vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1536 -0
- vllm/_ipex_ops.py +241 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +38 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +31 -0
- vllm/assets/video.py +103 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +303 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1092 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +301 -0
- vllm/attention/backends/ipex_attn.py +396 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1444 -0
- vllm/attention/backends/pallas.py +346 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +412 -0
- vllm/attention/backends/rocm_flash_attn.py +969 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +443 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +244 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +105 -0
- vllm/attention/ops/ipex_attn.py +193 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +42 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +675 -0
- vllm/attention/ops/triton_flash_attention.py +1375 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +831 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +181 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +608 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +795 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/backends.py +715 -0
- vllm/compilation/compiler_interface.py +437 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +182 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +60 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +135 -0
- vllm/compilation/pass_manager.py +74 -0
- vllm/compilation/sequence_parallelism.py +266 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +68 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4179 -0
- vllm/connections.py +170 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2060 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/base_device_communicator.py +151 -0
- vllm/distributed/device_communicators/cpu_communicator.py +139 -0
- vllm/distributed/device_communicators/cuda_communicator.py +131 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +557 -0
- vllm/distributed/device_communicators/tpu_communicator.py +93 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1209 -0
- vllm/distributed/utils.py +366 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1724 -0
- vllm/engine/async_llm_engine.py +1261 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2150 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +183 -0
- vllm/engine/multiprocessing/client.py +745 -0
- vllm/engine/multiprocessing/engine.py +450 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +210 -0
- vllm/engine/output_processor/single_step.py +136 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +302 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1259 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +59 -0
- vllm/entrypoints/cli/openai.py +175 -0
- vllm/entrypoints/cli/serve.py +59 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1450 -0
- vllm/entrypoints/logger.py +44 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1130 -0
- vllm/entrypoints/openai/cli_args.py +296 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1806 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1210 -0
- vllm/entrypoints/openai/serving_completion.py +557 -0
- vllm/entrypoints/openai/serving_embedding.py +245 -0
- vllm/entrypoints/openai/serving_engine.py +569 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +237 -0
- vllm/entrypoints/openai/serving_score.py +439 -0
- vllm/entrypoints/openai/serving_tokenization.py +147 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +136 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +800 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +400 -0
- vllm/executor/uniproc_executor.py +141 -0
- vllm/forward_context.py +159 -0
- vllm/inputs/__init__.py +37 -0
- vllm/inputs/data.py +248 -0
- vllm/inputs/parse.py +121 -0
- vllm/inputs/preprocess.py +745 -0
- vllm/inputs/registry.py +212 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +210 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +121 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +335 -0
- vllm/lora/layers.py +1263 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +802 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand.py +293 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
- vllm/lora/ops/triton_ops/utils.py +121 -0
- vllm/lora/peft_helper.py +115 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +483 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/utils.py +161 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +83 -0
- vllm/lora/utils.py +237 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +153 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
- vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +51 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
- vllm/model_executor/layers/fused_moe/layer.py +949 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
- vllm/model_executor/layers/fused_moe/utils.py +48 -0
- vllm/model_executor/layers/layernorm.py +277 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1518 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +336 -0
- vllm/model_executor/layers/quantization/__init__.py +153 -0
- vllm/model_executor/layers/quantization/aqlm.py +374 -0
- vllm/model_executor/layers/quantization/awq.py +184 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +145 -0
- vllm/model_executor/layers/quantization/bitblas.py +459 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
- vllm/model_executor/layers/quantization/experts_int8.py +194 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
- vllm/model_executor/layers/quantization/fp8.py +832 -0
- vllm/model_executor/layers/quantization/gguf.py +408 -0
- vllm/model_executor/layers/quantization/gptq.py +276 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +137 -0
- vllm/model_executor/layers/quantization/marlin.py +259 -0
- vllm/model_executor/layers/quantization/modelopt.py +410 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
- vllm/model_executor/layers/quantization/qqq.py +273 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +385 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +102 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +127 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +400 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1598 -0
- vllm/model_executor/layers/sampler.py +1221 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
- vllm/model_executor/model_loader/__init__.py +20 -0
- vllm/model_executor/model_loader/loader.py +1542 -0
- vllm/model_executor/model_loader/neuron.py +243 -0
- vllm/model_executor/model_loader/tensorizer.py +468 -0
- vllm/model_executor/model_loader/utils.py +171 -0
- vllm/model_executor/model_loader/weight_utils.py +749 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +469 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +936 -0
- vllm/model_executor/models/bert.py +725 -0
- vllm/model_executor/models/blip.py +337 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +358 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +410 -0
- vllm/model_executor/models/commandr.py +466 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +469 -0
- vllm/model_executor/models/deepseek.py +484 -0
- vllm/model_executor/models/deepseek_mtp.py +266 -0
- vllm/model_executor/models/deepseek_v2.py +830 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +247 -0
- vllm/model_executor/models/exaone.py +548 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +508 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +423 -0
- vllm/model_executor/models/gemma2.py +423 -0
- vllm/model_executor/models/gemma3.py +531 -0
- vllm/model_executor/models/gemma3_mm.py +716 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +303 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +313 -0
- vllm/model_executor/models/gpt_bigcode.py +336 -0
- vllm/model_executor/models/gpt_j.py +337 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/granite.py +494 -0
- vllm/model_executor/models/granite_speech.py +777 -0
- vllm/model_executor/models/granitemoe.py +435 -0
- vllm/model_executor/models/granitemoeshared.py +339 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +560 -0
- vllm/model_executor/models/h2ovl.py +542 -0
- vllm/model_executor/models/idefics2_vision_model.py +387 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +569 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +476 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +945 -0
- vllm/model_executor/models/jais.py +371 -0
- vllm/model_executor/models/jamba.py +590 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +619 -0
- vllm/model_executor/models/llama4.py +530 -0
- vllm/model_executor/models/llama_eagle.py +152 -0
- vllm/model_executor/models/llama_eagle3.py +232 -0
- vllm/model_executor/models/llava.py +869 -0
- vllm/model_executor/models/llava_next.py +582 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +954 -0
- vllm/model_executor/models/mamba.py +271 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +210 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +725 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1261 -0
- vllm/model_executor/models/mistral3.py +598 -0
- vllm/model_executor/models/mixtral.py +485 -0
- vllm/model_executor/models/mixtral_quant.py +447 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +325 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +628 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nemotron.py +506 -0
- vllm/model_executor/models/nemotron_nas.py +446 -0
- vllm/model_executor/models/nvlm_d.py +212 -0
- vllm/model_executor/models/olmo.py +390 -0
- vllm/model_executor/models/olmo2.py +412 -0
- vllm/model_executor/models/olmoe.py +449 -0
- vllm/model_executor/models/opt.py +410 -0
- vllm/model_executor/models/orion.py +356 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +342 -0
- vllm/model_executor/models/phi.py +354 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +463 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1263 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +666 -0
- vllm/model_executor/models/pixtral.py +1281 -0
- vllm/model_executor/models/plamo2.py +736 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +360 -0
- vllm/model_executor/models/qwen2.py +552 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
- vllm/model_executor/models/qwen2_5_vl.py +1136 -0
- vllm/model_executor/models/qwen2_audio.py +402 -0
- vllm/model_executor/models/qwen2_moe.py +531 -0
- vllm/model_executor/models/qwen2_rm.py +130 -0
- vllm/model_executor/models/qwen2_vl.py +1409 -0
- vllm/model_executor/models/qwen3.py +319 -0
- vllm/model_executor/models/qwen3_moe.py +528 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +611 -0
- vllm/model_executor/models/roberta.py +332 -0
- vllm/model_executor/models/siglip.py +522 -0
- vllm/model_executor/models/skyworkr1v.py +949 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +349 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +442 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +714 -0
- vllm/model_executor/models/vision.py +149 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +31 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +103 -0
- vllm/multimodal/image.py +77 -0
- vllm/multimodal/inputs.py +843 -0
- vllm/multimodal/parse.py +454 -0
- vllm/multimodal/processing.py +1760 -0
- vllm/multimodal/profiling.py +274 -0
- vllm/multimodal/registry.py +321 -0
- vllm/multimodal/utils.py +386 -0
- vllm/multimodal/video.py +166 -0
- vllm/outputs.py +521 -0
- vllm/platforms/__init__.py +286 -0
- vllm/platforms/cpu.py +182 -0
- vllm/platforms/cuda.py +463 -0
- vllm/platforms/hpu.py +94 -0
- vllm/platforms/interface.py +427 -0
- vllm/platforms/neuron.py +69 -0
- vllm/platforms/rocm.py +346 -0
- vllm/platforms/tpu.py +174 -0
- vllm/platforms/xpu.py +142 -0
- vllm/plugins/__init__.py +82 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +7 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +12 -0
- vllm/reasoning/abs_reasoning_parsers.py +189 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/sampling_params.py +598 -0
- vllm/scalar_type.py +335 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1486 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +335 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +416 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
- vllm/spec_decode/spec_decode_worker.py +1324 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +19 -0
- vllm/transformers_utils/config.py +813 -0
- vllm/transformers_utils/configs/__init__.py +52 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +65 -0
- vllm/transformers_utils/configs/exaone.py +191 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +210 -0
- vllm/transformers_utils/processors/__init__.py +6 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +291 -0
- vllm/transformers_utils/tokenizer_base.py +146 -0
- vllm/transformers_utils/tokenizer_group.py +110 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +483 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +5 -0
- vllm/triton_utils/importing.py +53 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2692 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +783 -0
- vllm/v1/attention/backends/flashinfer.py +638 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +974 -0
- vllm/v1/attention/backends/mla/flashmla.py +149 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +221 -0
- vllm/v1/attention/backends/triton_attn.py +198 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +281 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +385 -0
- vllm/v1/core/kv_cache_utils.py +744 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +134 -0
- vllm/v1/core/sched/output.py +126 -0
- vllm/v1/core/sched/scheduler.py +838 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/specialized_manager.py +161 -0
- vllm/v1/engine/__init__.py +166 -0
- vllm/v1/engine/async_llm.py +532 -0
- vllm/v1/engine/core.py +701 -0
- vllm/v1/engine/core_client.py +942 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +285 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +82 -0
- vllm/v1/engine/output_processor.py +420 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +387 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +480 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +166 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +498 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +111 -0
- vllm/v1/request.py +178 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +118 -0
- vllm/v1/sample/tpu/sampler.py +154 -0
- vllm/v1/serial_utils.py +274 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +318 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +164 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +18 -0
- vllm/v1/stats/__init__.py +0 -0
- vllm/v1/stats/common.py +453 -0
- vllm/v1/structured_output/__init__.py +113 -0
- vllm/v1/structured_output/backend_guidance.py +215 -0
- vllm/v1/structured_output/backend_types.py +96 -0
- vllm/v1/structured_output/backend_xgrammar.py +299 -0
- vllm/v1/structured_output/request.py +84 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +249 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +677 -0
- vllm/v1/worker/gpu_model_runner.py +1776 -0
- vllm/v1/worker/gpu_worker.py +349 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1419 -0
- vllm/v1/worker/tpu_worker.py +260 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +323 -0
- vllm/worker/cpu_model_runner.py +668 -0
- vllm/worker/cpu_pooling_model_runner.py +122 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +542 -0
- vllm/worker/hpu_model_runner.py +2221 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2056 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +908 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +336 -0
- vllm/worker/neuron_worker.py +138 -0
- vllm/worker/pooling_model_runner.py +200 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +332 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +570 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +603 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
- vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
- vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
- vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1375 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
"""
|
|
3
|
+
Fused Attention
|
|
4
|
+
===============
|
|
5
|
+
|
|
6
|
+
This is a Triton implementation of the Flash Attention v2 algorithm
|
|
7
|
+
See https://tridao.me/publications/flash2/flash2.pdf
|
|
8
|
+
|
|
9
|
+
Credits:
|
|
10
|
+
AMD Triton kernels team
|
|
11
|
+
OpenAI kernel team
|
|
12
|
+
|
|
13
|
+
Currently only the forward kernel is supported, and contains these features:
|
|
14
|
+
|
|
15
|
+
1) Fwd with causal masking
|
|
16
|
+
2) Arbitrary Q and KV sequence lengths
|
|
17
|
+
3) Arbitrary head sizes
|
|
18
|
+
4) Multi and grouped query attention
|
|
19
|
+
5) Variable sequence lengths
|
|
20
|
+
6) ALiBi and matrix bias
|
|
21
|
+
7) FP8 support
|
|
22
|
+
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
from typing import Optional
|
|
26
|
+
|
|
27
|
+
import torch
|
|
28
|
+
import triton
|
|
29
|
+
import triton.language as tl
|
|
30
|
+
|
|
31
|
+
from vllm import _custom_ops as ops
|
|
32
|
+
from vllm.platforms import current_platform
|
|
33
|
+
|
|
34
|
+
SUPPORTED_LAYOUTS = ['thd', 'bhsd', 'bshd']
|
|
35
|
+
|
|
36
|
+
default_eight_bit_dtype_triton = tl.float8e4b8
|
|
37
|
+
default_eight_bit_dtype_torch = current_platform.fp8_dtype()
|
|
38
|
+
default_float8_info = torch.finfo(default_eight_bit_dtype_torch)
|
|
39
|
+
|
|
40
|
+
FP8_MIN = triton.language.constexpr(default_float8_info.min)
