vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1409 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ # Adapted from
4
+ # https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
5
+ # Copyright 2024 The Qwen team.
6
+ # Copyright 2023 The vLLM team.
7
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
8
+ #
9
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
10
+ # and OPT implementations in this library. It has been modified from its
11
+ # original forms to accommodate minor architectural differences compared
12
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
13
+ #
14
+ # Licensed under the Apache License, Version 2.0 (the "License");
15
+ # you may not use this file except in compliance with the License.
16
+ # You may obtain a copy of the License at
17
+ #
18
+ # http://www.apache.org/licenses/LICENSE-2.0
19
+ #
20
+ # Unless required by applicable law or agreed to in writing, software
21
+ # distributed under the License is distributed on an "AS IS" BASIS,
22
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
23
+ # See the License for the specific language governing permissions and
24
+ # limitations under the License.
25
+ """Inference-only Qwen2-VL model compatible with HuggingFace weights."""
26
+ from collections.abc import Iterable, Mapping, Sequence
27
+ from functools import partial
28
+ from typing import (Any, Callable, Literal, Optional, Set, Tuple, TypedDict,
29
+ Union)
30
+
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.nn.functional as F
34
+ from einops import rearrange, repeat
35
+ from transformers import BatchFeature
36
+ from transformers.models.qwen2_vl import (Qwen2VLImageProcessor,
37
+ Qwen2VLProcessor)
38
+ from transformers.models.qwen2_vl.configuration_qwen2_vl import (
39
+ Qwen2VLConfig, Qwen2VLVisionConfig)
40
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
41
+
42
+ from vllm.config import VllmConfig
43
+ from vllm.distributed import parallel_state, tensor_model_parallel_all_gather
44
+ from vllm.distributed import utils as dist_utils
45
+ from vllm.logger import init_logger
46
+ from vllm.model_executor import SamplingMetadata
47
+ from vllm.model_executor.layers.activation import QuickGELU
48
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
49
+ RowParallelLinear)
50
+ from vllm.model_executor.layers.quantization import QuantizationConfig
51
+ from vllm.model_executor.layers.quantization.gptq import GPTQConfig
52
+ from vllm.model_executor.layers.quantization.gptq_marlin import (
53
+ GPTQMarlinConfig)
54
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
55
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
56
+ from vllm.multimodal import MULTIMODAL_REGISTRY
57
+ from vllm.multimodal.inputs import (ImageItem, ModalityData,
58
+ MultiModalDataDict, MultiModalFieldConfig,
59
+ MultiModalKwargs, VideoItem)
60
+ from vllm.multimodal.parse import (DictEmbeddingItems, ImageSize,
61
+ ModalityDataItems, MultiModalDataItems,
62
+ MultiModalDataParser)
63
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
64
+ BaseProcessingInfo, PromptReplacement,
65
+ PromptUpdate)
66
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
67
+ from vllm.platforms import _Backend
68
+ from vllm.sequence import IntermediateTensors
69
+ from vllm.transformers_utils.config import uses_mrope
70
+ from vllm.transformers_utils.processor import (
71
+ cached_image_processor_from_config)
72
+
73
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
74
+ SupportsMultiModal, SupportsPP)
75
+ from .utils import (AutoWeightsLoader, WeightsMapper,
76
+ init_vllm_registered_model, maybe_prefix,
77
+ merge_multimodal_embeddings)
78
+ from .vision import get_vit_attn_backend
79
+
80
+ logger = init_logger(__name__)
81
+
82
+ # For profile run
83
+ _MAX_FRAMES_PER_VIDEO = 16
84
+
85
+ # === Vision Inputs === #
86
+
87
+
88
+ class Qwen2VLImagePixelInputs(TypedDict):
89
+ type: Literal["pixel_values"]
90
+ pixel_values: torch.Tensor
91
+ """Shape:
92
+ `(num_patches, num_channels * patch_size * patch_size)`
93
+ """
94
+
95
+ image_grid_thw: torch.Tensor
96
+ """Shape: `(num_images, 3)`
97
+ This should be in `(grid_t, grid_h, grid_w)` format.
98
+ """
99
+
100
+
101
+ class Qwen2VLImageEmbeddingInputs(TypedDict):
102
+ type: Literal["image_embeds"]
103
+ image_embeds: torch.Tensor
104
+ """Supported types:
105
+ - List[`torch.Tensor`]: A list of tensors holding all images' features.
106
+ Each tensor holds an image's features.
107
+ - `torch.Tensor`: A tensor holding all images' features
108
+ (concatenation of all images' feature tensors).
109
+
110
+ Tensor shape: `(num_image_features, hidden_size)`
111
+ - `num_image_features` varies based on
112
+ the number and resolution of the images.
113
+ - `hidden_size` must match the hidden size of language model backbone.
114
+ """
115
+
116
+ image_grid_thw: torch.Tensor
117
+ """Shape: `(num_images, 3)`
118
+ This should be in `(grid_t, grid_h, grid_w)` format.
119
+ """
120
+
121
+
122
+ Qwen2VLImageInputs = Union[Qwen2VLImagePixelInputs,
123
+ Qwen2VLImageEmbeddingInputs]
124
+
125
+
126
+ class Qwen2VLVideoPixelInputs(TypedDict):
127
+ type: Literal["pixel_values_videos"]
128
+ pixel_values_videos: torch.Tensor
129
+ """Shape:
130
+ `(num_patches,
131
+ num_channels * temporal_patch_size * patch_size * patch_size)`
132
+ """
133
+
134
+ video_grid_thw: torch.Tensor
135
+ """Shape: `(num_videos, 3)`
136
+
137
+ This should be in `(grid_t, grid_h, grid_w)` format.
138
+ """
139
+
140
+
141
+ class Qwen2VLVideoEmbeddingInputs(TypedDict):
142
+ type: Literal["video_embeds"]
143
+ video_embeds: torch.Tensor
144
+ """Supported types:
145
+ - List[`torch.Tensor`]: A list of tensors holding all videos' features.
146
+ Each tensor holds an video's features.
147
+ - `torch.Tensor`: A tensor holding all videos' features
148
+ (concatenation of all videos' feature tensors).
149
+
150
+ Tensor shape: `(num_image_features, hidden_size)`
151
+ - `num_image_features` varies based on
152
+ the number and resolution of the videos.
153
+ - `hidden_size` must match the hidden size of language model backbone.
154
+ """
155
+
156
+ video_grid_thw: torch.Tensor
157
+ """Shape: `(num_videos, 3)`
158
+ This should be in `(grid_t, grid_h, grid_w)` format.
