vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1375 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ """
3
+ Fused Attention
4
+ ===============
5
+
6
+ This is a Triton implementation of the Flash Attention v2 algorithm
7
+ See https://tridao.me/publications/flash2/flash2.pdf
8
+
9
+ Credits:
10
+ AMD Triton kernels team
11
+ OpenAI kernel team
12
+
13
+ Currently only the forward kernel is supported, and contains these features:
14
+
15
+ 1) Fwd with causal masking
16
+ 2) Arbitrary Q and KV sequence lengths
17
+ 3) Arbitrary head sizes
18
+ 4) Multi and grouped query attention
19
+ 5) Variable sequence lengths
20
+ 6) ALiBi and matrix bias
21
+ 7) FP8 support
22
+
23
+ """
24
+
25
+ from typing import Optional
26
+
27
+ import torch
28
+ import triton
29
+ import triton.language as tl
30
+
31
+ from vllm import _custom_ops as ops
32
+ from vllm.platforms import current_platform
33
+
34
+ SUPPORTED_LAYOUTS = ['thd', 'bhsd', 'bshd']
35
+
36
+ default_eight_bit_dtype_triton = tl.float8e4b8
37
+ default_eight_bit_dtype_torch = current_platform.fp8_dtype()
38
+ default_float8_info = torch.finfo(default_eight_bit_dtype_torch)
39
+
40
+ FP8_MIN = triton.language.constexpr(default_float8_info.min)
41
+
42
+ # According to https://github.com/vllm-project/vllm/blob/main
43
+ # /csrc/quantization/utils.cuh#L31,
44
+ # need to make the max for the uz datatype be 224.0 for accuracy reasons.
45
+ FP8_MAX = triton.language.constexpr(
46
+ default_float8_info.max if default_eight_bit_dtype_torch !=
47
+ torch.float8_e4m3fnuz else 224.0)
48
+
49
+
50
+ class MetaData:
51
+ cu_seqlens_q = None
52
+ cu_seqlens_k = None
53
+ max_seqlens_q = 0
54
+ max_seqlens_k = 0
55
+ bias = None
56
+ alibi_slopes = None
57
+ causal = False
58
+ num_contexts = 0
59
+ varlen = False
60
+ eight_bit = False
61
+ layout = None
62
+ return_encoded_softmax = False
63
+ eight_bit_dtype_triton = default_eight_bit_dtype_triton
64
+ eight_bit_dtype_torch = default_eight_bit_dtype_torch
65
+ output_dtype = None
66
+
67
+ # Note about layouts:
68
+ #
69
+ # thd - [num_tokens, num_heads, head_size]
70
+ # bshd - [batch_size, seq_len, num_heads, head_size]
71
+ # bhsd - [batch_size, num_heads, seq_len, head_size]
72
+ #
73
+ # This is for each tensor, all tensors must have same layout.
74
+ # Q can have num_heads and seq_len differ from from K and V,
75
+ # however K and V must agree on this.
76
+ #
77
+ # Notes about varlen and bias:
78
+ # Only one or the other is implemented, meaning can't combine
79
+ # both varlen and bias right now.
80
+ #
81
+ # Note about quantization:
82
+ # Only 8-bit quantization supported (for now) and specifically fp8.
83
+ # Scales must be tensors.
84
+ # o_scale: This is 'output scaling', but comes from parameter called
85
+ # 'input_scale', this is applied to the output from the kernel.
86
+ # o_scale should be None if none of the other quantization parameters
87
+ # are used.
88
+ #
89
+ # NOTE: Object is in a tentatively good state after initialized, however,
90
+ # to verify, call check_args(q,k,v,o) where o is the output tensor.
91
+ def __init__(
92
+ self,
93
+ sm_scale=1.0,
94
+ layout=None, # layout can be 'bshd', 'bhsd', or 'thd'
95
+ output_dtype=None,
96
+ max_seqlens_q=0,
97
+ max_seqlens_k=0,
98
+ # varlen params
99
+ cu_seqlens_q=None, # only 'thd' layout supported for varlen
100
+ cu_seqlens_k=None,
101
+ # quant params
102
+ q_descale=None,
103
+ k_descale=None,
104
+ v_descale=None,
105
+ p_scale=None,
106
+ o_scale=None,
107
+ # bias params
108
+ bias=None, # varlen not implemented for bias
109
+ seqlen_q=None,
110
+ seqlen_k=None,
111
+ # alibi params
112
+ alibi_slopes=None,
113
+ alibi_batch=None,
114
+ alibi_nheads=None,
115
+ # causal
116
+ causal=None,
117
+ ):
118
+ self.sm_scale = sm_scale
119
+ self.output_dtype = output_dtype
120
+ self.max_seqlens_q = max_seqlens_q
121
+ self.max_seqlens_k = max_seqlens_k
122
+ self.layout = layout
123
+ if cu_seqlens_q is not None or cu_seqlens_k is not None:
124
+ assert cu_seqlens_q is not None and cu_seqlens_k is not None
125
+ assert layout is None or layout not in [
126
+ 'bshd', 'bhsd'
127
+ ], "Varlen only implemented for thd layout"
128
+ self.set_varlen_params(cu_seqlens_q, cu_seqlens_k)
129
+ quant_params = [q_descale, k_descale, v_descale, p_scale, o_scale]
130
+ if any(x is not None for x in quant_params):
131
+ p_descale = 1.0 / p_scale if p_scale is not None else None
132
+ self.set_eight_bit_params(q_descale, k_descale, v_descale, p_scale,
133
+ p_descale, o_scale)
134
+ if bias is not None:
135
+ self.need_bias(bias, seqlen_q, seqlen_k)
136
+ if alibi_slopes is not None:
137
+ self.need_alibi(alibi_slopes, alibi_batch, alibi_nheads)
138
+ if causal is not None and causal:
139
+ self.need_causal()
140
+
141
+ def set_varlen_params(self, cu_seqlens_q, cu_seqlens_k):
142
+ self.varlen = True
143
+ self.layout = 'thd'
144
+ self.cu_seqlens_q = cu_seqlens_q
145
+ self.cu_seqlens_k = cu_seqlens_k
146
+ # Without "varlen", there should still be one sequence.