|
|
41
|
+
|
|
42
|
+
# According to https://github.com/vllm-project/vllm/blob/main
|
|
43
|
+
# /csrc/quantization/utils.cuh#L31,
|
|
44
|
+
# need to make the max for the uz datatype be 224.0 for accuracy reasons.
|
|
45
|
+
FP8_MAX = triton.language.constexpr(
|
|
46
|
+
default_float8_info.max if default_eight_bit_dtype_torch !=
|
|
47
|
+
torch.float8_e4m3fnuz else 224.0)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class MetaData:
|
|
51
|
+
cu_seqlens_q = None
|
|
52
|
+
cu_seqlens_k = None
|
|
53
|
+
max_seqlens_q = 0
|
|
54
|
+
max_seqlens_k = 0
|
|
55
|
+
bias = None
|
|
56
|
+
alibi_slopes = None
|
|
57
|
+
causal = False
|
|
58
|
+
num_contexts = 0
|
|
59
|
+
varlen = False
|
|
60
|
+
eight_bit = False
|
|
61
|
+
layout = None
|
|
62
|
+
return_encoded_softmax = False
|
|
63
|
+
eight_bit_dtype_triton = default_eight_bit_dtype_triton
|
|
64
|
+
eight_bit_dtype_torch = default_eight_bit_dtype_torch
|
|
65
|
+
output_dtype = None
|
|
66
|
+
|
|
67
|
+
# Note about layouts:
|
|
68
|
+
#
|
|
69
|
+
# thd - [num_tokens, num_heads, head_size]
|
|
70
|
+
# bshd - [batch_size, seq_len, num_heads, head_size]
|
|
71
|
+
# bhsd - [batch_size, num_heads, seq_len, head_size]
|
|
72
|
+
#
|
|
73
|
+
# This is for each tensor, all tensors must have same layout.
|
|
74
|
+
# Q can have num_heads and seq_len differ from from K and V,
|
|
75
|
+
# however K and V must agree on this.
|
|
76
|
+
#
|
|
77
|
+
# Notes about varlen and bias:
|
|
78
|
+
# Only one or the other is implemented, meaning can't combine
|
|
79
|
+
# both varlen and bias right now.
|
|
80
|
+
#
|
|
81
|
+
# Note about quantization:
|
|
82
|
+
# Only 8-bit quantization supported (for now) and specifically fp8.
|
|
83
|
+
# Scales must be tensors.
|
|
84
|
+
# o_scale: This is 'output scaling', but comes from parameter called
|
|
85
|
+
# 'input_scale', this is applied to the output from the kernel.
|
|
86
|
+
# o_scale should be None if none of the other quantization parameters
|
|
87
|
+
# are used.
|
|
88
|
+
#
|
|
89
|
+
# NOTE: Object is in a tentatively good state after initialized, however,
|
|
90
|
+
# to verify, call check_args(q,k,v,o) where o is the output tensor.
|
|
91
|
+
def __init__(
|
|
92
|
+
self,
|
|
93
|
+
sm_scale=1.0,
|
|
94
|
+
layout=None, # layout can be 'bshd', 'bhsd', or 'thd'
|
|
95
|
+
output_dtype=None,
|
|
96
|
+
max_seqlens_q=0,
|
|
97
|
+
max_seqlens_k=0,
|
|
98
|
+
# varlen params
|
|
99
|
+
cu_seqlens_q=None, # only 'thd' layout supported for varlen
|
|
100
|
+
cu_seqlens_k=None,
|
|
101
|
+
# quant params
|
|
102
|
+
q_descale=None,
|
|
103
|
+
k_descale=None,
|
|
104
|
+
v_descale=None,
|
|
105
|
+
p_scale=None,
|
|
106
|
+
o_scale=None,
|
|
107
|
+
# bias params
|
|
108
|
+
bias=None, # varlen not implemented for bias
|
|
109
|
+
seqlen_q=None,
|
|
110
|
+
seqlen_k=None,
|
|
111
|
+
# alibi params
|
|
112
|
+
alibi_slopes=None,
|
|
113
|
+
alibi_batch=None,
|
|
114
|
+
alibi_nheads=None,
|
|
115
|
+
# causal
|
|
116
|
+
causal=None,
|
|
117
|
+
):
|
|
118
|
+
self.sm_scale = sm_scale
|
|
119
|
+
self.output_dtype = output_dtype
|
|
120
|
+
self.max_seqlens_q = max_seqlens_q
|
|
121
|
+
self.max_seqlens_k = max_seqlens_k
|
|
122
|
+
self.layout = layout
|
|
123
|
+
if cu_seqlens_q is not None or cu_seqlens_k is not None:
|
|
124
|
+
assert cu_seqlens_q is not None and cu_seqlens_k is not None
|
|
125
|
+
assert layout is None or layout not in [
|
|
126
|
+
'bshd', 'bhsd'
|
|
127
|
+
], "Varlen only implemented for thd layout"
|
|
128
|
+
self.set_varlen_params(cu_seqlens_q, cu_seqlens_k)
|
|
129
|
+
quant_params = [q_descale, k_descale, v_descale, p_scale, o_scale]
|
|
130
|
+
if any(x is not None for x in quant_params):
|
|
131
|
+
p_descale = 1.0 / p_scale if p_scale is not None else None
|
|
132
|
+
self.set_eight_bit_params(q_descale, k_descale, v_descale, p_scale,
|
|
133
|
+
p_descale, o_scale)
|
|
134
|
+
if bias is not None:
|
|
135
|
+
self.need_bias(bias, seqlen_q, seqlen_k)
|
|
136
|
+
if alibi_slopes is not None:
|
|
137
|
+
self.need_alibi(alibi_slopes, alibi_batch, alibi_nheads)
|
|
138
|
+
if causal is not None and causal:
|
|
139
|
+
self.need_causal()
|
|
140
|
+
|
|
141
|
+
def set_varlen_params(self, cu_seqlens_q, cu_seqlens_k):
|
|
142
|
+
self.varlen = True
|
|
143
|
+
self.layout = 'thd'
|
|
144
|
+
self.cu_seqlens_q = cu_seqlens_q
|
|
145
|
+
self.cu_seqlens_k = cu_seqlens_k
|
|
146
|
+
# Without "varlen", there should still be one sequence.
|
|
147
|
+
assert len(cu_seqlens_q) >= 2
|
|
148
|
+
assert len(cu_seqlens_q) == len(cu_seqlens_k)
|
|
149
|
+
self.num_contexts = len(cu_seqlens_q) - 1
|
|
150
|
+
for i in range(0, self.num_contexts):
|
|
151
|
+
self.max_seqlens_q = max(
|
|
152
|
+
cu_seqlens_q[i + 1].item() - cu_seqlens_q[i].item(),
|
|
153
|
+
self.max_seqlens_q)
|
|
154
|
+
self.max_seqlens_k = max(
|
|
155
|
+
cu_seqlens_k[i + 1].item() - cu_seqlens_k[i].item(),
|
|
156
|
+
self.max_seqlens_k)
|
|
157
|
+
|
|
158
|
+
def set_eight_bit_params(self, q_descale, k_descale, v_descale, p_scale,
|
|
159
|
+
p_descale, o_scale):
|
|
160
|
+
self.eight_bit = True
|
|
161
|
+
self.q_descale = q_descale
|
|
162
|
+
self.k_descale = k_descale
|
|
163
|
+
self.v_descale = v_descale
|
|
164
|
+
self.p_scale = p_scale
|
|
165
|
+
self.p_descale = p_descale
|
|
166
|
+
self.o_scale = o_scale
|
|
167
|
+
self.use_p_scale = (p_scale is not None) and (
|
|
168
|
+
p_descale is not None) and (v_descale is not None)
|
|
169
|
+
self.eight_bit_kv = ((q_descale is None) and (k_descale is not None)
|
|
170
|
+
and (v_descale is not None))
|
|
171
|
+
self.eight_bit_dtype_torch = default_eight_bit_dtype_torch
|
|
172
|
+
|
|
173
|
+
def need_bias(self, bias, seqlen_q, seqlen_k):
|
|
174
|
+
assert bias is not None
|
|
175
|
+
assert bias.is_cuda
|
|
176
|
+
assert bias.dim() == 4
|
|
177
|
+
assert bias.shape[0] == 1
|
|
178
|
+
assert bias.shape[2:] == (seqlen_q, seqlen_k)
|
|
179
|
+
self.bias = bias
|
|
180
|
+
|
|
181
|
+
def need_alibi(self, alibi_slopes, batch, nheads):
|
|
182
|
+
assert alibi_slopes.is_cuda
|
|
183
|
+
assert alibi_slopes.dim() == 2
|
|
184
|
+
assert alibi_slopes.shape[0] == batch
|
|
185
|
+
assert alibi_slopes.shape[1] == nheads
|
|
186
|
+
self.alibi_slopes = alibi_slopes
|
|
187
|
+
|
|
188
|
+
def need_causal(self):
|
|
189
|
+
self.causal = True
|
|
190
|
+
|
|
191
|
+
def check_args(self, q, k, v, o):
|
|
192
|
+
assert q.dim() == k.dim() and q.dim() == v.dim()
|
|
193
|
+
|
|
194
|
+
batch, nheads_q, nheads_k, head_size = get_shape_from_layout(
|
|
195
|
+
q, k, self)
|
|
196
|
+
if self.varlen:
|
|
197
|
+
assert q.dim() == 3
|
|
198
|
+
assert self.cu_seqlens_q is not None
|
|
199
|
+
assert self.cu_seqlens_k is not None
|
|
200
|
+
assert len(self.cu_seqlens_q) == len(self.cu_seqlens_k)
|
|
201
|
+
# TODO: Remove once bias is supported with varlen
|
|
202
|
+
assert self.bias is None
|
|
203
|
+
assert not self.return_encoded_softmax
|
|
204
|
+
else:
|
|
205
|
+
assert q.dim() == 4
|
|
206
|
+
assert self.max_seqlens_q > 0 and self.max_seqlens_k > 0
|
|
207
|
+
assert self.cu_seqlens_q is None and self.cu_seqlens_k is None
|
|
208
|
+
assert k.shape == v.shape
|
|
209
|
+
assert q.shape[-1] == k.shape[-1] and q.shape[-1] == v.shape[-1]
|
|
210
|
+
# TODO: Change assert if we support qkl f8 and v f16
|
|
211
|
+
if self.eight_bit:
|
|
212
|
+
if self.eight_bit_kv:
|
|
213
|
+
assert (v.dtype == k.dtype
|
|
214
|
+
and k.dtype == self.eight_bit_dtype_torch)
|
|
215
|
+
assert q.dtype != k.dtype
|
|
216
|
+
assert (self.v_descale is not None) and (self.k_descale
|
|
217
|
+
is not None)
|
|
218
|
+
else:
|
|
219
|
+
assert (q.dtype == k.dtype and q.dtype == v.dtype
|
|
220
|
+
and q.dtype == self.eight_bit_dtype_torch)
|
|
221
|
+
assert (self.q_descale
|
|
222
|
+
is not None) and (self.k_descale
|
|
223
|
+
is not None) and (self.v_descale
|
|
224
|
+
is not None)
|
|
225
|
+
if self.use_p_scale:
|
|
226
|
+
assert (self.p_scale is not None) and (self.p_descale
|
|
227
|
+
is not None)
|
|
228
|
+
else:
|
|
229
|
+
assert (q.dtype == k.dtype) and (q.dtype == v.dtype)
|
|
230
|
+
assert head_size <= 256
|
|
231
|
+
assert o.shape == q.shape
|
|
232
|
+
assert (nheads_q % nheads_k) == 0
|
|
233
|
+
assert self.layout is not None
|
|
234
|
+
assert self.layout == 'thd' or not self.varlen
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
@triton.jit
|
|
238
|
+
def cdiv_fn(x, y):
|
|
239
|
+
return (x + y - 1) // y
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
@triton.jit
|
|
243
|
+
def max_fn(x, y):
|
|
244
|
+
return tl.math.max(x, y)