159
+ """
160
+
161
+
162
+ Qwen2VLVideoInputs = Union[Qwen2VLVideoPixelInputs,
163
+ Qwen2VLVideoEmbeddingInputs]
164
+
165
+ # === Vision Encoder === #
166
+
167
+
168
+ class Qwen2VisionMLP(nn.Module):
169
+
170
+ def __init__(
171
+ self,
172
+ in_features: int,
173
+ hidden_features: int,
174
+ act_layer: type[nn.Module] = QuickGELU,
175
+ quant_config: Optional[QuantizationConfig] = None,
176
+ prefix: str = "",
177
+ ):
178
+ super().__init__()
179
+ self.fc1 = ColumnParallelLinear(in_features,
180
+ hidden_features,
181
+ quant_config=quant_config,
182
+ prefix=f"{prefix}.fc1")
183
+ self.act = act_layer()
184
+ self.fc2 = RowParallelLinear(hidden_features,
185
+ in_features,
186
+ quant_config=quant_config,
187
+ prefix=f"{prefix}.fc2")
188
+
189
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
190
+ x_parallel, _ = self.fc1(x)
191
+ x_parallel = self.act(x_parallel)
192
+ x, _ = self.fc2(x_parallel)
193
+ return x
194
+
195
+
196
+ def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
197
+ if not interleaved:
198
+ x1, x2 = x.chunk(2, dim=-1)
199
+ return torch.cat((-x2, x1), dim=-1)
200
+ else:
201
+ x1, x2 = x[..., ::2], x[..., 1::2]
202
+ return rearrange(torch.stack((-x2, x1), dim=-1),
203
+ "... d two -> ... (d two)",
204
+ two=2)
205
+
206
+
207
+ def apply_rotary_emb_torch(x: torch.Tensor,
208
+ cos: torch.Tensor,
209
+ sin: torch.Tensor,
210
+ interleaved: bool = False) -> torch.Tensor:
211
+ """
212
+ x: (batch_size, seqlen, nheads, headdim)
213
+ cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
214
+ """
215
+ ro_dim = cos.shape[-1] * 2
216
+ assert ro_dim <= x.shape[-1]
217
+ cos = repeat(
218
+ cos,
219
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
220
+ sin = repeat(
221
+ sin,
222
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
223
+ return torch.cat(
224
+ [
225
+ x[..., :ro_dim] * cos +
226
+ rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]
227
+ ],
228
+ dim=-1,
229
+ )
230
+
231
+
232
+ def apply_rotary_pos_emb_vision(t: torch.Tensor,
233
+ freqs: torch.Tensor,
234
+ use_flash_attn=False) -> torch.Tensor:
235
+ t_ = t.float()
236
+ cos = freqs.cos()
237
+ sin = freqs.sin()
238
+ apply_rotary_emb = apply_rotary_emb_torch
239
+ if use_flash_attn:
240
+ from flash_attn.layers.rotary import apply_rotary_emb
241
+ output = apply_rotary_emb(t_, cos, sin).type_as(t)
242
+ return output
243
+
244
+
245
+ class Qwen2VisionAttention(nn.Module):
246
+
247
+ def __init__(
248
+ self,
249
+ embed_dim: int,
250
+ num_heads: int,
251
+ projection_size: int,
252
+ quant_config: Optional[QuantizationConfig] = None,
253
+ prefix: str = "",
254
+ ) -> None:
255
+ super().__init__()
256
+ # Per attention head and per partition values.
257
+ world_size = parallel_state.get_tensor_model_parallel_world_size()
258
+ self.tp_size = world_size
259
+ self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
260
+ self.hidden_size_per_attention_head = dist_utils.divide(
261
+ projection_size, num_heads)
262
+ self.num_attention_heads_per_partition = dist_utils.divide(
263
+ num_heads, world_size)
264
+
265
+ self.qkv = ColumnParallelLinear(input_size=embed_dim,
266
+ output_size=3 * projection_size,
267
+ quant_config=quant_config,
268
+ prefix=f"{prefix}.qkv")
269
+ self.proj = RowParallelLinear(input_size=projection_size,
270
+ output_size=embed_dim,
271
+ quant_config=quant_config,
272
+ prefix=f"{prefix}.proj")
273
+
274
+ # Detect attention implementation.
275
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
276
+ if self.attn_backend not in {
277
+ _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS
278
+ }:
279
+ raise RuntimeError(
280
+ f"Qwen2-VL does not support {self.attn_backend} backend now.")
281
+
282
+ def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
283
+ # [s, b, 3 * head * head_dim]
284
+ seq_len, bs, _ = qkv.shape
285
+ if self.tp_size > 1:
286
+ qkv = tensor_model_parallel_all_gather(qkv)
287
+
288
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
289
+ q, k, v = qkv.chunk(3, dim=2)
290
+
291
+ # 3 * [s, b, head * head_dim]
292
+ if self.tp_size > 1:
293
+ splitter = partial(dist_utils.split_tensor_along_last_dim,
294
+ num_partitions=self.tp_size)
295
+ q = splitter(q)[self.tp_rank]
296
+ k = splitter(k)[self.tp_rank]
297
+ v = splitter(v)[self.tp_rank]
298
+
299
+ # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
300
+ new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
301
+ self.hidden_size_per_attention_head)
302
+ q, k, v = (x.view(*new_shape) for x in (q, k, v))
303
+ return q, k, v
304
+
305
+ def forward(
306
+ self,
307
+ x: torch.Tensor,
308
+ cu_seqlens: torch.Tensor,
309
+ rotary_pos_emb: torch.Tensor,
310
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
311
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
312
+ ) -> torch.Tensor:
313
+
314
+ # [s, b, c] --> [s, b, 3 * head * head_dim]
315
+ x, _ = self.qkv(x)
316
+
317
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
318
+ q, k, v = self.split_qkv(x)
319
+ batch_size = q.shape[1]
320
+
321
+ q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
322
+ for x in (q, k, v))
323
+ if rotary_pos_emb is not None:
324
+ q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
325
+ k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
326
+
327
+ if self.attn_backend == _Backend.FLASH_ATTN:
328
+ # from vllm_flash_attn.flash_attn_interface import (
329
+ # flash_attn_varlen_func)
330
+ from flash_attn import flash_attn_varlen_func
331
+
332
+ q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
333
+
334
+ output = flash_attn_varlen_func(q,
335
+ k,
336
+ v,
337
+ cu_seqlens_q=cu_seqlens,
338
+ cu_seqlens_k=cu_seqlens,
339
+ max_seqlen_q=max_seqlen,
340
+ max_seqlen_k=max_seqlen,
341
+ dropout_p=0,
342
+ causal=False)
343
+
344
+ context_layer = rearrange(output,
345
+ "(b s) ... -> b s ...",
346
+ b=batch_size)
347
+ elif self.attn_backend == _Backend.TORCH_SDPA:
348
+ # Execute attention entry by entry for speed & less VRAM.