147
+ assert len(cu_seqlens_q) >= 2
148
+ assert len(cu_seqlens_q) == len(cu_seqlens_k)
149
+ self.num_contexts = len(cu_seqlens_q) - 1
150
+ for i in range(0, self.num_contexts):
151
+ self.max_seqlens_q = max(
152
+ cu_seqlens_q[i + 1].item() - cu_seqlens_q[i].item(),
153
+ self.max_seqlens_q)
154
+ self.max_seqlens_k = max(
155
+ cu_seqlens_k[i + 1].item() - cu_seqlens_k[i].item(),
156
+ self.max_seqlens_k)
157
+
158
+ def set_eight_bit_params(self, q_descale, k_descale, v_descale, p_scale,
159
+ p_descale, o_scale):
160
+ self.eight_bit = True
161
+ self.q_descale = q_descale
162
+ self.k_descale = k_descale
163
+ self.v_descale = v_descale
164
+ self.p_scale = p_scale
165
+ self.p_descale = p_descale
166
+ self.o_scale = o_scale
167
+ self.use_p_scale = (p_scale is not None) and (
168
+ p_descale is not None) and (v_descale is not None)
169
+ self.eight_bit_kv = ((q_descale is None) and (k_descale is not None)
170
+ and (v_descale is not None))
171
+ self.eight_bit_dtype_torch = default_eight_bit_dtype_torch
172
+
173
+ def need_bias(self, bias, seqlen_q, seqlen_k):
174
+ assert bias is not None
175
+ assert bias.is_cuda
176
+ assert bias.dim() == 4
177
+ assert bias.shape[0] == 1
178
+ assert bias.shape[2:] == (seqlen_q, seqlen_k)
179
+ self.bias = bias
180
+
181
+ def need_alibi(self, alibi_slopes, batch, nheads):
182
+ assert alibi_slopes.is_cuda
183
+ assert alibi_slopes.dim() == 2
184
+ assert alibi_slopes.shape[0] == batch
185
+ assert alibi_slopes.shape[1] == nheads
186
+ self.alibi_slopes = alibi_slopes
187
+
188
+ def need_causal(self):
189
+ self.causal = True
190
+
191
+ def check_args(self, q, k, v, o):
192
+ assert q.dim() == k.dim() and q.dim() == v.dim()
193
+
194
+ batch, nheads_q, nheads_k, head_size = get_shape_from_layout(
195
+ q, k, self)
196
+ if self.varlen:
197
+ assert q.dim() == 3
198
+ assert self.cu_seqlens_q is not None
199
+ assert self.cu_seqlens_k is not None
200
+ assert len(self.cu_seqlens_q) == len(self.cu_seqlens_k)
201
+ # TODO: Remove once bias is supported with varlen
202
+ assert self.bias is None
203
+ assert not self.return_encoded_softmax
204
+ else:
205
+ assert q.dim() == 4
206
+ assert self.max_seqlens_q > 0 and self.max_seqlens_k > 0
207
+ assert self.cu_seqlens_q is None and self.cu_seqlens_k is None
208
+ assert k.shape == v.shape
209
+ assert q.shape[-1] == k.shape[-1] and q.shape[-1] == v.shape[-1]
210
+ # TODO: Change assert if we support qkl f8 and v f16
211
+ if self.eight_bit:
212
+ if self.eight_bit_kv:
213
+ assert (v.dtype == k.dtype
214
+ and k.dtype == self.eight_bit_dtype_torch)
215
+ assert q.dtype != k.dtype
216
+ assert (self.v_descale is not None) and (self.k_descale
217
+ is not None)
218
+ else:
219
+ assert (q.dtype == k.dtype and q.dtype == v.dtype
220
+ and q.dtype == self.eight_bit_dtype_torch)
221
+ assert (self.q_descale
222
+ is not None) and (self.k_descale
223
+ is not None) and (self.v_descale
224
+ is not None)
225
+ if self.use_p_scale:
226
+ assert (self.p_scale is not None) and (self.p_descale
227
+ is not None)
228
+ else:
229
+ assert (q.dtype == k.dtype) and (q.dtype == v.dtype)
230
+ assert head_size <= 256
231
+ assert o.shape == q.shape
232
+ assert (nheads_q % nheads_k) == 0
233
+ assert self.layout is not None
234
+ assert self.layout == 'thd' or not self.varlen
235
+
236
+
237
+ @triton.jit
238
+ def cdiv_fn(x, y):
239
+ return (x + y - 1) // y
240
+
241
+
242
+ @triton.jit
243
+ def max_fn(x, y):
244
+ return tl.math.max(x, y)
245
+
246
+
247
+ # Convenience function to load with optional boundary checks.
248
+ # "First" is the major dim, "second" is the minor dim.
249
+ @triton.jit
250
+ def masked_load(ptrs, offset_first, offset_second, boundary_first,
251
+ boundary_second):
252
+ if offset_first is not None and offset_second is not None:
253
+ mask = (offset_first[:, None] < boundary_first) & \
254
+ (offset_second[None, :] < boundary_second)
255
+ tensor = tl.load(ptrs, mask=mask, other=0.0)
256
+ elif offset_first is not None:
257
+ mask = offset_first[:, None] < boundary_first
258
+ tensor = tl.load(ptrs, mask=mask, other=0.0)
259
+ elif offset_second is not None:
260
+ mask = offset_second[None, :] < boundary_second
261
+ tensor = tl.load(ptrs, mask=mask, other=0.0)
262
+ else:
263
+ tensor = tl.load(ptrs)
264
+ return tensor
265
+
266
+
267
+ @triton.jit
268
+ def compute_alibi_block(alibi_slope,
269
+ seqlen_q,
270
+ seqlen_k,
271
+ offs_m,
272
+ offs_n,
273
+ transpose=False):
274
+ # when seqlen_k and seqlen_q are different we want the diagonal to stick to
275
+ # the bottom right of the attention matrix
276
+ # for casual mask we want something like this where (1 is kept and 0 is
277
+ # masked)
278
+ # seqlen_q = 2 and seqlen_k = 5
279
+ # 1 1 1 1 0
280
+ # 1 1 1 1 1
281
+ # seqlen_q = 5 and seqlen_k = 2
282
+ # 0 0
283
+ # 0 0
284
+ # 0 0
285
+ # 1 0
286
+ # 1 1
287
+ # for alibi the diagonal is 0 indicating no penalty for attending to that
288
+ # spot and increasing penalty for attending further from the diagonal
289
+ # e.g. alibi_slope = 1, seqlen_q = 2, seqlen_k = 5,
290
+ # offs_m = [0, 1, 2, 3], offs_n = [0, 1, 2, 3, 4], transpose = False
291
+ # 1. offs_m[:,None] = [[0],
292
+ # [1],
293
+ # 2. offs_m[:,None] + seqlen_k = [[5],
294
+ # [6],
295
+ # 3. offs_m[:,None] + seqlen_k - seqlen_q = [[3],
296
+ # [4],
297
+ # 4. offs_m[:,None] + seqlen_k - seqlen_q - offs_n[None,:] =
298
+ # [[3], - [[0, 1, 2, 3, 4]] = [[ 3, 2, 1, 0,-1], [4], [ 4, 3, 2, 1, 0]]
299
+ # 5. -1 * alibi_slope * tl.abs(relative_pos_block) = [[ -3, -2, -1, 0,-1],
300
+ # [ -4, -3, -2, -1, 0]],
301
+ relative_pos_block = (offs_m[:, None] + seqlen_k - seqlen_q -
302
+ offs_n[None, :])
303
+ alibi_block = -1 * alibi_slope * tl.abs(relative_pos_block)
304
+ if transpose:
305
+ return alibi_block.T
306
+ else:
307
+ return alibi_block
308
+
309
+
310
+ def compute_alibi_tensor(alibi_slopes, seqlen_q, seqlen_k):
311
+ q_idx = torch.arange(seqlen_q, dtype=torch.int32,
312
+ device="cuda").unsqueeze(-1) # (N_CTX_Q, 1)
313
+ k_idx = torch.arange(seqlen_k, dtype=torch.int32,
314
+ device="cuda").unsqueeze(0) # (1, N_CTX_K)
315
+ relative_pos = torch.abs(q_idx + seqlen_k - seqlen_q -
316
+ k_idx) # (N_CTX_Q, N_CTX_K)
317
+ return -1 * alibi_slopes.unsqueeze(-1).unsqueeze(
318
+ -1) * relative_pos # (Z, H, N_CTX_Q, N_CTX_K)
319
+
320
+
321
+ @triton.jit
322
+ def quant_fp8(x, scale):
323
+ x *= scale
324
+ x = tl.clamp(x, FP8_MIN, FP8_MAX)
325
+ return x
326
+
327
+
328
+ @triton.jit
329
+ def _attn_fwd_inner(
330
+ acc,
331
+ l_i,
332
+ m_i,
333
+ q,
334
+ k_ptrs,
335
+ v_ptrs,
336
+ bias_ptrs,
337
+ stride_kn,
338
+ stride_vk,
339
+ stride_bn,
340
+ start_m,
341
+ actual_seqlen_k,
342
+ actual_seqlen_q,
343
+ philox_seed,
344
+ batch_philox_offset,
345
+ encoded_sm_ptrs,
346
+ block_min,
347
+ block_max,
348
+ offs_n_causal,
349
+ masked_blocks,
350
+ n_extra_tokens,
351
+ alibi_slope,
352
+ q_descale,
353
+ k_descale,
354
+ v_descale,
355
+ p_scale,
356
+ IS_CAUSAL: tl.constexpr,
357
+ BLOCK_M: tl.constexpr,
358
+ BLOCK_DMODEL: tl.constexpr,
359
+ BLOCK_N: tl.constexpr,
360
+ OFFS_M: tl.constexpr,
361
+ OFFS_N: tl.constexpr,
362
+ SHOULD_PRE_LOAD_V: tl.constexpr,
363
+ SHOULD_MASK_STEPS: tl.constexpr,
364
+ SHOULD_RETURN_ENCODED_SOFTMAX: tl.constexpr,
365
+ USE_PADDED_HEAD: tl.constexpr,
366
+ IS_ACTUAL_BLOCK_DMODEL: tl.constexpr,
367
+ QK_SCALE: tl.constexpr,
368
+ IS_EIGHT_BIT_GEMM: tl.constexpr,
369
+ USE_P_SCALE: tl.constexpr,
370
+ IS_EIGHT_BIT_KV: tl.constexpr,
371
+ QUANT_DTYPE: tl.constexpr = default_eight_bit_dtype_triton,
372
+ ):
373
+
374
+ # loop over k, v, and update accumulator
375
+ for start_n in range(block_min, block_max, BLOCK_N):
376
+ # For padded blocks, we will overrun the tensor size if
377
+ # we load all BLOCK_N. For others, the blocks are all within range.