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
# Convenience function to load with optional boundary checks.
|
|
248
|
+
# "First" is the major dim, "second" is the minor dim.
|
|
249
|
+
@triton.jit
|
|
250
|
+
def masked_load(ptrs, offset_first, offset_second, boundary_first,
|
|
251
|
+
boundary_second):
|
|
252
|
+
if offset_first is not None and offset_second is not None:
|
|
253
|
+
mask = (offset_first[:, None] < boundary_first) & \
|
|
254
|
+
(offset_second[None, :] < boundary_second)
|
|
255
|
+
tensor = tl.load(ptrs, mask=mask, other=0.0)
|
|
256
|
+
elif offset_first is not None:
|
|
257
|
+
mask = offset_first[:, None] < boundary_first
|
|
258
|
+
tensor = tl.load(ptrs, mask=mask, other=0.0)
|
|
259
|
+
elif offset_second is not None:
|
|
260
|
+
mask = offset_second[None, :] < boundary_second
|
|
261
|
+
tensor = tl.load(ptrs, mask=mask, other=0.0)
|
|
262
|
+
else:
|
|
263
|
+
tensor = tl.load(ptrs)
|
|
264
|
+
return tensor
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
@triton.jit
|
|
268
|
+
def compute_alibi_block(alibi_slope,
|
|
269
|
+
seqlen_q,
|
|
270
|
+
seqlen_k,
|
|
271
|
+
offs_m,
|
|
272
|
+
offs_n,
|
|
273
|
+
transpose=False):
|
|
274
|
+
# when seqlen_k and seqlen_q are different we want the diagonal to stick to
|
|
275
|
+
# the bottom right of the attention matrix
|
|
276
|
+
# for casual mask we want something like this where (1 is kept and 0 is
|
|
277
|
+
# masked)
|
|
278
|
+
# seqlen_q = 2 and seqlen_k = 5
|
|
279
|
+
# 1 1 1 1 0
|
|
280
|
+
# 1 1 1 1 1
|
|
281
|
+
# seqlen_q = 5 and seqlen_k = 2
|
|
282
|
+
# 0 0
|
|
283
|
+
# 0 0
|
|
284
|
+
# 0 0
|
|
285
|
+
# 1 0
|
|
286
|
+
# 1 1
|
|
287
|
+
# for alibi the diagonal is 0 indicating no penalty for attending to that
|
|
288
|
+
# spot and increasing penalty for attending further from the diagonal
|
|
289
|
+
# e.g. alibi_slope = 1, seqlen_q = 2, seqlen_k = 5,
|
|
290
|
+
# offs_m = [0, 1, 2, 3], offs_n = [0, 1, 2, 3, 4], transpose = False
|
|
291
|
+
# 1. offs_m[:,None] = [[0],
|
|
292
|
+
# [1],
|
|
293
|
+
# 2. offs_m[:,None] + seqlen_k = [[5],
|
|
294
|
+
# [6],
|
|
295
|
+
# 3. offs_m[:,None] + seqlen_k - seqlen_q = [[3],
|
|
296
|
+
# [4],
|
|
297
|
+
# 4. offs_m[:,None] + seqlen_k - seqlen_q - offs_n[None,:] =
|
|
298
|
+
# [[3], - [[0, 1, 2, 3, 4]] = [[ 3, 2, 1, 0,-1], [4], [ 4, 3, 2, 1, 0]]
|
|
299
|
+
# 5. -1 * alibi_slope * tl.abs(relative_pos_block) = [[ -3, -2, -1, 0,-1],
|
|
300
|
+
# [ -4, -3, -2, -1, 0]],
|
|
301
|
+
relative_pos_block = (offs_m[:, None] + seqlen_k - seqlen_q -
|
|
302
|
+
offs_n[None, :])
|
|
303
|
+
alibi_block = -1 * alibi_slope * tl.abs(relative_pos_block)
|
|
304
|
+
if transpose:
|
|
305
|
+
return alibi_block.T
|
|
306
|
+
else:
|
|
307
|
+
return alibi_block
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
def compute_alibi_tensor(alibi_slopes, seqlen_q, seqlen_k):
|
|
311
|
+
q_idx = torch.arange(seqlen_q, dtype=torch.int32,
|
|
312
|
+
device="cuda").unsqueeze(-1) # (N_CTX_Q, 1)
|
|
313
|
+
k_idx = torch.arange(seqlen_k, dtype=torch.int32,
|
|
314
|
+
device="cuda").unsqueeze(0) # (1, N_CTX_K)
|
|
315
|
+
relative_pos = torch.abs(q_idx + seqlen_k - seqlen_q -
|
|
316
|
+
k_idx) # (N_CTX_Q, N_CTX_K)
|
|
317
|
+
return -1 * alibi_slopes.unsqueeze(-1).unsqueeze(
|
|
318
|
+
-1) * relative_pos # (Z, H, N_CTX_Q, N_CTX_K)
|
|
319
|
+
|
|
320
|
+
|
|
321
|
+
@triton.jit
|
|
322
|
+
def quant_fp8(x, scale):
|
|
323
|
+
x *= scale
|
|
324
|
+
x = tl.clamp(x, FP8_MIN, FP8_MAX)
|
|
325
|
+
return x
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
@triton.jit
|
|
329
|
+
def _attn_fwd_inner(
|
|
330
|
+
acc,
|
|
331
|
+
l_i,
|
|
332
|
+
m_i,
|
|
333
|
+
q,
|
|
334
|
+
k_ptrs,
|
|
335
|
+
v_ptrs,
|
|
336
|
+
bias_ptrs,
|
|
337
|
+
stride_kn,
|
|
338
|
+
stride_vk,
|
|
339
|
+
stride_bn,
|
|
340
|
+
start_m,
|
|
341
|
+
actual_seqlen_k,
|
|
342
|
+
actual_seqlen_q,
|
|
343
|
+
philox_seed,
|
|
344
|
+
batch_philox_offset,
|
|
345
|
+
encoded_sm_ptrs,
|
|
346
|
+
block_min,
|
|
347
|
+
block_max,
|
|
348
|
+
offs_n_causal,
|
|
349
|
+
masked_blocks,
|
|
350
|
+
n_extra_tokens,
|
|
351
|
+
alibi_slope,
|
|
352
|
+
q_descale,
|
|
353
|
+
k_descale,
|
|
354
|
+
v_descale,
|
|
355
|
+
p_scale,
|
|
356
|
+
IS_CAUSAL: tl.constexpr,
|
|
357
|
+
BLOCK_M: tl.constexpr,
|
|
358
|
+
BLOCK_DMODEL: tl.constexpr,
|
|
359
|
+
BLOCK_N: tl.constexpr,
|
|
360
|
+
OFFS_M: tl.constexpr,
|
|
361
|
+
OFFS_N: tl.constexpr,
|
|
362
|
+
SHOULD_PRE_LOAD_V: tl.constexpr,
|
|
363
|
+
SHOULD_MASK_STEPS: tl.constexpr,
|
|
364
|
+
SHOULD_RETURN_ENCODED_SOFTMAX: tl.constexpr,
|
|
365
|
+
USE_PADDED_HEAD: tl.constexpr,
|
|
366
|
+
IS_ACTUAL_BLOCK_DMODEL: tl.constexpr,
|
|
367
|
+
QK_SCALE: tl.constexpr,
|
|
368
|
+
IS_EIGHT_BIT_GEMM: tl.constexpr,
|
|
369
|
+
USE_P_SCALE: tl.constexpr,
|
|
370
|
+
IS_EIGHT_BIT_KV: tl.constexpr,
|
|
371
|
+
QUANT_DTYPE: tl.constexpr = default_eight_bit_dtype_triton,
|
|
372
|
+
):
|
|
373
|
+
|
|
374
|
+
# loop over k, v, and update accumulator
|
|
375
|
+
for start_n in range(block_min, block_max, BLOCK_N):
|
|
376
|
+
# For padded blocks, we will overrun the tensor size if
|
|
377
|
+
# we load all BLOCK_N. For others, the blocks are all within range.
|
|
378
|
+
k_offs_n = start_n + tl.arange(0,
|
|
379
|
+
BLOCK_N) if SHOULD_MASK_STEPS else None
|
|
380
|
+
k_offs_k = None if not USE_PADDED_HEAD else tl.arange(0, BLOCK_DMODEL)
|
|
381
|
+
k = masked_load(k_ptrs, k_offs_k, k_offs_n, IS_ACTUAL_BLOCK_DMODEL,
|
|
382
|
+
actual_seqlen_k)
|
|
383
|
+
if SHOULD_PRE_LOAD_V:
|
|
384
|
+
# We can use the same offsets as k, just with dims transposed.
|
|
385
|
+
v = masked_load(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k,
|
|
386
|
+
IS_ACTUAL_BLOCK_DMODEL)