349
+ outputs = []
350
+ for i in range(1, len(cu_seqlens)):
351
+ start_idx = cu_seqlens[i - 1]
352
+ end_idx = cu_seqlens[i]
353
+ q_i = q[:, start_idx:end_idx]
354
+ k_i = k[:, start_idx:end_idx]
355
+ v_i = v[:, start_idx:end_idx]
356
+ q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
357
+ for x in [q_i, k_i, v_i])
358
+ output_i = F.scaled_dot_product_attention(q_i,
359
+ k_i,
360
+ v_i,
361
+ dropout_p=0.0)
362
+ output_i = rearrange(output_i, "b h s d -> b s h d ")
363
+ outputs.append(output_i)
364
+ context_layer = torch.cat(outputs, dim=1)
365
+ elif self.attn_backend == _Backend.XFORMERS:
366
+ from xformers import ops as xops
367
+ from xformers.ops.fmha.attn_bias import BlockDiagonalMask
368
+
369
+ attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
370
+ kv_seqlen=None,
371
+ device=q.device)
372
+
373
+ context_layer = xops.memory_efficient_attention_forward(
374
+ q, k, v, attn_bias=attn_bias, p=0, scale=None)
375
+ context_layer = rearrange(context_layer,
376
+ "b s h d -> s b (h d)").contiguous()
377
+
378
+ output, _ = self.proj(context_layer)
379
+ return output
380
+
381
+
382
+ class Qwen2VisionBlock(nn.Module):
383
+
384
+ def __init__(
385
+ self,
386
+ dim: int,
387
+ num_heads: int,
388
+ mlp_ratio: float,
389
+ act_layer: type[nn.Module] = QuickGELU,
390
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
391
+ quant_config: Optional[QuantizationConfig] = None,
392
+ prefix: str = "",
393
+ ) -> None:
394
+ super().__init__()
395
+ if norm_layer is None:
396
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
397
+ self.norm1 = norm_layer(dim)
398
+ self.norm2 = norm_layer(dim)
399
+ mlp_hidden_dim = int(dim * mlp_ratio)
400
+
401
+ self.attn = Qwen2VisionAttention(embed_dim=dim,
402
+ num_heads=num_heads,
403
+ projection_size=dim,
404
+ quant_config=quant_config,
405
+ prefix=f"{prefix}.attn")
406
+ self.mlp = Qwen2VisionMLP(dim,
407
+ mlp_hidden_dim,
408
+ act_layer=act_layer,
409
+ quant_config=quant_config,
410
+ prefix=f"{prefix}.mlp")
411
+
412
+ def forward(
413
+ self,
414
+ x: torch.Tensor,
415
+ cu_seqlens: torch.Tensor,
416
+ rotary_pos_emb: torch.Tensor,
417
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
418
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
419
+ ) -> torch.Tensor:
420
+ x = x + self.attn(
421
+ self.norm1(x),
422
+ cu_seqlens=cu_seqlens,
423
+ rotary_pos_emb=rotary_pos_emb,
424
+ max_seqlen=max_seqlen,
425
+ seqlens=seqlens,
426
+ )
427
+
428
+ x = x + self.mlp(self.norm2(x))
429
+ return x
430
+
431
+
432
+ class Qwen2VisionPatchEmbed(nn.Module):
433
+
434
+ def __init__(
435
+ self,
436
+ patch_size: int = 14,
437
+ temporal_patch_size: int = 2,
438
+ in_channels: int = 3,
439
+ embed_dim: int = 1152,
440
+ ) -> None:
441
+ super().__init__()
442
+ self.patch_size = patch_size
443
+ self.temporal_patch_size = temporal_patch_size
444
+ self.embed_dim = embed_dim
445
+
446
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
447
+ self.proj = nn.Conv3d(in_channels,
448
+ embed_dim,
449
+ kernel_size=kernel_size,
450
+ stride=kernel_size,
451
+ bias=False)
452
+
453
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
454
+ L, C = x.shape
455
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
456
+ self.patch_size)
457
+ x = self.proj(x).view(L, self.embed_dim)
458
+ return x
459
+
460
+
461
+ class Qwen2VisionPatchMerger(nn.Module):
462
+
463
+ def __init__(
464
+ self,
465
+ d_model: int,
466
+ context_dim: int,
467
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
468
+ spatial_merge_size: int = 2,
469
+ quant_config: Optional[QuantizationConfig] = None,
470
+ prefix: str = "",
471
+ ) -> None:
472
+ super().__init__()
473
+ self.hidden_size = context_dim * (spatial_merge_size**2)
474
+ if norm_layer is None:
475
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
476
+ self.ln_q = norm_layer(context_dim)
477
+ self.mlp = nn.ModuleList([
478
+ ColumnParallelLinear(self.hidden_size,
479
+ self.hidden_size,
480
+ bias=True,
481
+ quant_config=quant_config,
482
+ prefix=f"{prefix}.mlp.0"),
483
+ nn.GELU(),
484
+ RowParallelLinear(self.hidden_size,
485
+ d_model,
486
+ bias=True,
487
+ quant_config=quant_config,
488
+ prefix=f"{prefix}.mlp.2"),
489
+ ])
490
+
491
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
492
+ x = self.ln_q(x)
493
+ x = x.view(-1, self.hidden_size)
494
+
495
+ mlp_fc1, mlp_act, mlp_fc2 = self.mlp
496
+ x_parallel, _ = mlp_fc1(x)
497
+ x_parallel = mlp_act(x_parallel)
498
+ out, _ = mlp_fc2(x_parallel)
499
+ return out
500
+
501
+
502
+ class Qwen2VisionRotaryEmbedding(nn.Module):
503
+
504
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
505
+ super().__init__()
506
+ self.dim = dim
507
+ self.theta = theta
508
+ inv_freq = 1.0 / (theta
509
+ **(torch.arange(0, dim, 2, dtype=torch.float) / dim))
510
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
511
+ self._seq_len_cached = 0
512
+ self._freqs_cached = None
513
+
514
+ def update_freqs_cache(self, seqlen: int) -> None:
515
+ if seqlen > self._seq_len_cached:
516
+ seqlen *= 2
517
+ self._seq_len_cached = seqlen
518
+ self.inv_freq = 1.0 / (self.theta**(torch.arange(
519
+ 0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
520
+ / self.dim))
521
+ seq = torch.arange(seqlen,
522
+ device=self.inv_freq.device,
523
+ dtype=self.inv_freq.dtype)
524
+ freqs = torch.outer(seq, self.inv_freq)
525
+ self._freqs_cached = freqs
526
+
527
+ def forward(self, seqlen: int) -> torch.Tensor:
528
+ self.update_freqs_cache(seqlen)
529
+ return self._freqs_cached[:seqlen]
530
+
531
+
532
+ class Qwen2VisionTransformer(nn.Module):
533
+
534
+ def __init__(
535
+ self,
536
+ vision_config: Qwen2VLVisionConfig,