378
+ k_offs_n = start_n + tl.arange(0,
379
+ BLOCK_N) if SHOULD_MASK_STEPS else None
380
+ k_offs_k = None if not USE_PADDED_HEAD else tl.arange(0, BLOCK_DMODEL)
381
+ k = masked_load(k_ptrs, k_offs_k, k_offs_n, IS_ACTUAL_BLOCK_DMODEL,
382
+ actual_seqlen_k)
383
+ if SHOULD_PRE_LOAD_V:
384
+ # We can use the same offsets as k, just with dims transposed.
385
+ v = masked_load(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k,
386
+ IS_ACTUAL_BLOCK_DMODEL)
387
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
388
+ # We start from end of seqlen_k so only the first iteration would need
389
+ # to be checked for padding if it is not a multiple of block_n
390
+ # TODO: This can be optimized to only be true for the padded block.
391
+ if SHOULD_MASK_STEPS: # noqa: SIM102
392
+ # If this is the last block / iteration, we want to
393
+ # mask if the sequence length is not a multiple of block size
394
+ # a solution is to always do BLOCK_M // BLOCK_N + 1 steps if not
395
+ # is_modulo_mn. last step might get wasted but that is okay.
396
+ # check if this masking works for that case.
397
+ if (start_n + BLOCK_N == block_max) and (n_extra_tokens != 0):
398
+ boundary_m = tl.full([BLOCK_M],
399
+ actual_seqlen_k,
400
+ dtype=tl.int32)
401
+ size_n = start_n + OFFS_N[None, :]
402
+ mask = size_n < boundary_m[:, None]
403
+ qk = tl.where(mask, qk, float("-inf"))
404
+ if IS_CAUSAL:
405
+ causal_boundary = start_n + offs_n_causal
406
+ causal_mask = OFFS_M[:, None] >= causal_boundary[None, :]
407
+ qk = tl.where(causal_mask, qk, float("-inf"))
408
+
409
+ # -- compute qk ----
410
+ if IS_EIGHT_BIT_GEMM:
411
+ qk += ((((tl.dot(q, k).to(tl.float32) * q_descale)) * k_descale) *
412
+ QK_SCALE)
413
+ else:
414
+ if IS_EIGHT_BIT_KV:
415
+ k = (k * k_descale).to(q.type.element_ty)
416
+ qk += (tl.dot(q, k) * QK_SCALE)
417
+
418
+ if bias_ptrs is not None:
419
+ bias_offs_n = start_n + tl.arange(
420
+ 0, BLOCK_N) if SHOULD_MASK_STEPS else None
421
+ bias = masked_load(bias_ptrs, OFFS_M, bias_offs_n, actual_seqlen_q,
422
+ actual_seqlen_k)
423
+ # While bias is added after multiplying qk with sm_scale,
424
+ # our optimization to use 2^x instead of e^x results in an
425
+ # additional scale factor of log2(e) which we must also multiply
426
+ # the bias with.
427
+ qk += (bias * 1.44269504089)
428
+
429
+ if alibi_slope is not None:
430
+ # Compute the global position of each token within the sequence
431
+ global_m_positions = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
432
+ global_n_positions = start_n + tl.arange(0, BLOCK_N)
433
+ alibi_block = compute_alibi_block(alibi_slope, actual_seqlen_q,
434
+ actual_seqlen_k,
435
+ global_m_positions,
436
+ global_n_positions)
437
+ qk += (alibi_block * 1.44269504089) # scale factor of log2(e)
438
+
439
+ # softmax
440
+ m_ij = tl.maximum(m_i, tl.max(qk, 1))
441
+ qk = qk - m_ij[:, None]
442
+ p = tl.math.exp2(qk)
443
+
444
+ # CAVEAT: Must update l_ij before applying dropout
445
+ l_ij = tl.sum(p, 1)
446
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
447
+ tl.store(encoded_sm_ptrs, p.to(encoded_sm_ptrs.type.element_ty))
448
+ # -- update output accumulator --
449
+ alpha = tl.math.exp2(m_i - m_ij)
450
+ acc = acc * alpha[:, None]
451
+ if not SHOULD_PRE_LOAD_V:
452
+ v = masked_load(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k,
453
+ IS_ACTUAL_BLOCK_DMODEL)
454
+ # -- update m_i and l_i
455
+ l_i = l_i * alpha + l_ij
456
+ # update m_i and l_i
457
+ m_i = m_ij
458
+
459
+ if IS_EIGHT_BIT_GEMM:
460
+ if USE_P_SCALE:
461
+ p = quant_fp8(p, p_scale).to(QUANT_DTYPE)
462
+ acc += tl.dot(p, v)
463
+ else:
464
+ # v is in eight_bit but p is not, we want the gemm in p's type
465
+ acc += tl.dot(p, v.to(p.type.element_ty))
466
+ else:
467
+ if IS_EIGHT_BIT_KV:
468
+ v = (v * v_descale).to(p.type.element_ty)
469
+ acc += tl.dot(p.to(v.type.element_ty), v)
470
+
471
+ k_ptrs += BLOCK_N * stride_kn
472
+ v_ptrs += BLOCK_N * stride_vk
473
+ if bias_ptrs is not None:
474
+ bias_ptrs += BLOCK_N * stride_bn
475
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
476
+ encoded_sm_ptrs += BLOCK_N
477
+ return acc, l_i, m_i
478
+
479
+
480
+ def get_cdna_autotune_configs():
481
+ return [
482
+ triton.Config(
483
+ {
484
+ 'BLOCK_M': 128,
485
+ 'BLOCK_N': 128,
486
+ 'waves_per_eu': 2,
487
+ 'SHOULD_PRE_LOAD_V': False,
488
+ 'GRID_CU_MULTIP': 2
489
+ },
490
+ num_stages=1,
491
+ num_warps=4),
492
+ triton.Config(
493
+ {
494
+ 'BLOCK_M': 128,
495
+ 'BLOCK_N': 64,
496
+ 'waves_per_eu': 2,
497
+ 'SHOULD_PRE_LOAD_V': False,
498
+ 'GRID_CU_MULTIP': 2
499
+ },
500
+ num_stages=1,
501
+ num_warps=4),
502
+ triton.Config(
503
+ {
504
+ 'BLOCK_M': 128,
505
+ 'BLOCK_N': 64,
506
+ 'waves_per_eu': 3,
507
+ 'SHOULD_PRE_LOAD_V': False,
508
+ 'GRID_CU_MULTIP': 2
509
+ },
510
+ num_stages=1,
511
+ num_warps=4),
512
+ triton.Config(
513
+ {
514
+ 'BLOCK_M': 128,
515
+ 'BLOCK_N': 64,
516
+ 'waves_per_eu': 1,
517
+ 'SHOULD_PRE_LOAD_V': False,
518
+ 'GRID_CU_MULTIP': 2
519
+ },
520
+ num_stages=1,
521
+ num_warps=4),
522
+ triton.Config(
523
+ {
524
+ 'BLOCK_M': 128,
525
+ 'BLOCK_N': 32,
526
+ 'waves_per_eu': 2,
527
+ 'SHOULD_PRE_LOAD_V': False,
528
+ 'GRID_CU_MULTIP': 2
529
+ },
530
+ num_stages=1,
531
+ num_warps=4),
532
+ ], [
533
+ 'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
534
+ 'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
535
+ ]
536
+
537
+
538
+ def get_rdna_autotune_configs():
539
+ return [
540
+ triton.Config(
541
+ {
542
+ 'BLOCK_M': 32,
543
+ 'BLOCK_N': 32,
544
+ 'waves_per_eu': 4,
545
+ 'SHOULD_PRE_LOAD_V': False,
546
+ 'GRID_CU_MULTIP': 2
547
+ },
548
+ num_stages=1,
549
+ num_warps=2),
550