|
|
387
|
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
|
388
|
+
# We start from end of seqlen_k so only the first iteration would need
|
|
389
|
+
# to be checked for padding if it is not a multiple of block_n
|
|
390
|
+
# TODO: This can be optimized to only be true for the padded block.
|
|
391
|
+
if SHOULD_MASK_STEPS: # noqa: SIM102
|
|
392
|
+
# If this is the last block / iteration, we want to
|
|
393
|
+
# mask if the sequence length is not a multiple of block size
|
|
394
|
+
# a solution is to always do BLOCK_M // BLOCK_N + 1 steps if not
|
|
395
|
+
# is_modulo_mn. last step might get wasted but that is okay.
|
|
396
|
+
# check if this masking works for that case.
|
|
397
|
+
if (start_n + BLOCK_N == block_max) and (n_extra_tokens != 0):
|
|
398
|
+
boundary_m = tl.full([BLOCK_M],
|
|
399
|
+
actual_seqlen_k,
|
|
400
|
+
dtype=tl.int32)
|
|
401
|
+
size_n = start_n + OFFS_N[None, :]
|
|
402
|
+
mask = size_n < boundary_m[:, None]
|
|
403
|
+
qk = tl.where(mask, qk, float("-inf"))
|
|
404
|
+
if IS_CAUSAL:
|
|
405
|
+
causal_boundary = start_n + offs_n_causal
|
|
406
|
+
causal_mask = OFFS_M[:, None] >= causal_boundary[None, :]
|
|
407
|
+
qk = tl.where(causal_mask, qk, float("-inf"))
|
|
408
|
+
|
|
409
|
+
# -- compute qk ----
|
|
410
|
+
if IS_EIGHT_BIT_GEMM:
|
|
411
|
+
qk += ((((tl.dot(q, k).to(tl.float32) * q_descale)) * k_descale) *
|
|
412
|
+
QK_SCALE)
|
|
413
|
+
else:
|
|
414
|
+
if IS_EIGHT_BIT_KV:
|
|
415
|
+
k = (k * k_descale).to(q.type.element_ty)
|
|
416
|
+
qk += (tl.dot(q, k) * QK_SCALE)
|
|
417
|
+
|
|
418
|
+
if bias_ptrs is not None:
|
|
419
|
+
bias_offs_n = start_n + tl.arange(
|
|
420
|
+
0, BLOCK_N) if SHOULD_MASK_STEPS else None
|
|
421
|
+
bias = masked_load(bias_ptrs, OFFS_M, bias_offs_n, actual_seqlen_q,
|
|
422
|
+
actual_seqlen_k)
|
|
423
|
+
# While bias is added after multiplying qk with sm_scale,
|
|
424
|
+
# our optimization to use 2^x instead of e^x results in an
|
|
425
|
+
# additional scale factor of log2(e) which we must also multiply
|
|
426
|
+
# the bias with.
|
|
427
|
+
qk += (bias * 1.44269504089)
|
|
428
|
+
|
|
429
|
+
if alibi_slope is not None:
|
|
430
|
+
# Compute the global position of each token within the sequence
|
|
431
|
+
global_m_positions = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
432
|
+
global_n_positions = start_n + tl.arange(0, BLOCK_N)
|
|
433
|
+
alibi_block = compute_alibi_block(alibi_slope, actual_seqlen_q,
|
|
434
|
+
actual_seqlen_k,
|
|
435
|
+
global_m_positions,
|
|
436
|
+
global_n_positions)
|
|
437
|
+
qk += (alibi_block * 1.44269504089) # scale factor of log2(e)
|
|
438
|
+
|
|
439
|
+
# softmax
|
|
440
|
+
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
|
441
|
+
qk = qk - m_ij[:, None]
|
|
442
|
+
p = tl.math.exp2(qk)
|
|
443
|
+
|
|
444
|
+
# CAVEAT: Must update l_ij before applying dropout
|
|
445
|
+
l_ij = tl.sum(p, 1)
|
|
446
|
+
if SHOULD_RETURN_ENCODED_SOFTMAX:
|
|
447
|
+
tl.store(encoded_sm_ptrs, p.to(encoded_sm_ptrs.type.element_ty))
|
|
448
|
+
# -- update output accumulator --
|
|
449
|
+
alpha = tl.math.exp2(m_i - m_ij)
|
|
450
|
+
acc = acc * alpha[:, None]
|
|
451
|
+
if not SHOULD_PRE_LOAD_V:
|
|
452
|
+
v = masked_load(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k,
|
|
453
|
+
IS_ACTUAL_BLOCK_DMODEL)
|
|
454
|
+
# -- update m_i and l_i
|
|
455
|
+
l_i = l_i * alpha + l_ij
|
|
456
|
+
# update m_i and l_i
|
|
457
|
+
m_i = m_ij
|
|
458
|
+
|
|
459
|
+
if IS_EIGHT_BIT_GEMM:
|
|
460
|
+
if USE_P_SCALE:
|
|
461
|
+
p = quant_fp8(p, p_scale).to(QUANT_DTYPE)
|
|
462
|
+
acc += tl.dot(p, v)
|
|
463
|
+
else:
|
|
464
|
+
# v is in eight_bit but p is not, we want the gemm in p's type
|
|
465
|
+
acc += tl.dot(p, v.to(p.type.element_ty))
|
|
466
|
+
else:
|
|
467
|
+
if IS_EIGHT_BIT_KV:
|
|
468
|
+
v = (v * v_descale).to(p.type.element_ty)
|
|
469
|
+
acc += tl.dot(p.to(v.type.element_ty), v)
|
|
470
|
+
|
|
471
|
+
k_ptrs += BLOCK_N * stride_kn
|
|
472
|
+
v_ptrs += BLOCK_N * stride_vk
|
|
473
|
+
if bias_ptrs is not None:
|
|
474
|
+
bias_ptrs += BLOCK_N * stride_bn
|
|
475
|
+
if SHOULD_RETURN_ENCODED_SOFTMAX:
|
|
476
|
+
encoded_sm_ptrs += BLOCK_N
|
|
477
|
+
return acc, l_i, m_i
|
|
478
|
+
|
|
479
|
+
|
|
480
|
+
def get_cdna_autotune_configs():
|
|
481
|
+
return [
|
|
482
|
+
triton.Config(
|
|
483
|
+
{
|
|
484
|
+
'BLOCK_M': 128,
|
|
485
|
+
'BLOCK_N': 128,
|
|
486
|
+
'waves_per_eu': 2,
|
|
487
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
488
|
+
'GRID_CU_MULTIP': 2
|
|
489
|
+
},
|
|
490
|
+
num_stages=1,
|
|
491
|
+
num_warps=4),
|
|
492
|
+
triton.Config(
|
|
493
|
+
{
|
|
494
|
+
'BLOCK_M': 128,
|
|
495
|
+
'BLOCK_N': 64,
|
|
496
|
+
'waves_per_eu': 2,
|
|
497
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
498
|
+
'GRID_CU_MULTIP': 2
|
|
499
|
+
},
|
|
500
|
+
num_stages=1,
|
|
501
|
+
num_warps=4),
|
|
502
|
+
triton.Config(
|
|
503
|
+
{
|
|
504
|
+
'BLOCK_M': 128,
|
|
505
|
+
'BLOCK_N': 64,
|
|
506
|
+
'waves_per_eu': 3,
|
|
507
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
508
|
+
'GRID_CU_MULTIP': 2
|
|
509
|
+
},
|
|
510
|
+
num_stages=1,
|
|
511
|
+
num_warps=4),
|
|
512
|
+
triton.Config(
|
|
513
|
+
{
|
|
514
|
+
'BLOCK_M': 128,
|
|
515
|
+
'BLOCK_N': 64,
|
|
516
|
+
'waves_per_eu': 1,
|
|
517
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
518
|
+
'GRID_CU_MULTIP': 2
|
|
519
|
+
},
|
|
520
|
+
num_stages=1,
|
|
521
|
+
num_warps=4),
|
|
522
|
+
triton.Config(
|
|
523
|
+
{
|
|
524
|
+
'BLOCK_M': 128,
|
|
525
|
+
'BLOCK_N': 32,
|
|
526
|
+
'waves_per_eu': 2,
|
|
527
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
528
|
+
'GRID_CU_MULTIP': 2
|
|
529
|
+
},
|
|
530
|
+
num_stages=1,
|
|
531
|
+
num_warps=4),
|
|
532
|
+
], [
|
|
533
|
+
'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
|
|
534
|
+
'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
|
|
535
|
+
]
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
def get_rdna_autotune_configs():
