadata.selected_token_indices))
1990
+
1991
+ # Compute the logits.
1992
+ with self.profiler.record_event(
1993
+ 'internal',
1994
+ ('compute_logits_'
1995
+ f'{"prompt" if is_prompt else "decode"}_bs'
1996
+ f'{batch_size}_'
1997
+ f'seq{seq_len}')):
1998
+ if num_steps == 1:
1999
+ sampling_metadata.selected_token_indices = None
2000
+ logits = self.model.compute_logits(hidden_states,
2001
+ sampling_metadata)
2002
+ htorch.core.mark_step()
2003
+ # Only perform sampling in the driver worker.
2004
+ if not self.is_driver_worker:
2005
+ continue
2006
+
2007
+ if use_delayed_sampling:
2008
+ fake_output = self._delayed_sampler_outputs(model_input)
2009
+
2010
+ with self.profiler.record_event(
2011
+ 'internal', ('sample_'
2012
+ f'{"prompt" if is_prompt else "decode"}_'
2013
+ f'bs{batch_size}_'
2014
+ f'seq{seq_len}')):
2015
+ output = self.model.sample(
2016
+ logits=logits,
2017
+ sampling_metadata=sampling_metadata,
2018
+ )
2019
+ if num_steps > 1:
2020
+ output = output.sampled_token_ids
2021
+ self.cached_step_outputs.append(output)
2022
+ if use_delayed_sampling and self.is_driver_worker:
2023
+ self._patch_prev_output()
2024
+ output = self._pad_to_max_num_seqs(
2025
+ output.sampled_token_ids, DUMMY_TOKEN_ID)
2026
+ self.cached_step_outputs.append(output)
2027
+ self.cached_step_inputs.append(model_input)
2028
+ htorch.core.mark_step()
2029
+ if model_input.async_callback is not None:
2030
+ model_input.async_callback()
2031
+ if i < num_steps - 1:
2032
+ if i == 0:
2033
+ if model_input.async_callback is not None:
2034
+ ctx = model_input.async_callback.keywords[ # type: ignore
2035
+ "ctx"]
2036
+ seq_group_metadata_list = \
2037
+ ctx.seq_group_metadata_list
2038
+ elif seqs is not None:
2039
+ seq_group_metadata_list = seqs
2040
+ else:
2041
+ raise RuntimeError(
2042
+ "seq_group_metadata_list is uninitialized")
2043
+ for i, seq_group_metadata in enumerate(
2044
+ seq_group_metadata_list):
2045
+ # Skip empty steps
2046
+ seq_group_metadata.state.current_step += (
2047
+ num_steps - 2)
2048
+ # Cache the original output token ids
2049
+ cache_orig_output_tokens_len.append({})
2050
+ for j, data in seq_group_metadata.seq_data.items():
2051
+ cache_orig_output_tokens_len[i][j] = \
2052
+ len(data.output_token_ids)
2053
+ for seq_group_metadata in seq_group_metadata_list:
2054
+ for data in seq_group_metadata.seq_data.values():
2055
+ max_output_len = sampling_metadata.seq_groups[
2056
+ 0].sampling_params.max_tokens
2057
+ if len(data.output_token_ids) < max_output_len - 1:
2058
+ # add a place holder for prepare_decode
2059
+ # arbitrary value, this could be any token
2060
+ dummy_token = (540, )
2061
+ data.output_token_ids += (dummy_token)
2062
+ else:
2063
+ broadcast_tensor_dict({'early_exit': True},
2064
+ src=0)
2065
+ if num_steps == 1:
2066
+ return [output]
2067
+ else:
2068
+ try_revert_dummy_output_tokens()
2069
+ return []
2070
+
2071
+ result = self._prepare_decode(seq_group_metadata_list,
2072
+ output=output)
2073
+ execute_model_kwargs.update({
2074
+ "input_ids":
2075
+ result.input_tokens,
2076
+ "positions":
2077
+ result.input_positions,
2078
+ "attn_metadata":
2079
+ self.trim_attn_metadata(result.attn_metadata)
2080
+ })
2081
+ model_kwargs_broadcast_data = {
2082
+ "input_ids": result.input_tokens,
2083
+ "positions": result.input_positions,
2084
+ "attn_metadata": vars(result.attn_metadata)
2085
+ }
2086
+ broadcast_tensor_dict(model_kwargs_broadcast_data, src=0)
2087
+ else:
2088
+ try_revert_dummy_output_tokens()
2089
+
2090
+ if self.is_driver_worker and self.profiler.enabled:
2091
+ # Stop recording 'execute_model' event
2092
+ self.profiler.end()
2093
+ event_end = self.profiler.get_timestamp_us()
2094
+ counters = self.profiler_counter_helper.get_counter_dict(
2095
+ cache_config=self.cache_config,
2096
+ duration=event_end - self.event_start,
2097
+ seq_len=seq_len,
2098
+ batch_size_padded=batch_size_padded,
2099
+ real_batch_size=real_batch_size,
2100
+ is_prompt=is_prompt)
2101
+ self.profiler.record_counter(self.event_start, counters)
2102
+ if num_steps == 1:
2103
+ if self.return_hidden_states:
2104
+ # we only need to pass hidden states of most recent token
2105
+ assert model_input.sampling_metadata is not None
2106
+ if model_input.is_prompt:
2107
+ output.prefill_hidden_states = hidden_states
2108
+ output.hidden_states = hidden_states
2109
+ if use_delayed_sampling:
2110