537
+ norm_eps: float = 1e-6,
538
+ quant_config: Optional[QuantizationConfig] = None,
539
+ prefix: str = "",
540
+ ) -> None:
541
+ super().__init__()
542
+
543
+ patch_size = vision_config.patch_size
544
+ temporal_patch_size = vision_config.temporal_patch_size
545
+ spatial_merge_size = vision_config.spatial_merge_size
546
+ in_channels = vision_config.in_channels
547
+ hidden_size = vision_config.hidden_size
548
+ embed_dim = vision_config.embed_dim
549
+ depth = vision_config.depth
550
+ num_heads = vision_config.num_heads
551
+ mlp_ratio = vision_config.mlp_ratio
552
+
553
+ self.spatial_merge_size = spatial_merge_size
554
+ self.num_heads = num_heads
555
+ self.embed_dim = embed_dim
556
+
557
+ self.patch_embed = Qwen2VisionPatchEmbed(
558
+ patch_size=patch_size,
559
+ temporal_patch_size=temporal_patch_size,
560
+ in_channels=in_channels,
561
+ embed_dim=embed_dim,
562
+ )
563
+
564
+ norm_layer = partial(nn.LayerNorm, eps=norm_eps)
565
+ head_dim = embed_dim // num_heads
566
+ self.rotary_pos_emb = Qwen2VisionRotaryEmbedding(head_dim // 2)
567
+
568
+ self.blocks = nn.ModuleList([
569
+ Qwen2VisionBlock(dim=embed_dim,
570
+ num_heads=num_heads,
571
+ mlp_ratio=mlp_ratio,
572
+ norm_layer=norm_layer,
573
+ quant_config=quant_config,
574
+ prefix=f"{prefix}.blocks.{layer_idx}")
575
+ for layer_idx in range(depth)
576
+ ])
577
+ self.merger = Qwen2VisionPatchMerger(
578
+ d_model=hidden_size,
579
+ context_dim=embed_dim,
580
+ norm_layer=norm_layer,
581
+ quant_config=quant_config,
582
+ prefix=f"{prefix}.merger",
583
+ )
584
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
585
+
586
+ @property
587
+ def dtype(self) -> torch.dtype:
588
+ return self.patch_embed.proj.weight.dtype
589
+
590
+ @property
591
+ def device(self) -> torch.device:
592
+ return self.patch_embed.proj.weight.device
593
+
594
+ def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
595
+ pos_ids = []
596
+ for t, h, w in grid_thw:
597
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
598
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
599
+ hpos_ids = hpos_ids.reshape(
600
+ h // self.spatial_merge_size,
601
+ self.spatial_merge_size,
602
+ w // self.spatial_merge_size,
603
+ self.spatial_merge_size,
604
+ ).permute(0, 2, 1, 3).flatten()
605
+ wpos_ids = wpos_ids.reshape(
606
+ h // self.spatial_merge_size,
607
+ self.spatial_merge_size,
608
+ w // self.spatial_merge_size,
609
+ self.spatial_merge_size,
610
+ ).permute(0, 2, 1, 3).flatten()
611
+ pos_ids.append(
612
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
613
+ pos_ids = torch.cat(pos_ids, dim=0)
614
+ max_grid_size = grid_thw[:, 1:].max()
615
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
616
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
617
+ return rotary_pos_emb
618
+
619
+ def compute_attn_mask_seqlen(
620
+ self, cu_seqlens: torch.Tensor
621
+ ) -> tuple[Optional[int], Optional[list[int]]]:
622
+ max_seqlen, seqlens = None, None
623
+ if self.attn_backend == _Backend.FLASH_ATTN:
624
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
625
+ elif self.attn_backend == _Backend.XFORMERS:
626
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
627
+ return max_seqlen, seqlens
628
+
629
+ def forward(
630
+ self,
631
+ x: torch.Tensor,
632
+ grid_thw: torch.Tensor,
633
+ ) -> torch.Tensor:
634
+ # patchify
635
+ x = x.to(device=self.device, dtype=self.dtype)
636
+ x = self.patch_embed(x)
637
+
638
+ # compute position embedding
639
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
640
+
641
+ # compute cu_seqlens
642
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
643
+ grid_thw[:, 0]).cumsum(
644
+ dim=0, dtype=torch.int32)
645
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
646
+
647
+ # transformers
648
+ x = x.unsqueeze(1)
649
+
650
+ # pre-compute seqlens for attn mask to reduce cuMemcpy operations
651
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
652
+ for blk in self.blocks:
653
+ x = blk(
654
+ x,
655
+ cu_seqlens=cu_seqlens,
656
+ rotary_pos_emb=rotary_pos_emb,
657
+ max_seqlen=max_seqlen,
658
+ seqlens=seqlens,
659
+ )
660
+
661
+ # adapter
662
+ x = self.merger(x)
663
+
664
+ return x
665
+
666
+ def load_weights(self, weights: Iterable[Tuple[str,
667
+ torch.Tensor]]) -> Set[str]:
668
+ stacked_params_mapping = [
669
+ # (param_name, shard_name, shard_id)
670
+ ("qkv_proj", "q_proj", "q"),
671
+ ("qkv_proj", "k_proj", "k"),
672
+ ("qkv_proj", "v_proj", "v"),
673
+ ]
674
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
675
+ loaded_params: Set[str] = set()
676
+
677
+ for name, loaded_weight in weights:
678
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
679
+ if weight_name not in name:
680
+ continue
681
+ name = name.replace(weight_name, param_name)
682
+
683
+ param = params_dict[name]
684
+ weight_loader = param.weight_loader
685
+ weight_loader(param, loaded_weight, shard_id)
686
+ break
687
+ else:
688
+ param = params_dict[name]
689
+ weight_loader = getattr(param, "weight_loader",
690
+ default_weight_loader)
691
+ weight_loader(param, loaded_weight)
692
+ loaded_params.add(name)
693
+ return loaded_params
694
+
695
+
696
+ def _qwen2vl_field_config(hf_inputs: Mapping[str, torch.Tensor]):
697
+ image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
698
+ image_grid_sizes = image_grid_thw.prod(-1)
699
+
700
+ video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
701
+ video_grid_sizes = video_grid_thw.prod(-1)
702
+
703
+ return dict(
704
+ pixel_values=MultiModalFieldConfig.flat_from_sizes(
705
+ "image", image_grid_sizes),
706
+ image_embeds=MultiModalFieldConfig.flat_from_sizes(
707
+ "image", image_grid_sizes),
708