|
|
539
|
+
return [
|
|
540
|
+
triton.Config(
|
|
541
|
+
{
|
|
542
|
+
'BLOCK_M': 32,
|
|
543
|
+
'BLOCK_N': 32,
|
|
544
|
+
'waves_per_eu': 4,
|
|
545
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
546
|
+
'GRID_CU_MULTIP': 2
|
|
547
|
+
},
|
|
548
|
+
num_stages=1,
|
|
549
|
+
num_warps=2),
|
|
550
|
+
triton.Config(
|
|
551
|
+
{
|
|
552
|
+
'BLOCK_M': 32,
|
|
553
|
+
'BLOCK_N': 32,
|
|
554
|
+
'waves_per_eu': 2,
|
|
555
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
556
|
+
'GRID_CU_MULTIP': 2
|
|
557
|
+
},
|
|
558
|
+
num_stages=1,
|
|
559
|
+
num_warps=2),
|
|
560
|
+
triton.Config(
|
|
561
|
+
{
|
|
562
|
+
'BLOCK_M': 32,
|
|
563
|
+
'BLOCK_N': 16,
|
|
564
|
+
'waves_per_eu': 4,
|
|
565
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
566
|
+
'GRID_CU_MULTIP': 2
|
|
567
|
+
},
|
|
568
|
+
num_stages=1,
|
|
569
|
+
num_warps=2),
|
|
570
|
+
triton.Config(
|
|
571
|
+
{
|
|
572
|
+
'BLOCK_M': 32,
|
|
573
|
+
'BLOCK_N': 16,
|
|
574
|
+
'waves_per_eu': 2,
|
|
575
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
576
|
+
'GRID_CU_MULTIP': 2
|
|
577
|
+
},
|
|
578
|
+
num_stages=1,
|
|
579
|
+
num_warps=2),
|
|
580
|
+
triton.Config(
|
|
581
|
+
{
|
|
582
|
+
'BLOCK_M': 16,
|
|
583
|
+
'BLOCK_N': 16,
|
|
584
|
+
'waves_per_eu': 4,
|
|
585
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
586
|
+
'GRID_CU_MULTIP': 2
|
|
587
|
+
},
|
|
588
|
+
num_stages=1,
|
|
589
|
+
num_warps=2),
|
|
590
|
+
triton.Config(
|
|
591
|
+
{
|
|
592
|
+
'BLOCK_M': 16,
|
|
593
|
+
'BLOCK_N': 16,
|
|
594
|
+
'waves_per_eu': 2,
|
|
595
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
596
|
+
'GRID_CU_MULTIP': 2
|
|
597
|
+
},
|
|
598
|
+
num_stages=1,
|
|
599
|
+
num_warps=2),
|
|
600
|
+
# Fall-back config.
|
|
601
|
+
triton.Config(
|
|
602
|
+
{
|
|
603
|
+
'BLOCK_M': 16,
|
|
604
|
+
'BLOCK_N': 16,
|
|
605
|
+
'waves_per_eu': 1,
|
|
606
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
607
|
+
'GRID_CU_MULTIP': 2
|
|
608
|
+
},
|
|
609
|
+
num_stages=1,
|
|
610
|
+
num_warps=2),
|
|
611
|
+
], [
|
|
612
|
+
'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
|
|
613
|
+
'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
|
|
614
|
+
]
|
|
615
|
+
|
|
616
|
+
|
|
617
|
+
def get_general_autotune_configs():
|
|
618
|
+
return [
|
|
619
|
+
triton.Config(
|
|
620
|
+
{
|
|
621
|
+
'BLOCK_M': 128,
|
|
622
|
+
'BLOCK_N': 128,
|
|
623
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
624
|
+
'GRID_CU_MULTIP': 2
|
|
625
|
+
},
|
|
626
|
+
num_stages=1,
|
|
627
|
+
num_warps=4),
|
|
628
|
+
triton.Config(
|
|
629
|
+
{
|
|
630
|
+
'BLOCK_M': 128,
|
|
631
|
+
'BLOCK_N': 64,
|
|
632
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
633
|
+
'GRID_CU_MULTIP': 2
|
|
634
|
+
},
|
|
635
|
+
num_stages=1,
|
|
636
|
+
num_warps=4),
|
|
637
|
+
triton.Config(
|
|
638
|
+
{
|
|
639
|
+
'BLOCK_M': 128,
|
|
640
|
+
'BLOCK_N': 32,
|
|
641
|
+
'SHOULD_PRE_LOAD_V': False,
|
|
642
|
+
'GRID_CU_MULTIP': 2
|
|
643
|
+
},
|
|
644
|
+
num_stages=1,
|
|
645
|
+
num_warps=4),
|
|
646
|
+
], [
|
|
647
|
+
'IS_CAUSAL', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K',
|
|
648
|
+
'IS_ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'
|
|
649
|
+
]
|
|
650
|
+
|
|
651
|
+
|
|
652
|
+
def has_cdna_target():
|
|
653
|
+
ROCM_CDNA_TARGETS = ["gfx940", "gfx941", "gfx942", "gfx90a", "gfx908"]
|
|
654
|
+
return triton.runtime.driver.active.get_current_target(
|
|
655
|
+
).arch in ROCM_CDNA_TARGETS
|
|
656
|
+
|
|
657
|
+
|
|
658
|
+
def is_rocm_cdna():
|
|
659
|
+
return current_platform.is_rocm() and has_cdna_target()
|
|
660
|
+
|
|
661
|
+
|
|
662
|
+
def get_autotune_configs():
|
|
663
|
+
if is_rocm_cdna():
|
|
664
|
+
return get_cdna_autotune_configs()
|
|
665
|
+
elif current_platform.is_rocm():
|
|
666
|
+
return get_rdna_autotune_configs()
|
|
667
|
+
else:
|
|
668
|
+
return get_general_autotune_configs()
|
|
669
|
+
|
|
670
|
+
|
|
671
|
+
autotune_configs, autotune_keys = get_autotune_configs()
|
|
672
|
+
|
|
673
|
+
|
|
674
|
+
@triton.autotune(
|
|
675
|
+
configs=autotune_configs,
|
|
676
|
+
key=autotune_keys,
|
|
677
|
+
use_cuda_graph=True,
|
|
678
|
+
)
|
|
679
|
+
@triton.jit
|
|
680
|
+
def attn_fwd(
|
|
681
|
+
Q,
|
|
682
|
+
K,
|
|
683
|
+
V,
|
|
684
|
+
bias,
|
|
685
|
+
SM_SCALE: tl.constexpr,
|
|
686
|
+
L,
|
|
687
|
+
Out,
|
|
688
|
+
stride_qz: tl.int64,
|
|
689
|
+
stride_qh: tl.int64,
|
|
690
|
+
stride_qm: tl.int64,
|
|
691
|
+
stride_qk: tl.int64,
|
|
692
|
+
stride_kz: tl.int64,
|
|
693
|
+
stride_kh: tl.int64,
|
|
694
|
+
stride_kn: tl.int64,
|
|
695
|
+
stride_kk: tl.int64,
|
|
696
|
+
stride_vz: tl.int64,
|
|
697
|
+
stride_vh: tl.int64,
|
|
698
|
+
stride_vk: tl.int64,
|
|
699
|
+
stride_vn: tl.int64,
|
|
700
|
+
stride_oz: tl.int64,
|
|
701
|
+
stride_oh: tl.int64,
|
|
702
|
+
stride_om: tl.int64,
|
|
703
|
+
stride_on: tl.int64,
|
|
704
|
+
stride_bz: tl.int64,
|
|
705
|
+
stride_bh: tl.int64,
|
|
706
|
+
stride_bm: tl.int64,
|
|
707
|
+
stride_bn: tl.int64,
|
|
708
|
+
stride_az: tl.int64,
|
|
709
|
+
stride_ah: tl.int64,
|
|
710
|
+
q_descale_ptr,
|
|
711
|
+
k_descale_ptr,
|
|
712
|
+
p_scale_ptr,
|
|
713
|
+
p_descale_ptr,
|
|
714
|
+
o_descale_ptr,
|
|
715
|
+
v_descale_ptr,
|
|
716
|
+
q_descale_has_singleton: tl.constexpr,
|
|
717
|
+
k_descale_has_singleton: tl.constexpr,
|
|
718
|
+
p_descale_has_singleton: tl.constexpr,
|
|
719
|
+
v_descale_has_singleton: tl.constexpr,
|
|
720
|
+
cu_seqlens_q,
|
|
721
|
+
cu_seqlens_k,
|
|
722
|
+
philox_seed,
|
|
723
|
+
NUM_CU: tl.constexpr,
|
|
724
|
+
GRID_CU_MULTIP: tl.constexpr,
|
|
725
|
+
B: tl.constexpr,
|
|
726
|
+
philox_offset_base,
|
|
727
|
+
encoded_softmax,
|
|
728
|
+
alibi_slopes,
|
|
729
|
+
HQ: tl.constexpr,
|
|
730
|
+
HK: tl.constexpr,
|
|
731
|
+
IS_ACTUAL_BLOCK_DMODEL: tl.constexpr,
|
|
732
|
+
MAX_SEQLENS_Q: tl.constexpr,
|
|
733
|
+
MAX_SEQLENS_K: tl.constexpr,
|
|
734
|
+
VARLEN: tl.constexpr,
|
|
735
|
+
IS_CAUSAL: tl.constexpr,
|
|
736
|
+
BLOCK_M: tl.constexpr,
|
|
737
|
+
BLOCK_DMODEL: tl.constexpr,
|
|
738
|
+
BLOCK_N: tl.constexpr,
|
|
739
|
+
SHOULD_PRE_LOAD_V: tl.constexpr,
|
|
740
|
+
USE_BIAS: tl.constexpr,
|
|
741
|
+
SHOULD_RETURN_ENCODED_SOFTMAX: tl.constexpr,
|
|
742
|
+
USE_ALIBI: tl.constexpr,
|
|
743
|
+
IS_EIGHT_BIT: tl.constexpr,
|
|
744
|
+
USE_P_SCALE: tl.constexpr,
|
|
745
|
+
IS_EIGHT_BIT_KV: tl.constexpr,
|
|
746
|
+
QUANT_DTYPE: tl.constexpr = default_eight_bit_dtype_triton,
|
|
747
|
+
):
|
|
748
|
+
|
|
749
|
+
if o_descale_ptr is not None:
|
|
750
|
+
o_descale = tl.load(o_descale_ptr)
|
|
751
|
+
|
|
752
|
+
start_m: tl.int64 = tl.program_id(0)
|
|
753
|
+
off_h_q: tl.int64 = tl.program_id(1)
|
|
754
|
+
off_z: tl.int64 = tl.program_id(2)
|
|
755
|
+
|
|
756
|
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M).to(tl.int64)
|
|
757
|
+
offs_n = tl.arange(0, BLOCK_N).to(tl.int64)
|
|
758
|
+
offs_d = tl.arange(0, BLOCK_DMODEL).to(tl.int64)
|
|
759
|
+
|
|
760
|
+
# as we can't have return statements inside while loop in Triton
|
|
761
|
+
continue_condition = True
|
|
762
|
+
|
|
763
|
+
if VARLEN:
|
|
764
|
+
cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z)
|
|
765
|
+
cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1)
|
|
766
|
+
seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start
|
|
767
|
+
# We have a one-size-fits-all grid in id(0). Some seqlens might be
|
|
768
|
+
# too small for all start_m so for those we return early.
|
|
769
|
+
if start_m * BLOCK_M > seqlen_q:
|
|
770
|
+
continue_condition = False
|
|
771
|
+
# return
|
|
772
|
+
cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z)
|
|
773
|
+
cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1)
|
|
774
|
+
seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start
|
|
775
|
+
else:
|
|
776
|
+
cu_seqlens_q_start = 0
|
|
777
|
+
cu_seqlens_k_start = 0
|
|
778
|
+
seqlen_q = MAX_SEQLENS_Q
|
|
779
|
+
seqlen_k = MAX_SEQLENS_K
|
|
780
|
+
|
|
781
|
+
if continue_condition:
|
|
782
|
+
# Now we compute whether we need to exit early due to causal
|
|
783
|
+
# masking. This is because for seqlen_q > seqlen_k, M rows of the
|
|
784
|
+
# attn scores are completely masked, resulting in 0s written to the
|
|
785
|
+
# output, and inf written to LSE. We don't need to do any GEMMs in
|
|
786
|
+
# this case. This block of code determines what N is, and if this
|
|
787
|
+
# WG is operating on those M rows.
|
|
788
|
+
n_blocks = cdiv_fn(seqlen_k, BLOCK_N)
|
|
789
|
+
if (IS_CAUSAL):
|
|
790
|
+
# If seqlen_q == seqlen_k, the attn scores are a square matrix.
|
|
791
|
+
# If seqlen_q != seqlen_k, attn scores are rectangular which
|
|
792
|
+
# means the causal mask boundary is bottom right aligned, and
|
|
793
|
+
# ends at either the top edge (seqlen_q < seqlen_k) or left
|
|
794
|
+
# edge. This captures the decrease in n_blocks if we have a
|
|
795
|
+
# rectangular attn matrix
|
|
796
|
+
n_blocks_seqlen = cdiv_fn(
|
|
797
|
+
(start_m + 1) * BLOCK_M + seqlen_k - seqlen_q, BLOCK_N)
|
|
798
|
+
# This is what adjusts the block_max for the current WG, only
|
|
799
|
+
# if IS_CAUSAL. Otherwise we want to always iterate through all
|
|
800
|
+
# n_blocks
|
|
801
|
+
n_blocks = min(n_blocks, n_blocks_seqlen)
|
|
802
|
+
# If we have no blocks after adjusting for seqlen deltas, this
|
|
803
|
+
# WG is part of the blocks that are all 0. We exit early.
|
|
804
|
+
if n_blocks <= 0:
|
|
805
|
+
o_offset = (Out + off_z * stride_oz + off_h_q * stride_oh +
|
|
806
|
+
cu_seqlens_q_start * stride_om)
|
|
807
|
+
o_ptrs = (o_offset + offs_m[:, None] * stride_om +
|
|
808
|
+
offs_d[None, :] * stride_on)
|
|
809
|
+
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
810
|
+
o_ptrs_mask = (offs_m[:, None] < seqlen_q).broadcast_to(
|
|
811
|
+
[BLOCK_M, BLOCK_DMODEL])
|
|
812
|
+
# We still need to write 0s to the result
|
|
813
|
+
tl.store(o_ptrs, acc, mask=o_ptrs_mask)