+ if self.is_driver_worker:
2111
+ return [fake_output]
2112
+ else:
2113
+ return []
2114
+
2115
+ return [output] if self.is_driver_worker else []
2116
+ else:
2117
+ return []
2118
+ return output if type(output) is list else [output]
2119
+
2120
+ def _delayed_sampler_outputs(self, model_input):
2121
+ next_token_ids = [[DUMMY_TOKEN_ID]] * len(
2122
+ model_input.sampling_metadata.seq_groups)
2123
+ sampler_output = self._make_decode_output(
2124
+ next_token_ids, model_input.sampling_metadata.seq_groups)
2125
+ return sampler_output
2126
+
2127
+ def _decode_sampler_outputs(self, model_input):
2128
+ use_async_out_proc = model_input.async_callback is not None
2129
+ sampler_outputs = []
2130
+ num_outputs = len(self.cached_step_outputs)
2131
+ for i in range(num_outputs):
2132
+ next_token_ids = self.cached_step_outputs.pop(0)
2133
+ next_token_ids = next_token_ids.cpu().tolist()
2134
+ sampler_output = self._make_decode_output(
2135
+ next_token_ids, model_input.sampling_metadata.seq_groups)
2136
+ sampler_outputs.append(sampler_output)
2137
+
2138
+ if i < num_outputs - 1 and use_async_out_proc:
2139
+ assert model_input.async_callback is not None
2140
+ ctx = model_input.async_callback.keywords[ # type: ignore
2141
+ "ctx"]
2142
+ ctx.append_output(
2143
+ outputs=[sampler_output],
2144
+ seq_group_metadata_list=ctx.seq_group_metadata_list,
2145
+ scheduler_outputs=ctx.scheduler_outputs,
2146
+ is_async=False,
2147
+ is_last_step=False,
2148
+ is_first_step_output=False)
2149
+ model_input.async_callback()
2150
+
2151
+ if use_async_out_proc:
2152
+ return [sampler_outputs[-1]]
2153
+ else:
2154
+ return sampler_outputs
2155
+
2156
+ def _make_decode_output(
2157
+ self,
2158
+ next_token_ids: List[List[int]],
2159
+ seq_groups: List[SequenceGroupToSample],
2160
+ ) -> SamplerOutput:
2161
+ zero_logprob = Logprob(0.0)
2162
+ sampler_outputs = []
2163
+ batch_idx = 0
2164
+ for seq_group in seq_groups:
2165
+ seq_ids = seq_group.seq_ids
2166
+ seq_outputs = []
2167
+ for seq_id in seq_ids:
2168
+ next_token_id = next_token_ids[batch_idx][0]
2169
+ seq_outputs.append(
2170
+ SequenceOutput(seq_id, next_token_id,
2171
+ {next_token_id: zero_logprob}))
2172
+ batch_idx += 1
2173
+ sampler_outputs.append(
2174
+ CompletionSequenceGroupOutput(seq_outputs, None))
2175
+ return SamplerOutput(sampler_outputs)
2176
+
2177
+ def shutdown_inc(self):
2178
+ can_finalize_inc = False
2179
+ from contextlib import suppress
2180
+ with suppress(AttributeError):
2181
+ can_finalize_inc = (self.model_config.quantization == 'inc') and \
2182
+ (self.model.model is not None) and \
2183
+ self.inc_initialized_successfully and \
2184
+ not getattr(self, "_is_inc_finalized", False)
2185
+ if can_finalize_inc:
2186
+ from neural_compressor.torch.quantization import (
2187
+ finalize_calibration)
2188
+ finalize_calibration(self.model.model)
2189
+ self._is_inc_finalized = True
2190
+
2191
+ def __del__(self):
2192
+ self.shutdown_inc()
2193
+
2194
+ def _patch_prev_output(self):
2195
+ assert len(self.cached_step_inputs) == len(self.cached_step_outputs), \
2196
+ f'''Inputs and outputs are out of sync!
2197
+ {len(self.cached_step_inputs)} vs {len(self.cached_step_outputs)}'''
2198
+ if len(self.cached_step_inputs) == 0:
2199
+ return
2200
+ model_input = self.cached_step_inputs.pop(0)
2201
+ delayed_output = self.cached_step_outputs.pop(0).cpu().squeeze(
2202
+ -1).tolist()
2203
+ ctx = model_input.async_callback.keywords["ctx"] # type: ignore
2204
+ # If there's no output to patch with, which is usually the case when
2205
+ # we're starting a new request after all requests are completed.
2206
+ if len(ctx.output_queue) == 0:
2207
+ return
2208
+ assert len(
2209
+ ctx.output_queue) == 1, 'There should be exactly 1 output waiting!'
2210
+ output_data = ctx.output_queue[0]
2211
+ assert len(output_data.outputs) == 1
2212
+ for fake_out, real_out in zip(output_data.outputs[0], delayed_output):
2213
+ fake_out.samples[0].output_token = real_out
2214
+ for sg, real_out in zip(output_data.seq_group_metadata_list,
2215
+ delayed_output):
2216
+ assert len(sg.seq_data) == 1
2217
+ seq_data = list(sg.seq_data.values())[0]
2218
+ # This is a hack. Assigning output_token_ids triggers
2219
+ # a cache recomputation and we only need to update the last token
2220
+ seq_data.output_token_ids_array[-1] = real_out
2221
+ seq_data._cached_all_token_ids[-1] = real_out