+ triton.Config(
551
+ {
552
+ 'BLOCK_M': 32,
553
+ 'BLOCK_N': 32,
554
+ 'waves_per_eu': 2,
555
+ 'SHOULD_PRE_LOAD_V': False,
556
+ 'GRID_CU_MULTIP': 2
557
+ },
558
+ num_stages=1,
559
+ num_warps=2),
560
+ triton.Config(
561
+ {
562
+ 'BLOCK_M': 32,
563
+ 'BLOCK_N': 16,
564
+ 'waves_per_eu': 4,
565
+ 'SHOULD_PRE_LOAD_V': False,
566
+ 'GRID_CU_MULTIP': 2
567
+ },
568
+ num_stages=1,
569
+ num_warps=2),
570
+ triton.Config(
571
+ {
572
+ 'BLOCK_M': 32,
573
+ 'BLOCK_N': 16,
574
+ 'waves_per_eu': 2,
575
+ 'SHOULD_PRE_LOAD_V': False,
576
+ 'GRID_CU_MULTIP': 2
577
+ },
578
+ num_stages=1,
579
+ num_warps=2),
580
+ triton.Config(
581
+ {
582
+ 'BLOCK_M': 16,
583
+ 'BLOCK_N': 16,
584
+ 'waves_per_eu': 4,
585
+ 'SHOULD_PRE_LOAD_V': False,
586
+ 'GRID_CU_MULTIP': 2
587
+ },
588
+ num_stages=1,
589
+ num_warps=2),
590
+ triton.Config(
591
+ {
592
+ 'BLOCK_M': 16,
593
+ 'BLOCK_N': 16,
594
+ 'waves_per_eu': 2,
595
+ 'SHOULD_PRE_LOAD_V': False,
596
+ 'GRID_CU_MULTIP': 2
597
+ },
598
+ num_stages=1,
599
+ num_warps=2),
600
+ # Fall-back config.
601
+ triton.Config(
602
+ {
603
+ 'BLOCK_M': 16,
604
+ 'BLOCK_N': 16,
605
+ 'waves_per_eu': 1,
606
+ 'SHOULD_PRE_LOAD_V': False,
607
+ 'GRID_CU_MULTIP': 2
608
+ },
609
+ num_stages=1,
610
+ num_warps=2),
611
+ ], [
612
+ 'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
613
+ 'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
614
+ ]
615
+
616
+
617
+ def get_general_autotune_configs():
618
+ return [
619
+ triton.Config(
620
+ {
621
+ 'BLOCK_M': 128,
622
+ 'BLOCK_N': 128,
623
+ 'SHOULD_PRE_LOAD_V': False,
624
+ 'GRID_CU_MULTIP': 2
625
+ },
626
+ num_stages=1,
627
+ num_warps=4),
628
+ triton.Config(
629
+ {
630
+ 'BLOCK_M': 128,
631
+ 'BLOCK_N': 64,
632
+ 'SHOULD_PRE_LOAD_V': False,
633
+ 'GRID_CU_MULTIP': 2
634
+ },
635
+ num_stages=1,
636
+ num_warps=4),
637
+ triton.Config(
638
+ {
639
+ 'BLOCK_M': 128,
640
+ 'BLOCK_N': 32,
641
+ 'SHOULD_PRE_LOAD_V': False,
642
+ 'GRID_CU_MULTIP': 2
643
+ },
644
+ num_stages=1,
645
+ num_warps=4),
646
+ ], [
647
+ 'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
648
+ 'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
649
+ ]
650
+
651
+
652
+ def has_cdna_target():
653
+ ROCM_CDNA_TARGETS = ["gfx940", "gfx941", "gfx942", "gfx90a", "gfx908"]
654
+ return triton.runtime.driver.active.get_current_target(
655
+ ).arch in ROCM_CDNA_TARGETS
656
+
657
+
658
+ def is_rocm_cdna():
659
+ return current_platform.is_rocm() and has_cdna_target()
660
+
661
+
662
+ def get_autotune_configs():
663
+ if is_rocm_cdna():
664
+ return get_cdna_autotune_configs()
665
+ elif current_platform.is_rocm():
666
+ return get_rdna_autotune_configs()
667
+ else:
668
+ return get_general_autotune_configs()
669
+
670
+
671
+ autotune_configs, autotune_keys = get_autotune_configs()
672
+
673
+
674
+ @triton.autotune(
675
+ configs=autotune_configs,
676
+ key=autotune_keys,
677
+ use_cuda_graph=True,
678
+ )
679
+ @triton.jit
680
+ def attn_fwd(
681
+ Q,
682
+ K,
683
+ V,
684
+ bias,
685
+ SM_SCALE: tl.constexpr,
686
+ L,
687
+ Out,
688
+ stride_qz: tl.int64,
689
+ stride_qh: tl.int64,
690
+ stride_qm: tl.int64,
691
+ stride_qk: tl.int64,
692
+ stride_kz: tl.int64,
693
+ stride_kh: tl.int64,
694
+ stride_kn: tl.int64,
695
+ stride_kk: tl.int64,
696
+ stride_vz: tl.int64,
697
+ stride_vh: tl.int64,
698
+ stride_vk: tl.int64,
699
+ stride_vn: tl.int64,
700
+ stride_oz: tl.int64,
701
+ stride_oh: tl.int64,
702
+ stride_om: tl.int64,
703
+ stride_on: tl.int64,
704
+ stride_bz: tl.int64,
705
+ stride_bh: tl.int64,
706
+ stride_bm: tl.int64,
707
+ stride_bn: tl.int64,
708
+ stride_az: tl.int64,
709
+ stride_ah: tl.int64,
710
+ q_descale_ptr,
711
+ k_descale_ptr,
712
+ p_scale_ptr,
713
+ p_descale_ptr,
714
+ o_descale_ptr,
715
+ v_descale_ptr,
716
+ q_descale_has_singleton: tl.constexpr,
717
+ k_descale_has_singleton: tl.constexpr,
718
+ p_descale_has_singleton: tl.constexpr,
719
+ v_descale_has_singleton: tl.constexpr,
720
+ cu_seqlens_q,
721
+ cu_seqlens_k,
722
+ philox_seed,
723
+ NUM_CU: tl.constexpr,
724
+ GRID_CU_MULTIP: tl.constexpr,
725
+ B: tl.constexpr,
726
+ philox_offset_base,
727
+ encoded_softmax,
728
+ alibi_slopes,
729
+ HQ: tl.constexpr,
730
+ HK: tl.constexpr,
731
+ IS_ACTUAL_BLOCK_DMODEL: tl.constexpr,
732
+ MAX_SEQLENS_Q: tl.constexpr,
733
+ MAX_SEQLENS_K: tl.constexpr,
734
+ VARLEN: tl.constexpr,
735
+ IS_CAUSAL: tl.constexpr,
736
+ BLOCK_M: tl.constexpr,
737
+ BLOCK_DMODEL: tl.constexpr,
738
+ BLOCK_N: tl.constexpr,
739
+ SHOULD_PRE_LOAD_V: tl.constexpr,
740
+ USE_BIAS: tl.constexpr,
741
+ SHOULD_RETURN_ENCODED_SOFTMAX: tl.constexpr,
742
+ USE_ALIBI: tl.constexpr,
743
+ IS_EIGHT_BIT: tl.constexpr,
744
+ USE_P_SCALE: tl.constexpr,
745
+ IS_EIGHT_BIT_KV: tl.constexpr,
746
+ QUANT_DTYPE: tl.constexpr = default_eight_bit_dtype_triton,
747
+ ):
748
+
749
+ if o_descale_ptr is not None:
750
+ o_descale = tl.load(o_descale_ptr)
751
+
752
+ start_m: tl.int64 = tl.program_id(0)
753
+ off_h_q: tl.int64 = tl.program_id(1)
754
+ off_z: tl.int64 = tl.program_id(2)
755
+
756
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M).to(tl.int64)
757
+ offs_n = tl.arange(0, BLOCK_N).to(tl.int64)
758
+ offs_d = tl.arange(0, BLOCK_DMODEL).to(tl.int64)
759
+
760
+ # as we can't have return statements inside while loop in Triton
761
+ continue_condition = True
762
+
763
+ if VARLEN:
764
+ cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z)
765
+ cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1)
766
+ seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start
767
+ # We have a one-size-fits-all grid in id(0). Some seqlens might be
768
+ # too small for all start_m so for those we return early.