+ image_grid_thw=MultiModalFieldConfig.batched("image"),
709
+ pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
710
+ "video", video_grid_sizes),
711
+ video_embeds=MultiModalFieldConfig.flat_from_sizes(
712
+ "video", video_grid_sizes),
713
+ video_grid_thw=MultiModalFieldConfig.batched("video"),
714
+ )
715
+
716
+
717
+ class Qwen2VLMultiModalDataParser(MultiModalDataParser):
718
+
719
+ def _parse_image_data(
720
+ self,
721
+ data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
722
+ ) -> Optional[ModalityDataItems[Any, Any]]:
723
+ if isinstance(data, dict):
724
+ return DictEmbeddingItems(
725
+ data,
726
+ modality="image",
727
+ required_fields={"image_embeds", "image_grid_thw"},
728
+ fields_factory=_qwen2vl_field_config,
729
+ )
730
+
731
+ return super()._parse_image_data(data)
732
+
733
+ def _parse_video_data(
734
+ self,
735
+ data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
736
+ ) -> Optional[ModalityDataItems[Any, Any]]:
737
+ if isinstance(data, dict):
738
+ return DictEmbeddingItems(
739
+ data,
740
+ modality="video",
741
+ required_fields={"video_embeds", "video_grid_thw"},
742
+ fields_factory=_qwen2vl_field_config,
743
+ )
744
+
745
+ return super()._parse_video_data(data)
746
+
747
+
748
+ class Qwen2VLProcessingInfo(BaseProcessingInfo):
749
+
750
+ def get_hf_config(self):
751
+ return self.ctx.get_hf_config(Qwen2VLConfig)
752
+
753
+ def get_hf_processor(
754
+ self,
755
+ *,
756
+ min_pixels: Optional[int] = None,
757
+ max_pixels: Optional[int] = None,
758
+ size: Optional[dict[str, int]] = None,
759
+ **kwargs: object,
760
+ ) -> Qwen2VLProcessor:
761
+ return self.ctx.get_hf_processor(
762
+ Qwen2VLProcessor,
763
+ image_processor=self.get_image_processor(min_pixels=min_pixels,
764
+ max_pixels=max_pixels,
765
+ size=size),
766
+ **kwargs,
767
+ )
768
+
769
+ def _get_image_processor_kwargs(
770
+ self,
771
+ *,
772
+ min_pixels: Optional[int] = None,
773
+ max_pixels: Optional[int] = None,
774
+ size: Optional[dict[str, int]] = None,
775
+ **kwargs: object,
776
+ ):
777
+ if self.ctx.model_config.mm_processor_kwargs:
778
+ kwargs.update(self.ctx.model_config.mm_processor_kwargs)
779
+
780
+ if min_pixels is not None:
781
+ kwargs["min_pixels"] = min_pixels
782
+
783
+ if size is None:
784
+ size = {"shortest_edge": min_pixels}
785
+ else:
786
+ size["shortest_edge"] = min_pixels
787
+
788
+ if max_pixels is not None:
789
+ kwargs["max_pixels"] = max_pixels
790
+
791
+ if size is None:
792
+ size = {"longest_edge": max_pixels}
793
+ else:
794
+ size["longest_edge"] = max_pixels
795
+
796
+ if size is not None:
797
+ kwargs["size"] = size
798
+
799
+ return kwargs
800
+
801
+ def get_image_processor(
802
+ self,
803
+ *,
804
+ min_pixels: Optional[int] = None,
805
+ max_pixels: Optional[int] = None,
806
+ size: Optional[dict[str, int]] = None,
807
+ **kwargs: object,
808
+ ) -> Qwen2VLImageProcessor:
809
+ return cached_image_processor_from_config(
810
+ self.ctx.model_config,
811
+ **self._get_image_processor_kwargs(min_pixels=min_pixels,
812
+ max_pixels=max_pixels,
813
+ size=size,
814
+ **kwargs),
815
+ )
816
+
817
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
818
+ return {"image": None, "video": None}
819
+
820
+ def _get_vision_info(
821
+ self,
822
+ *,
823
+ image_width: int,
824
+ image_height: int,
825
+ num_frames: int = 1,
826
+ do_resize: bool = True,
827
+ image_processor: Optional[Qwen2VLImageProcessor],
828
+ ) -> tuple[ImageSize, int]:
829
+ if image_processor is None:
830
+ image_processor = self.get_image_processor()
831
+
832
+ hf_config = self.get_hf_config()
833
+ vision_config = hf_config.vision_config
834
+ patch_size = vision_config.patch_size
835
+ merge_size = vision_config.spatial_merge_size
836
+ temporal_patch_size = vision_config.temporal_patch_size
837
+
838
+ if do_resize:
839
+ resized_height, resized_width = smart_resize(
840
+ height=image_height,
841
+ width=image_width,
842
+ factor=patch_size * merge_size,
843
+ min_pixels=image_processor.min_pixels,
844
+ max_pixels=image_processor.max_pixels,
845
+ )
846
+ preprocessed_size = ImageSize(width=resized_width,
847
+ height=resized_height)
848
+ else:
849
+ preprocessed_size = ImageSize(width=image_width,
850
+ height=image_height)
851
+
852
+ # NOTE: Frames are padded to be divisible by `temporal_patch_size`
853
+ # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
854
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
855
+
856
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
857
+ grid_h = preprocessed_size.height // patch_size
858
+ grid_w = preprocessed_size.width // patch_size
859
+
860
+ num_patches = grid_t * grid_h * grid_w
861
+ num_vision_tokens = num_patches // (merge_size**2)
862
+
863
+ return preprocessed_size, num_vision_tokens
864
+
865
+ def get_num_image_tokens(
866
+ self,
867
+ *,
868
+ image_width: int,
869
+ image_height: int,
870
+ image_processor: Optional[Qwen2VLImageProcessor],
871
+ ) -> int:
872
+ _, num_image_tokens = self._get_vision_info(
873
+ image_width=image_width,
874
+ image_height=image_height,
875
+ image_processor=image_processor,
876
+ )
877
+ return num_image_tokens
878
+
879
+ def get_num_video_tokens(
880
+ self,
881
+ *,
882
+ image_width: int,
883
+ image_height: int,
884
+ num_frames: int,
885
+ image_processor: Optional[Qwen2VLImageProcessor],
886
+ ) -> int:
887
+ _, num_video_tokens = self._get_vision_info(
888
+ image_width=image_width,
889
+ image_height=image_height,
890
+ num_frames=num_frames,
891
+ image_processor=image_processor,
892
+ )
893
+ return num_video_tokens
894
+
895
+ def get_image_size_with_most_features(self) -> ImageSize:
896
+ max_image_size, _ = self._get_vision_info(