|
|
814
|
+
# The tensor allocated for L is based on MAX_SEQLENS_Q as
|
|
815
|
+
# that is statically known.
|
|
816
|
+
l_ptrs = (L + off_z * HQ * MAX_SEQLENS_Q +
|
|
817
|
+
off_h_q * MAX_SEQLENS_Q + offs_m)
|
|
818
|
+
# We store inf to LSE, not -inf because in the bwd pass,
|
|
819
|
+
# we subtract this from qk which makes it -inf, such that
|
|
820
|
+
# exp(qk - inf) = 0 for these masked blocks.
|
|
821
|
+
l_value = tl.full([BLOCK_M],
|
|
822
|
+
value=float("inf"),
|
|
823
|
+
dtype=tl.float32)
|
|
824
|
+
l_ptrs_mask = offs_m < MAX_SEQLENS_Q
|
|
825
|
+
tl.store(l_ptrs, l_value, mask=l_ptrs_mask)
|
|
826
|
+
# TODO: Should dropout and return encoded softmax be
|
|
827
|
+
# handled here too?
|
|
828
|
+
continue_condition = False
|
|
829
|
+
# return
|
|
830
|
+
|
|
831
|
+
if continue_condition:
|
|
832
|
+
# If MQA / GQA, set the K and V head offsets appropriately.
|
|
833
|
+
GROUP_SIZE: tl.constexpr = HQ // HK
|
|
834
|
+
off_h_k = off_h_q // GROUP_SIZE if GROUP_SIZE != 1 else off_h_q
|
|
835
|
+
n_extra_tokens = 0
|
|
836
|
+
if seqlen_k < BLOCK_N:
|
|
837
|
+
n_extra_tokens = BLOCK_N - seqlen_k
|
|
838
|
+
elif seqlen_k % BLOCK_N:
|
|
839
|
+
n_extra_tokens = seqlen_k % BLOCK_N
|
|
840
|
+
USE_PADDED_HEAD: tl.constexpr = (IS_ACTUAL_BLOCK_DMODEL
|
|
841
|
+
!= BLOCK_DMODEL)
|
|
842
|
+
|
|
843
|
+
# Compute pointers for all the tensors used in this kernel.
|
|
844
|
+
q_offset = (Q + off_z * stride_qz + off_h_q * stride_qh +
|
|
845
|
+
cu_seqlens_q_start * stride_qm)
|
|
846
|
+
q_ptrs = (q_offset + offs_m[:, None] * stride_qm +
|
|
847
|
+
offs_d[None, :] * stride_qk)
|
|
848
|
+
k_offset = (K + off_z * stride_kz + off_h_k * stride_kh +
|
|
849
|
+
cu_seqlens_k_start * stride_kn)
|
|
850
|
+
k_ptrs = (k_offset + offs_d[:, None] * stride_kk +
|
|
851
|
+
offs_n[None, :] * stride_kn)
|
|
852
|
+
v_offset = (V + off_z * stride_vz + off_h_k * stride_vh +
|
|
853
|
+
cu_seqlens_k_start * stride_vk)
|
|
854
|
+
v_ptrs = (v_offset + offs_n[:, None] * stride_vk +
|
|
855
|
+
offs_d[None, :] * stride_vn)
|
|
856
|
+
# Compute pointers for all scale tensors used in this kernel.
|
|
857
|
+
|
|
858
|
+
IS_EIGHT_BIT_GEMM: tl.constexpr = IS_EIGHT_BIT & (
|
|
859
|
+
not IS_EIGHT_BIT_KV)
|
|
860
|
+
if IS_EIGHT_BIT:
|
|
861
|
+
if k_descale_has_singleton:
|
|
862
|
+
k_descale_ptrs = k_descale_ptr
|
|
863
|
+
else:
|
|
864
|
+
k_descale_ptrs = k_descale_ptr + off_h_k
|
|
865
|
+
|
|
866
|
+
if v_descale_has_singleton:
|
|
867
|
+
v_descale_ptrs = v_descale_ptr
|
|
868
|
+
else:
|
|
869
|
+
v_descale_ptrs = v_descale_ptr + off_h_k
|
|
870
|
+
|
|
871
|
+
if not IS_EIGHT_BIT_KV:
|
|
872
|
+
if q_descale_has_singleton:
|
|
873
|
+
q_descale_ptrs = q_descale_ptr
|
|
874
|
+
else:
|
|
875
|
+
q_descale_ptrs = q_descale_ptr + off_h_q
|
|
876
|
+
if USE_P_SCALE:
|
|
877
|
+
if p_descale_has_singleton:
|
|
878
|
+
p_scale_ptrs = p_scale_ptr
|
|
879
|
+
p_descale_ptrs = p_descale_ptr
|
|
880
|
+
else:
|
|
881
|
+
p_scale_ptrs = p_scale_ptr + off_h_q
|
|
882
|
+
p_descale_ptrs = p_descale_ptr + off_h_q
|
|
883
|
+
|
|
884
|
+
if USE_BIAS:
|
|
885
|
+
bias_offset = off_h_q * stride_bh
|
|
886
|
+
bias_ptrs = (bias + bias_offset + offs_m[:, None] * stride_bm +
|
|
887
|
+
offs_n[None, :] * stride_bn)
|
|
888
|
+
else:
|
|
889
|
+
bias_ptrs = None
|
|
890
|
+
|
|
891
|
+
if USE_ALIBI:
|
|
892
|
+
a_offset = off_z * stride_az + off_h_q * stride_ah
|
|
893
|
+
alibi_slope = tl.load(alibi_slopes + a_offset)
|
|
894
|
+
else:
|
|
895
|
+
alibi_slope = None
|
|
896
|
+
|
|
897
|
+
batch_philox_offset = 0
|
|
898
|
+
# We can ask to return the dropout mask without doing any
|
|
899
|
+
# dropout. In this case, we return an invalid pointer so
|
|
900
|
+
# indicate the mask is not valid.
|
|
901
|
+
if SHOULD_RETURN_ENCODED_SOFTMAX:
|
|
902
|
+
encoded_sm_base = (encoded_softmax +
|
|
903
|
+
off_h_q * seqlen_q * seqlen_k)
|
|
904
|
+
encoded_sm_ptrs = (encoded_sm_base +
|
|
905
|
+
offs_m[:, None] * seqlen_k +
|
|
906
|
+
offs_n[None, :])
|
|
907
|
+
else:
|
|
908
|
+
encoded_sm_ptrs = None
|
|
909
|
+
# initialize pointer to m and l
|
|
910
|
+
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
|
|
911
|
+
l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32)
|
|
912
|
+
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
913
|
+
# scale sm_scale by log_2(e) and use 2^x in the loop as we do
|
|
914
|
+
# not have native e^x support in HW.
|
|
915
|
+
QK_SCALE: tl.constexpr = SM_SCALE * 1.44269504089
|
|
916
|
+
# Q is loaded once at the beginning and shared by all N blocks.
|
|
917
|
+
q_ptrs_mask = offs_m[:, None] < seqlen_q
|
|
918
|
+
if USE_PADDED_HEAD:
|
|
919
|
+
q_ptrs_mask = q_ptrs_mask & (offs_d[None, :]
|
|
920
|
+
< IS_ACTUAL_BLOCK_DMODEL)
|
|
921
|
+
q = tl.load(q_ptrs, mask=q_ptrs_mask, other=0.0)
|
|
922
|
+
|
|
923
|
+
if IS_EIGHT_BIT:
|
|
924
|
+
k_descale = tl.load(k_descale_ptrs)
|
|
925
|
+
v_descale = tl.load(v_descale_ptrs)
|
|
926
|
+
q_descale = None if IS_EIGHT_BIT_KV else tl.load(
|
|
927
|
+
q_descale_ptrs)
|
|
928
|
+
if USE_P_SCALE:
|
|
929
|
+
p_scale = tl.load(p_scale_ptrs)
|
|
930
|
+
p_descale = tl.load(p_descale_ptrs)
|
|
931
|
+
else:
|
|
932
|
+
p_scale = None
|
|
933
|
+
p_descale = None
|
|
934
|
+
else:
|
|
935
|
+
q_descale = None
|
|
936
|
+
k_descale = None
|
|
937
|
+
v_descale = None
|
|
938
|
+
p_scale = None
|
|
939
|
+
p_descale = None
|
|
940
|
+
# Here we compute how many full and masked blocks we have.
|
|
941
|
+
padded_block_k = n_extra_tokens != 0
|
|
942
|
+
is_modulo_mn = not padded_block_k and (seqlen_q % BLOCK_M == 0)
|
|
943
|
+
if IS_CAUSAL:
|
|
944
|
+
# There are always at least BLOCK_M // BLOCK_N masked
|
|
945
|
+
# blocks. Additionally there might be one more due to
|
|
946
|
+
# dissimilar seqlens.
|
|
947
|
+
masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn)
|
|
948
|
+
else:
|
|
949
|
+
# Padding on Q does not need to be masked in the FA loop.
|
|
950
|
+
masked_blocks = padded_block_k
|
|
951
|
+
# if IS_CAUSAL, not is_modulo_mn does not always result in an
|
|
952
|
+
# additional block. In this case we might exceed n_blocks so
|
|
953
|
+
# pick the min.
|
|
954
|
+
masked_blocks = min(masked_blocks, n_blocks)
|
|
955
|
+
n_full_blocks = n_blocks - masked_blocks
|
|
956
|
+
block_min = 0
|
|
957
|
+
block_max = n_blocks * BLOCK_N
|
|
958
|
+
# Compute for full blocks. Here we set causal to false
|
|
959
|
+
# regardless of its actual value because there is no masking.
|
|
960
|
+
# Similarly we do not need padding.
|
|
961
|
+
if n_full_blocks > 0:
|
|
962
|
+
block_max = (n_blocks - masked_blocks) * BLOCK_N
|
|
963
|
+
acc, l_i, m_i = _attn_fwd_inner(
|
|
964
|
+
acc,
|
|
965
|
+
l_i,
|
|
966
|
+
m_i,
|
|
967
|
+
q,
|
|
968
|
+
k_ptrs,
|
|
969
|
+
v_ptrs,
|
|
970
|
+
bias_ptrs,
|
|
971
|
+
stride_kn,
|
|
972
|
+
stride_vk,
|
|
973
|
+
stride_bn,
|
|
974
|
+
start_m,
|
|
975
|
+
seqlen_k,
|
|
976
|
+
seqlen_q,
|
|
977
|
+
philox_seed,
|
|
978
|
+
batch_philox_offset,
|
|
979
|
+
encoded_sm_ptrs,
|
|
980
|
+
# _, _, offs_n_causal, masked_blocks, n_extra_tokens, _
|
|
981
|
+
block_min,
|
|
982
|
+
block_max,
|
|
983
|
+
0,
|
|
984
|
+
0,
|
|
985
|
+
0,
|
|
986
|
+
alibi_slope,
|
|
987
|
+
q_descale,
|
|
988
|
+
k_descale,
|
|
989
|
+
v_descale,
|
|
990
|
+
p_scale,
|
|
991
|
+
# IS_CAUSAL, ....
|
|
992
|
+
False,
|
|
993
|
+
BLOCK_M,
|
|
994
|
+
BLOCK_DMODEL,
|
|
995
|
+
BLOCK_N,
|
|
996
|
+
offs_m,
|
|
997
|
+
offs_n,
|
|
998
|
+
# _, SHOULD_MASK_STEPS, ...
|
|
999
|
+
SHOULD_PRE_LOAD_V,
|
|
1000
|
+
False,
|
|
1001
|
+
SHOULD_RETURN_ENCODED_SOFTMAX,
|
|
1002
|
+
USE_PADDED_HEAD,
|
|
1003
|
+
IS_ACTUAL_BLOCK_DMODEL,
|
|
1004
|
+
QK_SCALE,
|
|
1005
|
+
IS_EIGHT_BIT_GEMM,
|
|
1006
|
+
USE_P_SCALE,
|
|
1007
|
+
IS_EIGHT_BIT_KV,
|
|
1008
|
+
QUANT_DTYPE)
|
|
1009
|
+
block_min = block_max
|
|
1010
|
+
block_max = n_blocks * BLOCK_N
|
|
1011
|
+
|
|
1012
|
+
tl.debug_barrier()
|
|
1013
|
+
# Remaining blocks, if any, are full / not masked.
|
|
1014
|
+
if (masked_blocks > 0):
|
|
1015
|
+
if IS_CAUSAL:
|
|
1016
|
+
offs_n_causal = offs_n + (seqlen_q - seqlen_k)
|
|
1017
|
+
else:
|
|
1018
|
+
offs_n_causal = 0
|
|
1019
|
+
k_ptrs += n_full_blocks * BLOCK_N * stride_kn
|
|
1020
|
+
v_ptrs += n_full_blocks * BLOCK_N * stride_vk
|
|
1021
|
+
if USE_BIAS:
|
|
1022
|
+
bias_ptrs += n_full_blocks * BLOCK_N * stride_bn
|
|
1023
|
+
if SHOULD_RETURN_ENCODED_SOFTMAX:
|
|
1024
|
+
encoded_sm_ptrs += n_full_blocks * BLOCK_N
|
|
1025
|
+
acc, l_i, m_i = _attn_fwd_inner(
|
|
1026
|
+
acc,
|
|
1027
|
+
l_i,
|
|
1028
|
+
m_i,
|
|
1029
|
+
q,
|
|
1030
|
+
k_ptrs,
|
|
1031
|
+
v_ptrs,
|
|
1032
|
+
bias_ptrs,
|
|
1033
|
+
stride_kn,
|
|
1034
|
+
stride_vk,
|
|
1035
|
+
stride_bn,
|
|
1036
|
+
start_m,
|
|
1037
|
+
seqlen_k,
|
|
1038
|
+
seqlen_q,
|
|
1039
|
+
philox_seed,
|
|
1040
|
+
batch_philox_offset,
|
|
1041
|
+
encoded_sm_ptrs,
|
|
1042
|
+
block_min,
|
|
1043
|
+
block_max,
|
|
1044
|
+
offs_n_causal,
|
|
1045
|
+
masked_blocks,
|
|
1046
|
+
n_extra_tokens,
|
|
1047
|
+
alibi_slope,
|
|
1048
|
+
q_descale,
|
|
1049
|
+
k_descale,
|
|
1050
|
+
v_descale,
|
|
1051
|
+
p_scale,
|
|
1052
|
+
IS_CAUSAL,
|
|
1053
|
+
BLOCK_M,
|
|
1054
|
+
BLOCK_DMODEL,
|
|
1055
|
+
BLOCK_N,
|
|
1056
|
+
offs_m,
|
|
1057
|
+
offs_n,
|
|
1058
|
+
# _, SHOULD_MASK_STEPS, ...
|
|
1059
|
+
SHOULD_PRE_LOAD_V,
|
|
1060
|
+
True,
|
|
1061
|
+
SHOULD_RETURN_ENCODED_SOFTMAX,
|
|
1062
|
+
USE_PADDED_HEAD,
|
|
1063
|
+
IS_ACTUAL_BLOCK_DMODEL,
|
|
1064
|
+
QK_SCALE,
|
|
1065
|
+
IS_EIGHT_BIT_GEMM,
|
|
1066
|
+
USE_P_SCALE,
|
|
1067
|
+
IS_EIGHT_BIT_KV,
|
|
1068
|
+
QUANT_DTYPE)
|
|
1069
|
+
|
|
1070
|
+
if IS_EIGHT_BIT and not IS_EIGHT_BIT_KV:
|
|
1071
|
+
if USE_P_SCALE:
|
|
1072
|
+
acc *= p_descale
|
|
1073
|
+
acc *= v_descale
|
|
1074
|
+
|
|
1075
|
+
# epilogue
|
|
1076
|
+
# This helps the compiler do Newton Raphson on l_i vs on acc
|
|
1077
|
+
# which is much larger.
|
|
1078
|
+
l_recip = 1 / l_i[:, None]
|
|
1079
|
+
acc = acc * l_recip
|
|
1080
|
+
|
|
1081
|
+
# If seqlen_q > seqlen_k but the delta is not a multiple of
|
|
1082
|
+
# BLOCK_M, then we have one block with a row of all NaNs which
|
|
1083
|
+
# come from computing softmax over a row of all
|
|
1084
|
+
# -infs (-inf - inf = NaN). We check for that here and store 0s
|
|
1085
|
+
# where there are NaNs as these rows should've been zeroed out.
|
|
1086
|
+
end_m_idx = (start_m + 1) * BLOCK_M
|
|
1087
|
+
start_m_idx = start_m * BLOCK_M
|
|
1088
|
+
causal_start_idx = seqlen_q - seqlen_k
|
|
1089
|
+
if IS_EIGHT_BIT and not IS_EIGHT_BIT_KV: # noqa: SIM102
|
|
1090
|
+
if o_descale_ptr is not None:
|
|
1091
|
+
acc = quant_fp8(acc, o_descale)
|
|
1092
|
+
|
|
1093
|
+
acc = acc.to(Out.type.element_ty)
|
|
1094
|
+
if IS_CAUSAL: # noqa: SIM102
|
|
1095
|
+
if (causal_start_idx > start_m_idx
|
|
1096
|
+
and causal_start_idx < end_m_idx):
|
|
1097
|
+
out_mask_boundary = tl.full((BLOCK_DMODEL, ),
|
|
1098
|
+
causal_start_idx,
|
|
1099
|
+
dtype=tl.int32)
|
|
1100
|
+
mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M)
|
|
1101
|
+
out_ptrs_mask = (mask_m_offsets[:, None]
|
|
1102
|
+
>= out_mask_boundary[None, :])
|
|
1103
|
+
z = tl.zeros((1, ), tl.float32)
|
|
1104
|
+
acc = tl.where(out_ptrs_mask, acc,
|
|
1105
|
+
z.to(acc.type.element_ty))
|
|
1106
|
+
# write back LSE
|
|
1107
|
+
l_ptrs = (L + off_z * HQ * MAX_SEQLENS_Q +
|
|
1108
|
+
off_h_q * MAX_SEQLENS_Q + offs_m)
|
|
1109
|
+
# If seqlen_q not multiple of BLOCK_M, we need to mask out the
|
|
1110
|
+
# last few rows. This is only true for the last M block.
|
|
1111
|
+
# For others, overflow_size will be -ve
|
|
1112
|
+
overflow_size = end_m_idx - seqlen_q
|
|
1113
|
+
if overflow_size > 0:
|
|
1114
|
+
boundary = tl.full((BLOCK_M, ),
|
|
1115
|
+
BLOCK_M - overflow_size,
|
|
1116
|
+
dtype=tl.int32)
|
|
1117
|
+
l_ptrs_mask = tl.arange(0, BLOCK_M) < boundary
|
|
1118
|
+
tl.store(l_ptrs, m_i + tl.math.log2(l_i), mask=l_ptrs_mask)
|
|
1119
|
+
else:
|
|
1120
|
+
tl.store(l_ptrs, m_i + tl.math.log2(l_i))
|
|
1121
|
+
|
|
1122
|
+
# write back O
|
|
1123
|
+
o_offset = (Out + off_z * stride_oz + off_h_q * stride_oh +
|
|
1124
|
+
cu_seqlens_q_start * stride_om)
|
|
1125
|
+
o_ptrs = (o_offset + offs_m[:, None] * stride_om +
|
|
1126
|
+
offs_d[None, :] * stride_on)
|
|
1127
|
+
o_ptrs_mask = tl.full([BLOCK_M, BLOCK_DMODEL], 1, dtype=tl.int1)
|
|
1128
|
+
if overflow_size > 0:
|
|
1129
|
+
o_ptrs_mask = o_ptrs_mask & (offs_m[:, None] < seqlen_q)
|
|
1130
|
+
if USE_PADDED_HEAD:
|
|
1131
|
+
o_ptrs_mask = o_ptrs_mask & (offs_d[None, :]
|
|
1132
|
+
< IS_ACTUAL_BLOCK_DMODEL)
|
|
1133
|
+
tl.store(o_ptrs, acc.to(Out.dtype.element_ty), mask=o_ptrs_mask)
|
|
1134
|
+
|
|
1135
|
+
|
|
1136
|
+
def get_shape_from_layout(q, k, metadata):
|
|
1137
|
+
assert metadata.layout in SUPPORTED_LAYOUTS, "Got unsupported layout."
|
|
1138
|
+
|
|
1139
|
+
if metadata.layout == 'thd':
|
|
1140
|
+
nheads_q, nheads_k = q.shape[1], k.shape[1]
|
|
1141
|
+
head_size = q.shape[-1]
|
|
1142
|
+
batch = metadata.num_contexts
|
|
1143
|
+
elif metadata.layout == 'bhsd':
|
|
1144
|
+
batch, nheads_q, _, head_size = q.shape
|
|
1145
|
+
nheads_k = k.shape[1]
|
|
1146
|
+
elif metadata.layout == 'bshd':
|
|
1147
|
+
batch, _, nheads_q, head_size = q.shape
|
|
1148
|
+
nheads_k = k.shape[2]
|
|
1149
|
+
return batch, nheads_q, nheads_k, head_size
|
|
1150
|
+
|
|
1151
|
+
|
|
1152
|
+
def get_strides_from_layout(q, k, v, o, metadata):
|
|
1153
|
+
assert metadata.layout in SUPPORTED_LAYOUTS, "Got unsupported layout."