769
+ if start_m * BLOCK_M > seqlen_q:
770
+ continue_condition = False
771
+ # return
772
+ cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z)
773
+ cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1)
774
+ seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start
775
+ else:
776
+ cu_seqlens_q_start = 0
777
+ cu_seqlens_k_start = 0
778
+ seqlen_q = MAX_SEQLENS_Q
779
+ seqlen_k = MAX_SEQLENS_K
780
+
781
+ if continue_condition:
782
+ # Now we compute whether we need to exit early due to causal
783
+ # masking. This is because for seqlen_q > seqlen_k, M rows of the
784
+ # attn scores are completely masked, resulting in 0s written to the
785
+ # output, and inf written to LSE. We don't need to do any GEMMs in
786
+ # this case. This block of code determines what N is, and if this
787
+ # WG is operating on those M rows.
788
+ n_blocks = cdiv_fn(seqlen_k, BLOCK_N)
789
+ if (IS_CAUSAL):
790
+ # If seqlen_q == seqlen_k, the attn scores are a square matrix.
791
+ # If seqlen_q != seqlen_k, attn scores are rectangular which
792
+ # means the causal mask boundary is bottom right aligned, and
793
+ # ends at either the top edge (seqlen_q < seqlen_k) or left
794
+ # edge. This captures the decrease in n_blocks if we have a
795
+ # rectangular attn matrix
796
+ n_blocks_seqlen = cdiv_fn(
797
+ (start_m + 1) * BLOCK_M + seqlen_k - seqlen_q, BLOCK_N)
798
+ # This is what adjusts the block_max for the current WG, only
799
+ # if IS_CAUSAL. Otherwise we want to always iterate through all
800
+ # n_blocks
801
+ n_blocks = min(n_blocks, n_blocks_seqlen)
802
+ # If we have no blocks after adjusting for seqlen deltas, this
803
+ # WG is part of the blocks that are all 0. We exit early.
804
+ if n_blocks <= 0:
805
+ o_offset = (Out + off_z * stride_oz + off_h_q * stride_oh +
806
+ cu_seqlens_q_start * stride_om)
807
+ o_ptrs = (o_offset + offs_m[:, None] * stride_om +
808
+ offs_d[None, :] * stride_on)
809
+ acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
810
+ o_ptrs_mask = (offs_m[:, None] < seqlen_q).broadcast_to(
811
+ [BLOCK_M, BLOCK_DMODEL])
812
+ # We still need to write 0s to the result
813
+ tl.store(o_ptrs, acc, mask=o_ptrs_mask)
814
+ # The tensor allocated for L is based on MAX_SEQLENS_Q as
815
+ # that is statically known.
816
+ l_ptrs = (L + off_z * HQ * MAX_SEQLENS_Q +
817
+ off_h_q * MAX_SEQLENS_Q + offs_m)
818
+ # We store inf to LSE, not -inf because in the bwd pass,
819
+ # we subtract this from qk which makes it -inf, such that
820
+ # exp(qk - inf) = 0 for these masked blocks.
821
+ l_value = tl.full([BLOCK_M],
822
+ value=float("inf"),
823
+ dtype=tl.float32)
824
+ l_ptrs_mask = offs_m < MAX_SEQLENS_Q
825
+ tl.store(l_ptrs, l_value, mask=l_ptrs_mask)
826
+ # TODO: Should dropout and return encoded softmax be
827
+ # handled here too?
828
+ continue_condition = False
829
+ # return
830
+
831
+ if continue_condition:
832
+ # If MQA / GQA, set the K and V head offsets appropriately.
833
+ GROUP_SIZE: tl.constexpr = HQ // HK
834
+ off_h_k = off_h_q // GROUP_SIZE if GROUP_SIZE != 1 else off_h_q
835
+ n_extra_tokens = 0
836
+ if seqlen_k < BLOCK_N:
837
+ n_extra_tokens = BLOCK_N - seqlen_k
838
+ elif seqlen_k % BLOCK_N:
839
+ n_extra_tokens = seqlen_k % BLOCK_N
840
+ USE_PADDED_HEAD: tl.constexpr = (IS_ACTUAL_BLOCK_DMODEL
841
+ != BLOCK_DMODEL)
842
+
843
+ # Compute pointers for all the tensors used in this kernel.
844
+ q_offset = (Q + off_z * stride_qz + off_h_q * stride_qh +
845
+ cu_seqlens_q_start * stride_qm)
846
+ q_ptrs = (q_offset + offs_m[:, None] * stride_qm +
847
+ offs_d[None, :] * stride_qk)
848
+ k_offset = (K + off_z * stride_kz + off_h_k * stride_kh +
849
+ cu_seqlens_k_start * stride_kn)
850
+ k_ptrs = (k_offset + offs_d[:, None] * stride_kk +
851
+ offs_n[None, :] * stride_kn)
852
+ v_offset = (V + off_z * stride_vz + off_h_k * stride_vh +
853
+ cu_seqlens_k_start * stride_vk)
854
+ v_ptrs = (v_offset + offs_n[:, None] * stride_vk +
855
+ offs_d[None, :] * stride_vn)
856
+ # Compute pointers for all scale tensors used in this kernel.
857
+
858
+ IS_EIGHT_BIT_GEMM: tl.constexpr = IS_EIGHT_BIT & (
859
+ not IS_EIGHT_BIT_KV)
860
+ if IS_EIGHT_BIT:
861
+ if k_descale_has_singleton:
862
+ k_descale_ptrs = k_descale_ptr
863
+ else:
864
+ k_descale_ptrs = k_descale_ptr + off_h_k
865
+
866
+ if v_descale_has_singleton:
867
+ v_descale_ptrs = v_descale_ptr
868
+ else:
869
+ v_descale_ptrs = v_descale_ptr + off_h_k
870
+
871
+ if not IS_EIGHT_BIT_KV:
872
+ if q_descale_has_singleton:
873
+ q_descale_ptrs = q_descale_ptr
874
+ else:
875
+ q_descale_ptrs = q_descale_ptr + off_h_q
876
+ if USE_P_SCALE:
877
+ if p_descale_has_singleton:
878
+ p_scale_ptrs = p_scale_ptr
879
+ p_descale_ptrs = p_descale_ptr
880
+ else:
881
+ p_scale_ptrs = p_scale_ptr + off_h_q
882
+ p_descale_ptrs = p_descale_ptr + off_h_q
883
+
884
+ if USE_BIAS:
885
+ bias_offset = off_h_q * stride_bh
886
+ bias_ptrs = (bias + bias_offset + offs_m[:, None] * stride_bm +
887
+ offs_n[None, :] * stride_bn)
888
+ else:
889
+ bias_ptrs = None
890
+
891
+ if USE_ALIBI:
892
+ a_offset = off_z * stride_az + off_h_q * stride_ah
893
+ alibi_slope = tl.load(alibi_slopes + a_offset)
894
+ else:
895
+ alibi_slope = None
896
+
897
+ batch_philox_offset = 0
898
+ # We can ask to return the dropout mask without doing any
899
+ # dropout. In this case, we return an invalid pointer so
900
+ # indicate the mask is not valid.