897
+ image_width=9999999,
898
+ image_height=9999999,
899
+ image_processor=None,
900
+ )
901
+ return max_image_size
902
+
903
+ def get_max_image_tokens(self) -> int:
904
+ target_width, target_height = self.get_image_size_with_most_features()
905
+
906
+ return self.get_num_image_tokens(
907
+ image_width=target_width,
908
+ image_height=target_height,
909
+ image_processor=None,
910
+ )
911
+
912
+ def _get_max_video_frames(self, max_tokens: int) -> int:
913
+ target_width, target_height = self.get_image_size_with_most_features()
914
+
915
+ num_frames = 0
916
+
917
+ while True:
918
+ next_num_frames = num_frames + 1
919
+ next_max_tokens = self.get_num_video_tokens(
920
+ image_width=target_width,
921
+ image_height=target_height,
922
+ num_frames=next_num_frames,
923
+ image_processor=None,
924
+ )
925
+
926
+ if next_max_tokens > max_tokens:
927
+ break
928
+
929
+ num_frames = next_num_frames
930
+
931
+ return num_frames
932
+
933
+ def get_num_frames_with_most_features(
934
+ self,
935
+ seq_len: int,
936
+ mm_counts: Mapping[str, int],
937
+ ) -> int:
938
+ max_images = mm_counts.get("image", 0)
939
+ max_videos = mm_counts.get("video", 0)
940
+
941
+ max_image_tokens = self.get_max_image_tokens() * max_images
942
+ max_total_frames = self._get_max_video_frames(seq_len -
943
+ max_image_tokens)
944
+ max_frames_per_video = min(max_total_frames // max(max_videos, 1),
945
+ _MAX_FRAMES_PER_VIDEO)
946
+
947
+ return max(max_frames_per_video, 1)
948
+
949
+ def get_max_video_tokens(
950
+ self,
951
+ seq_len: int,
952
+ mm_counts: Mapping[str, int],
953
+ ) -> int:
954
+ target_width, target_height = self.get_image_size_with_most_features()
955
+
956
+ return self.get_num_video_tokens(
957
+ image_width=target_width,
958
+ image_height=target_height,
959
+ num_frames=self.get_num_frames_with_most_features(
960
+ seq_len, mm_counts),
961
+ image_processor=None,
962
+ )
963
+
964
+
965
+ class Qwen2VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2VLProcessingInfo]):
966
+
967
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
968
+ num_images = mm_counts.get("image", 0)
969
+ num_videos = mm_counts.get("video", 0)
970
+
971
+ hf_processor = self.info.get_hf_processor()
972
+ image_token: str = hf_processor.image_token
973
+ video_token: str = hf_processor.video_token
974
+
975
+ return image_token * num_images + video_token * num_videos
976
+
977
+ def get_dummy_mm_data(
978
+ self,
979
+ seq_len: int,
980
+ mm_counts: Mapping[str, int],
981
+ ) -> MultiModalDataDict:
982
+ num_images = mm_counts.get("image", 0)
983
+ num_videos = mm_counts.get("video", 0)
984
+
985
+ target_width, target_height = \
986
+ self.info.get_image_size_with_most_features()
987
+ target_num_frames = \
988
+ self.info.get_num_frames_with_most_features(seq_len, mm_counts)
989
+
990
+ return {
991
+ "image":
992
+ self._get_dummy_images(width=target_width,
993
+ height=target_height,
994
+ num_images=num_images),
995
+ "video":
996
+ self._get_dummy_videos(
997
+ width=target_width,
998
+ height=target_height,
999
+ num_frames=target_num_frames,
1000
+ num_videos=num_videos,
1001
+ )
1002
+ }
1003
+
1004
+
1005
+ class Qwen2VLMultiModalProcessor(BaseMultiModalProcessor[Qwen2VLProcessingInfo]
1006
+ ):
1007
+
1008
+ def _get_data_parser(self) -> MultiModalDataParser:
1009
+ return Qwen2VLMultiModalDataParser()
1010
+
1011
+ def _call_hf_processor(
1012
+ self,
1013
+ prompt: str,
1014
+ mm_data: Mapping[str, object],
1015
+ mm_kwargs: Mapping[str, object],
1016
+ ) -> BatchFeature:
1017
+ return self.info.ctx.call_hf_processor(
1018
+ self.info.get_hf_processor(**mm_kwargs),
1019
+ dict(text=prompt, **mm_data),
1020
+ self.info._get_image_processor_kwargs(**mm_kwargs),
1021
+ )
1022
+
1023
+ def _get_prompt_updates(
1024
+ self,
1025
+ mm_items: MultiModalDataItems,
1026
+ hf_processor_mm_kwargs: Mapping[str, Any],
1027
+ out_mm_kwargs: MultiModalKwargs,
1028
+ ) -> Sequence[PromptUpdate]:
1029
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1030
+ image_processor = self.info.get_image_processor(
1031
+ **hf_processor_mm_kwargs)
1032
+ tokenizer = self.info.get_tokenizer()
1033
+ vocab = tokenizer.get_vocab()
1034
+
1035
+ placeholder = {
1036
+ "image": vocab[hf_processor.image_token],
1037
+ "video": vocab[hf_processor.video_token],
1038
+ }
1039
+
1040
+ merge_length = image_processor.merge_size**2
1041
+
1042
+ def get_replacement_qwen2vl(item_idx: int, modality: str):
1043
+ grid_thw = out_mm_kwargs[f"{modality}_grid_thw"][item_idx]
1044
+ assert isinstance(grid_thw, torch.Tensor)
1045
+
1046
+ num_tokens = int(grid_thw.prod()) // merge_length
1047
+ return [placeholder[modality]] * num_tokens
1048
+
1049
+ return [
1050
+ PromptReplacement(
1051
+ modality=modality,
1052
+ target=[placeholder[modality]],
1053
+ replacement=partial(get_replacement_qwen2vl,
1054
+ modality=modality),
1055
+ ) for modality in ("image", "video")
1056
+ ]
1057
+
1058
+ def _get_mm_fields_config(
1059
+ self,
1060
+ hf_inputs: BatchFeature,
1061
+ hf_processor_mm_kwargs: Mapping[str, object],
1062
+ ) -> Mapping[str, MultiModalFieldConfig]:
1063
+ return _qwen2vl_field_config(hf_inputs)
1064
+
1065
+
1066
+ @MULTIMODAL_REGISTRY.register_processor(Qwen2VLMultiModalProcessor,
1067
+ info=Qwen2VLProcessingInfo,
1068
+ dummy_inputs=Qwen2VLDummyInputsBuilder)
1069
+ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
1070
+ SupportsLoRA, SupportsPP):
1071
+ packed_modules_mapping = {
1072
+ "qkv_proj": [
1073
+ "q_proj",
1074
+ "k_proj",
1075
+ "v_proj",
1076
+ ],
1077
+ "gate_up_proj": [
1078
+ "gate_proj",
1079
+ "up_proj",
1080
+ ],
1081
+ }
1082
+
1083
+ # To ensure correct weight loading and mapping.
1084
+ hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
1085
+ "lm_head.": "language_model.lm_head.",
1086
+ "model.": "language_model.model.",
1087
+ })
1088
+
1089
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1090
+ super().__init__()
1091
+ config: Qwen2VLConfig = vllm_config.model_config.hf_config
1092
+ quant_config = vllm_config.quant_config
1093
+ multimodal_config = vllm_config.model_config.multimodal_config
1094
+
1095
+ self.config = config
1096
+ self.multimodal_config = multimodal_config
1097
+
1098
+ self.visual = Qwen2VisionTransformer(
1099
+ config.vision_config,
1100
+ norm_eps=getattr(config, "rms_norm_eps", 1e-6),
1101
+ quant_config=self._maybe_ignore_quant_config(quant_config),
1102
+ prefix=maybe_prefix(prefix, "visual"),
1103
+ )
1104
+
1105
+ self.language_model = init_vllm_registered_model(
1106
+ vllm_config=vllm_config,
1107
+ prefix=maybe_prefix(prefix, "language_model"),
1108
+ architectures=["Qwen2ForCausalLM"],
1109
+ )
1110
+
1111
+ self.make_empty_intermediate_tensors = (
1112
+ self.language_model.make_empty_intermediate_tensors)
1113
+
1114
+ def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
1115
+ # GPTQ configs do not have a list of ignored modules, however AutoGPTQ
1116
+ # seems to avoid vision encoder sections for some models.
1117
+ # See: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4
1118
+ if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
1119
+ return None
1120
+ return quant_config
1121
+
1122
+ def _validate_and_reshape_mm_tensor(self, mm_input: object,
1123
+ name: str) -> torch.Tensor:
1124
+ if not isinstance(mm_input, (torch.Tensor, list)):
1125
+ raise ValueError(f"Incorrect type of {name}. "
1126
+ f"Got type: {type(mm_input)}")
1127
+ if isinstance(mm_input, torch.Tensor):
1128
+ if mm_input.ndim == 2:
1129
+ return mm_input
1130
+ if mm_input.ndim != 3:
1131
+ raise ValueError(f"{name} should be 2D or batched 3D tensor. "
1132
+ f"Got ndim: {mm_input.ndim} "
1133
+ f"(shape={mm_input.shape})")
1134
+ return torch.concat(list(mm_input))
1135
+ else:
1136
+ return torch.concat(mm_input)
1137
+
1138
+ def _parse_and_validate_image_input(
1139
+ self, **kwargs: object) -> Optional[Qwen2VLImageInputs]:
1140
+ pixel_values = kwargs.pop("pixel_values", None)
1141
+ image_embeds = kwargs.pop("image_embeds", None)
1142
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1143
+
1144
+ if pixel_values is None and image_embeds is None:
1145
+ return None
1146
+
1147
+ if pixel_values is not None:
1148
+ pixel_values = self._validate_and_reshape_mm_tensor(
1149
+ pixel_values, "image pixel values")
1150
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1151
+ image_grid_thw, "image grid_thw")
1152
+
1153
+ if not isinstance(pixel_values, (torch.Tensor, list)):
1154
+ raise ValueError("Incorrect type of image pixel values. "
1155
+ f"Got type: {type(pixel_values)}")
1156
+
1157
+ return Qwen2VLImagePixelInputs(type="pixel_values",
1158
+ pixel_values=pixel_values,
1159
+ image_grid_thw=image_grid_thw)
1160
+
1161
+ if image_embeds is not None:
1162
+ image_embeds = self._validate_and_reshape_mm_tensor(
1163
+ image_embeds, "image embeds")
1164
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1165
+ image_grid_thw, "image grid_thw")
1166
+
1167
+ if not isinstance(image_embeds, torch.Tensor):
1168
+ raise ValueError("Incorrect type of image embeddings. "
1169
+ f"Got type: {type(image_embeds)}")
1170
+ return Qwen2VLImageEmbeddingInputs(type="image_embeds",
1171
+ image_embeds=image_embeds,
1172
+ image_grid_thw=image_grid_thw)
1173
+
1174
+ def _parse_and_validate_video_input(
1175
+ self, **kwargs: object) -> Optional[Qwen2VLVideoInputs]:
1176
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1177
+ video_embeds = kwargs.pop("video_embeds", None)
1178
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1179
+
1180
+ if pixel_values_videos is None and video_embeds is None:
1181
+ return None
1182
+
1183
+ if pixel_values_videos is not None:
1184
+ pixel_values_videos = self._validate_and_reshape_mm_tensor(
1185
+ pixel_values_videos, "video pixel values")
1186
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1187
+ video_grid_thw, "video grid_thw")
1188
+
1189
+ return Qwen2VLVideoPixelInputs(
1190
+ type="pixel_values_videos",
1191
+ pixel_values_videos=pixel_values_videos,
1192
+ video_grid_thw=video_grid_thw,
1193
+ )
1194
+
1195
+ if video_embeds is not None:
1196
+ video_embeds = self._validate_and_reshape_mm_tensor(
1197
+ video_embeds, "video embeds")
1198
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1199
+ video_grid_thw, "video grid_thw")
1200
+
1201
+ if not isinstance(video_embeds, torch.Tensor):
1202
+ raise ValueError("Incorrect type of video embeddings. "
1203
+ f"Got type: {type(video_embeds)}")
1204
+ return Qwen2VLVideoEmbeddingInputs(type="video_embeds",
1205
+ video_embeds=video_embeds,
1206
+ video_grid_thw=video_grid_thw)
1207
+
1208
+ def _process_image_input(
1209
+ self, image_input: Qwen2VLImageInputs) -> tuple[torch.Tensor, ...]:
1210
+
1211
+ grid_thw = image_input["image_grid_thw"]
1212
+ assert grid_thw.ndim == 2
1213
+
1214
+ if image_input["type"] == "image_embeds":
1215
+ image_embeds = image_input["image_embeds"].type(self.visual.dtype)
1216
+ else:
1217
+ pixel_values = image_input["pixel_values"].type(self.visual.dtype)
1218
+ image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
1219
+
1220
+ # Split concatenated embeddings for each image item.
1221
+ merge_size = self.visual.spatial_merge_size
1222
+ sizes = grid_thw.prod(-1) // merge_size // merge_size
1223
+
1224
+ return image_embeds.split(sizes.tolist())
1225
+
1226
+ def _process_video_input(
1227
+ self, video_input: Qwen2VLVideoInputs) -> tuple[torch.Tensor, ...]:
1228
+
1229
+ grid_thw = video_input["video_grid_thw"]
1230
+ assert grid_thw.ndim == 2
1231
+
1232
+ if video_input["type"] == "video_embeds":
1233
+ video_embeds = video_input["video_embeds"].type(self.visual.dtype)
1234
+ else:
1235
+ pixel_values_videos = video_input["pixel_values_videos"].type(
1236
+ self.visual.dtype)
1237
+ video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
1238
+
1239
+ # Split concatenated embeddings for each video item.