901
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
902
+ encoded_sm_base = (encoded_softmax +
903
+ off_h_q * seqlen_q * seqlen_k)
904
+ encoded_sm_ptrs = (encoded_sm_base +
905
+ offs_m[:, None] * seqlen_k +
906
+ offs_n[None, :])
907
+ else:
908
+ encoded_sm_ptrs = None
909
+ # initialize pointer to m and l
910
+ m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
911
+ l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32)
912
+ acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
913
+ # scale sm_scale by log_2(e) and use 2^x in the loop as we do
914
+ # not have native e^x support in HW.
915
+ QK_SCALE: tl.constexpr = SM_SCALE * 1.44269504089
916
+ # Q is loaded once at the beginning and shared by all N blocks.
917
+ q_ptrs_mask = offs_m[:, None] < seqlen_q
918
+ if USE_PADDED_HEAD:
919
+ q_ptrs_mask = q_ptrs_mask & (offs_d[None, :]
920
+ < IS_ACTUAL_BLOCK_DMODEL)
921
+ q = tl.load(q_ptrs, mask=q_ptrs_mask, other=0.0)
922
+
923
+ if IS_EIGHT_BIT:
924
+ k_descale = tl.load(k_descale_ptrs)
925
+ v_descale = tl.load(v_descale_ptrs)
926
+ q_descale = None if IS_EIGHT_BIT_KV else tl.load(
927
+ q_descale_ptrs)
928
+ if USE_P_SCALE:
929
+ p_scale = tl.load(p_scale_ptrs)
930
+ p_descale = tl.load(p_descale_ptrs)
931
+ else:
932
+ p_scale = None
933
+ p_descale = None
934
+ else:
935
+ q_descale = None
936
+ k_descale = None
937
+ v_descale = None
938
+ p_scale = None
939
+ p_descale = None
940
+ # Here we compute how many full and masked blocks we have.
941
+ padded_block_k = n_extra_tokens != 0
942
+ is_modulo_mn = not padded_block_k and (seqlen_q % BLOCK_M == 0)
943
+ if IS_CAUSAL:
944
+ # There are always at least BLOCK_M // BLOCK_N masked
945
+ # blocks. Additionally there might be one more due to
946
+ # dissimilar seqlens.
947
+ masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn)
948
+ else:
949
+ # Padding on Q does not need to be masked in the FA loop.
950
+ masked_blocks = padded_block_k
951
+ # if IS_CAUSAL, not is_modulo_mn does not always result in an
952
+ # additional block. In this case we might exceed n_blocks so
953
+ # pick the min.
954
+ masked_blocks = min(masked_blocks, n_blocks)
955
+ n_full_blocks = n_blocks - masked_blocks
956
+ block_min = 0
957
+ block_max = n_blocks * BLOCK_N
958
+ # Compute for full blocks. Here we set causal to false
959
+ # regardless of its actual value because there is no masking.
960
+ # Similarly we do not need padding.
961
+ if n_full_blocks > 0:
962
+ block_max = (n_blocks - masked_blocks) * BLOCK_N
963
+ acc, l_i, m_i = _attn_fwd_inner(
964
+ acc,
965
+ l_i,
966
+ m_i,
967
+ q,
968
+ k_ptrs,
969
+ v_ptrs,
970
+ bias_ptrs,
971
+ stride_kn,
972
+ stride_vk,
973
+ stride_bn,
974
+ start_m,
975
+ seqlen_k,
976
+ seqlen_q,
977
+ philox_seed,
978
+ batch_philox_offset,
979
+ encoded_sm_ptrs,
980
+ # _, _, offs_n_causal, masked_blocks, n_extra_tokens, _
981
+ block_min,
982
+ block_max,
983
+ 0,
984
+ 0,
985
+ 0,
986
+ alibi_slope,
987
+ q_descale,
988
+ k_descale,
989
+ v_descale,
990
+ p_scale,
991
+ # IS_CAUSAL, ....
992
+ False,
993
+ BLOCK_M,
994
+ BLOCK_DMODEL,
995
+ BLOCK_N,
996
+ offs_m,
997
+ offs_n,
998
+ # _, SHOULD_MASK_STEPS, ...
999
+ SHOULD_PRE_LOAD_V,
1000
+ False,
1001
+ SHOULD_RETURN_ENCODED_SOFTMAX,
1002
+ USE_PADDED_HEAD,
1003
+ IS_ACTUAL_BLOCK_DMODEL,
1004
+ QK_SCALE,
1005
+ IS_EIGHT_BIT_GEMM,
1006
+ USE_P_SCALE,
1007
+ IS_EIGHT_BIT_KV,
1008
+ QUANT_DTYPE)
1009
+ block_min = block_max
1010
+ block_max = n_blocks * BLOCK_N
1011
+
1012
+ tl.debug_barrier()
1013
+ # Remaining blocks, if any, are full / not masked.
1014
+ if (masked_blocks > 0):
1015
+ if IS_CAUSAL:
1016
+ offs_n_causal = offs_n + (seqlen_q - seqlen_k)
1017
+ else:
1018
+ offs_n_causal = 0
1019
+ k_ptrs += n_full_blocks * BLOCK_N * stride_kn
1020
+ v_ptrs += n_full_blocks * BLOCK_N * stride_vk
1021
+ if USE_BIAS:
1022
+ bias_ptrs += n_full_blocks * BLOCK_N * stride_bn
1023
+ if SHOULD_RETURN_ENCODED_SOFTMAX:
1024
+ encoded_sm_ptrs += n_full_blocks * BLOCK_N
1025
+ acc, l_i, m_i = _attn_fwd_inner(
1026
+ acc,
1027
+ l_i,
1028
+ m_i,
1029
+ q,
1030
+ k_ptrs,
1031
+ v_ptrs,
1032
+ bias_ptrs,
1033
+ stride_kn,
1034
+ stride_vk,
1035
+ stride_bn,
1036
+ start_m,
1037
+ seqlen_k,
1038
+ seqlen_q,
1039
+ philox_seed,
1040
+ batch_philox_offset,
1041
+ encoded_sm_ptrs,
1042
+ block_min,
1043
+ block_max,
1044
+ offs_n_causal,
1045
+ masked_blocks,
1046
+ n_extra_tokens,
1047
+ alibi_slope,
1048
+ q_descale,
1049
+ k_descale,
1050
+ v_descale,
1051
+ p_scale,
1052
+ IS_CAUSAL,
1053
+ BLOCK_M,
1054
+ BLOCK_DMODEL,
1055
+ BLOCK_N,
1056
+ offs_m,
1057
+ offs_n,
1058
+ # _, SHOULD_MASK_STEPS, ...
1059
+ SHOULD_PRE_LOAD_V,
1060
+ True,
1061
+ SHOULD_RETURN_ENCODED_SOFTMAX,
1062
+ USE_PADDED_HEAD,
1063
+ IS_ACTUAL_BLOCK_DMODEL,
1064
+ QK_SCALE,
1065
+ IS_EIGHT_BIT_GEMM,
1066
+ USE_P_SCALE,
1067
+ IS_EIGHT_BIT_KV,
1068
+ QUANT_DTYPE)
1069
+
1070
+ if IS_EIGHT_BIT and not IS_EIGHT_BIT_KV:
1071
+ if USE_P_SCALE:
1072
+ acc *= p_descale
1073
+ acc *= v_descale
1074
+
1075
+ # epilogue
1076
+ # This helps the compiler do Newton Raphson on l_i vs on acc
1077
+ # which is much larger.
1078
+ l_recip = 1 / l_i[:, None]
1079
+ acc = acc * l_recip
1080
+
1081
+ # If seqlen_q > seqlen_k but the delta is not a multiple of
1082
+ # BLOCK_M, then we have one block with a row of all NaNs which
1083
+ # come from computing softmax over a row of all
1084
+ # -infs (-inf - inf = NaN). We check for that here and store 0s
1085
+ # where there are NaNs as these rows should've been zeroed out.
1086
+ end_m_idx = (start_m + 1) * BLOCK_M
1087
+ start_m_idx = start_m * BLOCK_M
1088
+ causal_start_idx = seqlen_q - seqlen_k
1089
+ if IS_EIGHT_BIT and not IS_EIGHT_BIT_KV: # noqa: SIM102
1090
+ if o_descale_ptr is not None:
1091
+ acc = quant_fp8(acc, o_descale)
1092
+
1093
+ acc = acc.to(Out.type.element_ty)
1094
+ if IS_CAUSAL: # noqa: SIM102
1095
+ if (causal_start_idx > start_m_idx
1096
+ and causal_start_idx < end_m_idx):
1097
+ out_mask_boundary = tl.full((BLOCK_DMODEL, ),
1098
+ causal_start_idx,
1099
+ dtype=tl.int32)
1100
+ mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M)
1101
+ out_ptrs_mask = (mask_m_offsets[:, None]
1102
+ >= out_mask_boundary[None, :])
1103
+ z = tl.zeros((1, ), tl.float32)
1104
+ acc = tl.where(out_ptrs_mask, acc,
1105
+ z.to(acc.type.element_ty))
1106
+ # write back LSE
1107
+ l_ptrs = (L + off_z * HQ * MAX_SEQLENS_Q +
1108
+ off_h_q * MAX_SEQLENS_Q + offs_m)
1109
+ # If seqlen_q not multiple of BLOCK_M, we need to mask out the
1110
+ # last few rows. This is only true for the last M block.
1111
+ # For others, overflow_size will be -ve
1112
+ overflow_size = end_m_idx - seqlen_q
1113
+ if overflow_size > 0:
1114
+ boundary = tl.full((BLOCK_M, ),
1115
+ BLOCK_M - overflow_size,
1116
+ dtype=tl.int32)
1117
+ l_ptrs_mask = tl.arange(0, BLOCK_M) < boundary
1118
+ tl.store(l_ptrs, m_i + tl.math.log2(l_i), mask=l_ptrs_mask)
1119
+ else:
1120
+ tl.store(l_ptrs, m_i + tl.math.log2(l_i))
1121
+
1122
+ # write back O
1123
+ o_offset = (Out + off_z * stride_oz + off_h_q * stride_oh +
1124
+ cu_seqlens_q_start * stride_om)
1125
+ o_ptrs = (o_offset + offs_m[:, None] * stride_om +
1126
+ offs_d[None, :] * stride_on)
1127
+ o_ptrs_mask = tl.full([BLOCK_M, BLOCK_DMODEL], 1, dtype=tl.int1)
1128
+ if overflow_size > 0:
1129
+ o_ptrs_mask = o_ptrs_mask & (offs_m[:, None] < seqlen_q)
1130
+ if USE_PADDED_HEAD:
1131
+ o_ptrs_mask = o_ptrs_mask & (offs_d[None, :]
1132
+ < IS_ACTUAL_BLOCK_DMODEL)
1133
+ tl.store(o_ptrs, acc.to(Out.dtype.element_ty), mask=o_ptrs_mask)
1134
+
1135
+
1136
+ def get_shape_from_layout(q, k, metadata):
1137
+ assert metadata.layout in SUPPORTED_LAYOUTS, "Got unsupported layout."
1138
+
1139
+ if metadata.layout == 'thd':
1140
+ nheads_q, nheads_k = q.shape[1], k.shape[1]
1141
+ head_size = q.shape[-1]
1142
+ batch = metadata.num_contexts
1143
+ elif metadata.layout == 'bhsd':
1144
+ batch, nheads_q, _, head_size = q.shape
1145
+ nheads_k = k.shape[1]
1146
+ elif metadata.layout == 'bshd':
1147
+ batch, _, nheads_q, head_size = q.shape
1148
+ nheads_k = k.shape[2]
1149
+ return batch, nheads_q, nheads_k, head_size
1150
+
1151
+
1152
+ def get_strides_from_layout(q, k, v, o, metadata):
1153
+ assert metadata.layout in SUPPORTED_LAYOUTS, "Got unsupported layout."
1154
+
1155
+ STRIDE_PERMUTATIONS = {
1156
+ 'thd': (None, 1, 0, 2),
1157
+ 'bhsd': (0, 1, 2, 3),
1158
+ 'bshd': (0, 2, 1, 3),
1159
+ }
1160
+
1161
+ perm = STRIDE_PERMUTATIONS[metadata.layout]
1162
+ stride = lambda x, p: (0 if p is None else x.stride(p))
1163
+ strides = lambda x: (stride(x, p) for p in perm)
1164
+
1165
+ return tuple(strides(x) for x in [q, k, v, o])
1166
+
1167
+
1168
+ class _attention(torch.autograd.Function):
1169
+
1170
+ @staticmethod
1171
+ def forward(ctx, q, k, v, o, metadata: MetaData):
1172
+ # NOTE: a large bias tensor leads to overflow during pointer arithmetic
1173
+ if (metadata.bias is not None):
1174
+ assert (metadata.bias.numel() < 2**31)
1175
+
1176
+ if o is None:
1177
+ if metadata.eight_bit:
1178
+ o = torch.empty_like(
1179
+ q,
1180
+ dtype=metadata.output_dtype if metadata.output_dtype
1181
+ is not None else metadata.eight_bit_dtype_torch)
1182
+ else:
1183
+ o = torch.empty_like(q, dtype=q.dtype)
1184
+
1185
+ metadata.check_args(q, k, v, o)
1186
+
1187
+ batch, nheads_q, nheads_k, head_size = get_shape_from_layout(
1188
+ q, k, metadata)
1189
+ q_strides, k_strides, v_strides, o_strides = get_strides_from_layout(
1190
+ q, k, v, o, metadata)
1191
+
1192
+ # Get closest power of 2 over or equal to 32.
1193
+ padded_d_model = 1 << (head_size - 1).bit_length()
1194
+ # Smallest head_dim supported is 16. If smaller, the tile in the
1195
+ # kernel is padded - there is no padding in memory for any dims.
1196
+ padded_d_model = max(padded_d_model, 16)
1197
+
1198
+ # encoded_softmax is used to validate dropout behavior vs the
1199
+ # PyTorch SDPA math backend reference. We zero this out to give a
1200
+ # consistent starting point and then populate it with the output of
1201
+ # softmax with the sign bit set according to the dropout mask.
1202
+ # The resulting return allows this mask to be fed into the reference
1203
+ # implementation for testing only. This return holds no useful output
1204
+ # aside from debugging.
1205
+ if metadata.return_encoded_softmax:
1206
+ encoded_softmax = torch.zeros(
1207
+ (q.shape[0], q.shape[1], q.shape[2], k.shape[2]),
1208
+ device=q.device,
1209
+ dtype=torch.float32)
1210
+ else:
1211
+ encoded_softmax = None
1212
+
1213
+ M = torch.empty((batch, nheads_q, metadata.max_seqlens_q),
1214
+ device=q.device,
1215
+ dtype=torch.float32)
1216
+
1217
+ # Seed the RNG so we get reproducible results for testing.