1240
+ merge_size = self.visual.spatial_merge_size
1241
+ sizes = grid_thw.prod(-1) // merge_size // merge_size
1242
+
1243
+ return video_embeds.split(sizes.tolist())
1244
+
1245
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1246
+ modalities = {}
1247
+
1248
+ # Preserve the order of modalities if there are multiple of them
1249
+ # from the order of kwargs.
1250
+ for input_key in kwargs:
1251
+ if input_key in ("pixel_values",
1252
+ "image_embeds") and "images" not in modalities:
1253
+ modalities["images"] = self._parse_and_validate_image_input(
1254
+ **kwargs)
1255
+ if input_key in ("pixel_values_videos",
1256
+ "video_embeds") and "videos" not in modalities:
1257
+ modalities["videos"] = self._parse_and_validate_video_input(
1258
+ **kwargs)
1259
+
1260
+ return modalities
1261
+
1262
+ def get_language_model(self) -> torch.nn.Module:
1263
+ return self.language_model
1264
+
1265
+ def get_multimodal_embeddings(
1266
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1267
+
1268
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1269
+ if not modalities:
1270
+ return None
1271
+
1272
+ # The result multimodal_embeddings is tuple of tensors, with each
1273
+ # tensor correspoending to a multimodal data item (image or video).
1274
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1275
+
1276
+ # NOTE: It is important to iterate over the keys in this dictionary
1277
+ # to preserve the order of the modalities.
1278
+ for modality in modalities:
1279
+ if modality == "images":
1280
+ image_input = modalities["images"]
1281
+ vision_embeddings = self._process_image_input(image_input)
1282
+ multimodal_embeddings += vision_embeddings
1283
+ if modality == "videos":
1284
+ video_input = modalities["videos"]
1285
+ video_embeddings = self._process_video_input(video_input)
1286
+ multimodal_embeddings += video_embeddings
1287
+
1288
+ return multimodal_embeddings
1289
+
1290
+ def get_input_embeddings(
1291
+ self,
1292
+ input_ids: torch.Tensor,
1293
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1294
+ ) -> torch.Tensor:
1295
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
1296
+ if multimodal_embeddings is not None:
1297
+ inputs_embeds = merge_multimodal_embeddings(
1298
+ input_ids, inputs_embeds, multimodal_embeddings,
1299
+ [self.config.image_token_id, self.config.video_token_id])
1300
+ return inputs_embeds
1301
+
1302
+ def get_input_embeddings_v0(
1303
+ self,
1304
+ input_ids: torch.Tensor,
1305
+ image_input: Optional[Qwen2VLImagePixelInputs] = None,
1306
+ video_input: Optional[Qwen2VLVideoPixelInputs] = None,
1307
+ ) -> torch.Tensor:
1308
+ inputs_embeds = self.get_input_embeddings(input_ids)
1309
+ if image_input is not None:
1310
+ image_embeds = self._process_image_input(image_input)
1311
+ inputs_embeds = merge_multimodal_embeddings(
1312
+ input_ids,
1313
+ inputs_embeds,
1314
+ image_embeds,
1315
+ placeholder_token_id=self.config.image_token_id,
1316
+ )
1317
+
1318
+ if video_input is not None:
1319
+ video_embeds = self._process_video_input(video_input)
1320
+ inputs_embeds = merge_multimodal_embeddings(
1321
+ input_ids,
1322
+ inputs_embeds,
1323
+ video_embeds,
1324
+ placeholder_token_id=self.config.video_token_id,
1325
+ )
1326
+ return inputs_embeds
1327
+
1328
+ def forward(
1329
+ self,
1330
+ input_ids: torch.Tensor,
1331
+ positions: torch.Tensor,
1332
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1333
+ inputs_embeds: Optional[torch.Tensor] = None,
1334
+ **kwargs: object,
1335
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1336
+ """Run forward pass for Qwen2-VL.
1337
+
1338
+ Args:
1339
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1340
+ batch.
1341
+ positions: Flattened (concatenated) position ids corresponding to a
1342
+ batch.
1343
+ **NOTE**: If mrope is enabled (default setting for Qwen2-VL
1344
+ opensource models), the shape will be `(3, seq_len)`,
1345
+ otherwise it will be `(seq_len,).
1346
+ pixel_values: Pixel values to be fed to a model.
1347
+ `None` if no images are passed.
1348
+ image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
1349
+ `None` if no images are passed.
1350
+ pixel_values_videos: Pixel values of videos to be fed to a model.
1351
+ `None` if no videos are passed.
1352
+ video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
1353
+ `None` if no videos are passed.
1354
+ """
1355
+
1356
+ if intermediate_tensors is not None:
1357
+ inputs_embeds = None
1358
+
1359
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1360
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1361
+ # condition is only for v0 compatibility.
1362
+ elif inputs_embeds is None:
1363
+ image_input = self._parse_and_validate_image_input(**kwargs)
1364
+ video_input = self._parse_and_validate_video_input(**kwargs)
1365
+
1366
+ if image_input is None and video_input is None:
1367
+ inputs_embeds = None
1368
+ else:
1369
+ if uses_mrope(self.config):
1370
+ assert positions.ndim == 2 and positions.size(0) == 3, (
1371
+ "multimodal section rotary embedding requires "
1372
+ f"(3, seq_len) positions, but got {positions.size()}")
1373
+ inputs_embeds = self.get_input_embeddings_v0(
1374
+ input_ids,
1375
+ image_input=image_input,
1376
+ video_input=video_input)
1377
+ input_ids = None
1378
+
1379
+ hidden_states = self.language_model.model(
1380
+ input_ids=input_ids,
1381
+ positions=positions,
1382
+ intermediate_tensors=intermediate_tensors,
1383
+ inputs_embeds=inputs_embeds,
1384
+ )
1385
+ return hidden_states
1386
+
1387
+ def compute_logits(
1388
+ self,
1389
+ hidden_states: torch.Tensor,
1390
+ sampling_metadata: SamplingMetadata,
1391
+ ) -> Optional[torch.Tensor]:
1392
+ return self.language_model.compute_logits(hidden_states,
1393
+ sampling_metadata)
1394
+
1395
+ def load_weights(self, weights: Iterable[Tuple[str,
1396
+ torch.Tensor]]) -> Set[str]:
1397
+
1398
+ loader = AutoWeightsLoader(self)
1399
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1400
+
1401
+ def get_mm_mapping(self) -> MultiModelKeys:
1402
+ """
1403
+ Get the module prefix in multimodal models
1404
+ """
1405
+ return MultiModelKeys.from_string_field(
1406
+ language_model="language_model",
1407
+ connector="visual.merger.",
1408
+ tower_model="visual.",
1409
+ )