1218
+ philox_seed = 0x1BF52
1219
+ philox_offset = 0x1D4B42
1220
+
1221
+ if metadata.bias is not None:
1222
+ bias_strides = (metadata.bias.stride(0), metadata.bias.stride(1),
1223
+ metadata.bias.stride(2), metadata.bias.stride(3))
1224
+ else:
1225
+ bias_strides = (0, 0, 0, 0)
1226
+
1227
+ if metadata.alibi_slopes is not None:
1228
+ alibi_strides = (metadata.alibi_slopes.stride(0),
1229
+ metadata.alibi_slopes.stride(1))
1230
+ else:
1231
+ alibi_strides = (0, 0)
1232
+
1233
+ if metadata.eight_bit:
1234
+ q_descale, k_descale, p_scale, p_descale, v_descale, o_scale = (
1235
+ metadata.q_descale, metadata.k_descale, metadata.p_scale,
1236
+ metadata.p_descale, metadata.v_descale, metadata.o_scale)
1237
+ o_descale = 1.0 / o_scale if o_scale is not None else None
1238
+ else:
1239
+ q_descale = k_descale = p_scale = None
1240
+ p_descale = v_descale = o_descale = None
1241
+
1242
+ # number of compute units available
1243
+ NUM_CU = torch.cuda.get_device_properties("cuda").multi_processor_count
1244
+
1245
+ grid = lambda META: (triton.cdiv(metadata.max_seqlens_q, META[
1246
+ 'BLOCK_M']), nheads_q, batch)
1247
+
1248
+ attn_fwd[grid](
1249
+ q,
1250
+ k,
1251
+ v,
1252
+ metadata.bias,
1253
+ metadata.sm_scale,
1254
+ M,
1255
+ o,
1256
+ *q_strides,
1257
+ *k_strides,
1258
+ *v_strides,
1259
+ *o_strides,
1260
+ *bias_strides,
1261
+ *alibi_strides,
1262
+ q_descale,
1263
+ k_descale,
1264
+ p_scale,
1265
+ p_descale,
1266
+ o_descale,
1267
+ v_descale,
1268
+ q_descale.numel() == 1 if q_descale is not None else False,
1269
+ k_descale.numel() == 1 if k_descale is not None else False,
1270
+ p_descale.numel() == 1 if p_descale is not None else False,
1271
+ v_descale.numel() == 1 if v_descale is not None else False,
1272
+ metadata.cu_seqlens_q,
1273
+ metadata.cu_seqlens_k,
1274
+ philox_seed=philox_seed,
1275
+ philox_offset_base=philox_offset,
1276
+ encoded_softmax=encoded_softmax,
1277
+ alibi_slopes=metadata.alibi_slopes,
1278
+ HQ=nheads_q,
1279
+ HK=nheads_k,
1280
+ IS_ACTUAL_BLOCK_DMODEL=head_size,
1281
+ MAX_SEQLENS_Q=metadata.max_seqlens_q,
1282
+ MAX_SEQLENS_K=metadata.max_seqlens_k,
1283
+ IS_CAUSAL=metadata.causal,
1284
+ VARLEN=metadata.varlen,
1285
+ BLOCK_DMODEL=padded_d_model,
1286
+ USE_BIAS=metadata.bias is not None,
1287
+ USE_ALIBI=metadata.alibi_slopes is not None,
1288
+ SHOULD_RETURN_ENCODED_SOFTMAX=metadata.return_encoded_softmax,
1289
+ IS_EIGHT_BIT=metadata.eight_bit,
1290
+ USE_P_SCALE=metadata.eight_bit and metadata.use_p_scale,
1291
+ IS_EIGHT_BIT_KV=metadata.eight_bit and metadata.eight_bit_kv,
1292
+ NUM_CU=NUM_CU,
1293
+ B=batch,
1294
+ QUANT_DTYPE=metadata.eight_bit_dtype_triton)
1295
+
1296
+ ctx.grid = grid
1297
+ ctx.sm_scale = metadata.sm_scale
1298
+ ctx.BLOCK_DMODEL = head_size
1299
+ ctx.causal = metadata.causal
1300
+ ctx.alibi_slopes = metadata.alibi_slopes
1301
+ ctx.philox_seed = philox_seed
1302
+ ctx.philox_offset = philox_offset
1303
+ ctx.encoded_softmax = encoded_softmax
1304
+ ctx.return_encoded_softmax = metadata.return_encoded_softmax
1305
+ return o, encoded_softmax
1306
+
1307
+
1308
+ triton_attention_rocm = _attention.apply
1309
+
1310
+
1311
+ def scale_fp8(t, scale=None):
1312
+ t_scaled, scale_out = ops.scaled_fp8_quant(t.reshape(-1, t.shape[-1]),
1313
+ scale)
1314
+ return t_scaled.reshape(t.shape), scale_out
1315
+
1316
+
1317
+ def maybe_quantize_fp8(t, scale):
1318
+ eight_bit_dtype = current_platform.fp8_dtype()
1319
+ if t.dtype != eight_bit_dtype:
1320
+ t, _ = scale_fp8(t, scale)
1321
+ return t
1322
+
1323
+
1324
+ def check_and_maybe_quantize_qkv(q, k, v, fp8_scales):
1325
+ (q_scale, k_scale, v_scale, p_scale) = fp8_scales
1326
+
1327
+ q = maybe_quantize_fp8(q, q_scale)
1328
+ k = maybe_quantize_fp8(k, k_scale)
1329
+ v = maybe_quantize_fp8(v, v_scale)
1330
+
1331
+ return q, k, v
1332
+
1333
+
1334
+ # query - [num_tokens, num_heads, head_size]
1335
+ # key - [num_tokens, num_kv_heads, head_size]
1336
+ # value - [num_tokens, num_kv_heads, head_size
1337
+ # output - [num_tokens, num_heads, head_size]
1338
+ def triton_attention(
1339
+ q: torch.Tensor,
1340
+ k: torch.Tensor,
1341
+ v: torch.Tensor,
1342
+ o: torch.Tensor,
1343
+ cu_seqlens_q: torch.Tensor,
1344
+ cu_seqlens_k: torch.Tensor,
1345
+ max_seqlens_q: int,
1346
+ max_seqlens_k: int,
1347
+ causal: bool = False,
1348
+ sm_scale: float = 1.0,
1349
+ bias: Optional[torch.Tensor] = None,
1350
+ fp8_scales: Optional[tuple[float, ...]] = None,
1351
+ input_scale: Optional[torch.Tensor] = None,
1352
+ ) -> torch.Tensor:
1353
+ if fp8_scales is not None:
1354
+ q_descale, k_descale, v_descale, p_scale = fp8_scales
1355
+ else:
1356
+ q_descale = k_descale = v_descale = p_scale = None
1357
+
1358
+ attn_metadata = MetaData(sm_scale=sm_scale,
1359
+ max_seqlens_q=max_seqlens_q,
1360
+ max_seqlens_k=max_seqlens_k,
1361
+ causal=causal,
1362
+ bias=bias,
1363
+ output_dtype=q.dtype,
1364
+ cu_seqlens_q=cu_seqlens_q,
1365
+ cu_seqlens_k=cu_seqlens_k,
1366
+ q_descale=q_descale,
1367
+ k_descale=k_descale,
1368
+ v_descale=v_descale,
1369
+ p_scale=p_scale,
1370
+ o_scale=input_scale)
1371
+
1372
+ if fp8_scales is not None:
1373
+ q, k, v = check_and_maybe_quantize_qkv(q, k, v, fp8_scales)
1374
+
1375
+ return triton_attention_rocm(q, k, v, o, attn_metadata)