|
|
1154
|
+
|
|
1155
|
+
STRIDE_PERMUTATIONS = {
|
|
1156
|
+
'thd': (None, 1, 0, 2),
|
|
1157
|
+
'bhsd': (0, 1, 2, 3),
|
|
1158
|
+
'bshd': (0, 2, 1, 3),
|
|
1159
|
+
}
|
|
1160
|
+
|
|
1161
|
+
perm = STRIDE_PERMUTATIONS[metadata.layout]
|
|
1162
|
+
stride = lambda x, p: (0 if p is None else x.stride(p))
|
|
1163
|
+
strides = lambda x: (stride(x, p) for p in perm)
|
|
1164
|
+
|
|
1165
|
+
return tuple(strides(x) for x in [q, k, v, o])
|
|
1166
|
+
|
|
1167
|
+
|
|
1168
|
+
class _attention(torch.autograd.Function):
|
|
1169
|
+
|
|
1170
|
+
@staticmethod
|
|
1171
|
+
def forward(ctx, q, k, v, o, metadata: MetaData):
|
|
1172
|
+
# NOTE: a large bias tensor leads to overflow during pointer arithmetic
|
|
1173
|
+
if (metadata.bias is not None):
|
|
1174
|
+
assert (metadata.bias.numel() < 2**31)
|
|
1175
|
+
|
|
1176
|
+
if o is None:
|
|
1177
|
+
if metadata.eight_bit:
|
|
1178
|
+
o = torch.empty_like(
|
|
1179
|
+
q,
|
|
1180
|
+
dtype=metadata.output_dtype if metadata.output_dtype
|
|
1181
|
+
is not None else metadata.eight_bit_dtype_torch)
|
|
1182
|
+
else:
|
|
1183
|
+
o = torch.empty_like(q, dtype=q.dtype)
|
|
1184
|
+
|
|
1185
|
+
metadata.check_args(q, k, v, o)
|
|
1186
|
+
|
|
1187
|
+
batch, nheads_q, nheads_k, head_size = get_shape_from_layout(
|
|
1188
|
+
q, k, metadata)
|
|
1189
|
+
q_strides, k_strides, v_strides, o_strides = get_strides_from_layout(
|
|
1190
|
+
q, k, v, o, metadata)
|
|
1191
|
+
|
|
1192
|
+
# Get closest power of 2 over or equal to 32.
|
|
1193
|
+
padded_d_model = 1 << (head_size - 1).bit_length()
|
|
1194
|
+
# Smallest head_dim supported is 16. If smaller, the tile in the
|
|
1195
|
+
# kernel is padded - there is no padding in memory for any dims.
|
|
1196
|
+
padded_d_model = max(padded_d_model, 16)
|
|
1197
|
+
|
|
1198
|
+
# encoded_softmax is used to validate dropout behavior vs the
|
|
1199
|
+
# PyTorch SDPA math backend reference. We zero this out to give a
|
|
1200
|
+
# consistent starting point and then populate it with the output of
|
|
1201
|
+
# softmax with the sign bit set according to the dropout mask.
|
|
1202
|
+
# The resulting return allows this mask to be fed into the reference
|
|
1203
|
+
# implementation for testing only. This return holds no useful output
|
|
1204
|
+
# aside from debugging.
|
|
1205
|
+
if metadata.return_encoded_softmax:
|
|
1206
|
+
encoded_softmax = torch.zeros(
|
|
1207
|
+
(q.shape[0], q.shape[1], q.shape[2], k.shape[2]),
|
|
1208
|
+
device=q.device,
|
|
1209
|
+
dtype=torch.float32)
|
|
1210
|
+
else:
|
|
1211
|
+
encoded_softmax = None
|
|
1212
|
+
|
|
1213
|
+
M = torch.empty((batch, nheads_q, metadata.max_seqlens_q),
|
|
1214
|
+
device=q.device,
|
|
1215
|
+
dtype=torch.float32)
|
|
1216
|
+
|
|
1217
|
+
# Seed the RNG so we get reproducible results for testing.
|
|
1218
|
+
philox_seed = 0x1BF52
|
|
1219
|
+
philox_offset = 0x1D4B42
|
|
1220
|
+
|
|
1221
|
+
if metadata.bias is not None:
|
|
1222
|
+
bias_strides = (metadata.bias.stride(0), metadata.bias.stride(1),
|
|
1223
|
+
metadata.bias.stride(2), metadata.bias.stride(3))
|
|
1224
|
+
else:
|
|
1225
|
+
bias_strides = (0, 0, 0, 0)
|
|
1226
|
+
|
|
1227
|
+
if metadata.alibi_slopes is not None:
|
|
1228
|
+
alibi_strides = (metadata.alibi_slopes.stride(0),
|
|
1229
|
+
metadata.alibi_slopes.stride(1))
|
|
1230
|
+
else:
|
|
1231
|
+
alibi_strides = (0, 0)
|
|
1232
|
+
|
|
1233
|
+
if metadata.eight_bit:
|
|
1234
|
+
q_descale, k_descale, p_scale, p_descale, v_descale, o_scale = (
|
|
1235
|
+
metadata.q_descale, metadata.k_descale, metadata.p_scale,
|
|
1236
|
+
metadata.p_descale, metadata.v_descale, metadata.o_scale)
|
|
1237
|
+
o_descale = 1.0 / o_scale if o_scale is not None else None
|
|
1238
|
+
else:
|
|
1239
|
+
q_descale = k_descale = p_scale = None
|
|
1240
|
+
p_descale = v_descale = o_descale = None
|
|
1241
|
+
|
|
1242
|
+
# number of compute units available
|
|
1243
|
+
NUM_CU = torch.cuda.get_device_properties("cuda").multi_processor_count
|
|
1244
|
+
|
|
1245
|
+
grid = lambda META: (triton.cdiv(metadata.max_seqlens_q, META[
|
|
1246
|
+
'BLOCK_M']), nheads_q, batch)
|
|
1247
|
+
|
|
1248
|
+
attn_fwd[grid](
|
|
1249
|
+
q,
|
|
1250
|
+
k,
|
|
1251
|
+
v,
|
|
1252
|
+
metadata.bias,
|
|
1253
|
+
metadata.sm_scale,
|
|
1254
|
+
M,
|
|
1255
|
+
o,
|
|
1256
|
+
*q_strides,
|
|
1257
|
+
*k_strides,
|
|
1258
|
+
*v_strides,
|
|
1259
|
+
*o_strides,
|
|
1260
|
+
*bias_strides,
|
|
1261
|
+
*alibi_strides,
|
|
1262
|
+
q_descale,
|
|
1263
|
+
k_descale,
|
|
1264
|
+
p_scale,
|
|
1265
|
+
p_descale,
|
|
1266
|
+
o_descale,
|
|
1267
|
+
v_descale,
|
|
1268
|
+
q_descale.numel() == 1 if q_descale is not None else False,
|
|
1269
|
+
k_descale.numel() == 1 if k_descale is not None else False,
|
|
1270
|
+
p_descale.numel() == 1 if p_descale is not None else False,
|
|
1271
|
+
v_descale.numel() == 1 if v_descale is not None else False,
|
|
1272
|
+
metadata.cu_seqlens_q,
|
|
1273
|
+
metadata.cu_seqlens_k,
|
|
1274
|
+
philox_seed=philox_seed,
|
|
1275
|
+
philox_offset_base=philox_offset,
|
|
1276
|
+
encoded_softmax=encoded_softmax,
|
|
1277
|
+
alibi_slopes=metadata.alibi_slopes,
|
|
1278
|
+
HQ=nheads_q,
|
|
1279
|
+
HK=nheads_k,
|
|
1280
|
+
IS_ACTUAL_BLOCK_DMODEL=head_size,
|
|
1281
|
+
MAX_SEQLENS_Q=metadata.max_seqlens_q,
|
|
1282
|
+
MAX_SEQLENS_K=metadata.max_seqlens_k,
|
|
1283
|
+
IS_CAUSAL=metadata.causal,
|
|
1284
|
+
VARLEN=metadata.varlen,
|
|
1285
|
+
BLOCK_DMODEL=padded_d_model,
|
|
1286
|
+
USE_BIAS=metadata.bias is not None,
|
|
1287
|
+
USE_ALIBI=metadata.alibi_slopes is not None,
|
|
1288
|
+
SHOULD_RETURN_ENCODED_SOFTMAX=metadata.return_encoded_softmax,
|
|
1289
|
+
IS_EIGHT_BIT=metadata.eight_bit,
|
|
1290
|
+
USE_P_SCALE=metadata.eight_bit and metadata.use_p_scale,
|
|
1291
|
+
IS_EIGHT_BIT_KV=metadata.eight_bit and metadata.eight_bit_kv,
|
|
1292
|
+
NUM_CU=NUM_CU,
|
|
1293
|
+
B=batch,
|
|
1294
|
+
QUANT_DTYPE=metadata.eight_bit_dtype_triton)
|
|
1295
|
+
|
|
1296
|
+
ctx.grid = grid
|
|
1297
|
+
ctx.sm_scale = metadata.sm_scale
|
|
1298
|
+
ctx.BLOCK_DMODEL = head_size
|
|
1299
|
+
ctx.causal = metadata.causal
|
|
1300
|
+
ctx.alibi_slopes = metadata.alibi_slopes
|
|
1301
|
+
ctx.philox_seed = philox_seed
|
|
1302
|
+
ctx.philox_offset = philox_offset
|
|
1303
|
+
ctx.encoded_softmax = encoded_softmax
|
|
1304
|
+
ctx.return_encoded_softmax = metadata.return_encoded_softmax
|
|
1305
|
+
return o, encoded_softmax
|
|
1306
|
+
|
|
1307
|
+
|
|
1308
|
+
triton_attention_rocm = _attention.apply
|
|
1309
|
+
|
|
1310
|
+
|
|
1311
|
+
def scale_fp8(t, scale=None):
|
|
1312
|
+
t_scaled, scale_out = ops.scaled_fp8_quant(t.reshape(-1, t.shape[-1]),
|
|
1313
|
+
scale)
|
|
1314
|
+
return t_scaled.reshape(t.shape), scale_out
|
|
1315
|
+
|
|
1316
|
+
|
|
1317
|
+
def maybe_quantize_fp8(t, scale):
|
|
1318
|
+
eight_bit_dtype = current_platform.fp8_dtype()
|
|
1319
|
+
if t.dtype != eight_bit_dtype:
|
|
1320
|
+
t, _ = scale_fp8(t, scale)
|
|
1321
|
+
return t
|
|
1322
|
+
|
|
1323
|
+
|
|
1324
|
+
def check_and_maybe_quantize_qkv(q, k, v, fp8_scales):
|
|
1325
|
+
(q_scale, k_scale, v_scale, p_scale) = fp8_scales
|
|
1326
|
+
|
|
1327
|
+
q = maybe_quantize_fp8(q, q_scale)
|
|
1328
|
+
k = maybe_quantize_fp8(k, k_scale)
|
|
1329
|
+
v = maybe_quantize_fp8(v, v_scale)
|
|
1330
|
+
|
|
1331
|
+
return q, k, v
|
|
1332
|
+
|
|
1333
|
+
|
|
1334
|
+
# query - [num_tokens, num_heads, head_size]
|
|
1335
|
+
# key - [num_tokens, num_kv_heads, head_size]
|
|
1336
|
+
# value - [num_tokens, num_kv_heads, head_size
|
|
1337
|
+
# output - [num_tokens, num_heads, head_size]
|
|
1338
|
+
def triton_attention(
|
|
1339
|
+
q: torch.Tensor,
|
|
1340
|
+
k: torch.Tensor,
|
|
1341
|
+
v: torch.Tensor,
|
|
1342
|
+
o: torch.Tensor,
|
|
1343
|
+
cu_seqlens_q: torch.Tensor,
|
|
1344
|
+
cu_seqlens_k: torch.Tensor,
|
|
1345
|
+
max_seqlens_q: int,
|
|
1346
|
+
max_seqlens_k: int,
|
|
1347
|
+
causal: bool = False,
|
|
1348
|
+
sm_scale: float = 1.0,
|
|
1349
|
+
bias: Optional[torch.Tensor] = None,
|
|
1350
|
+
fp8_scales: Optional[tuple[float, ...]] = None,
|
|
1351
|
+
input_scale: Optional[torch.Tensor] = None,
|
|
1352
|
+
) -> torch.Tensor:
|
|
1353
|
+
if fp8_scales is not None:
|
|
1354
|
+
q_descale, k_descale, v_descale, p_scale = fp8_scales
|
|
1355
|
+
else:
|
|
1356
|
+
q_descale = k_descale = v_descale = p_scale = None
|
|
1357
|
+
|
|
1358
|
+
attn_metadata = MetaData(sm_scale=sm_scale,
|
|
1359
|
+
max_seqlens_q=max_seqlens_q,
|
|
1360
|
+
max_seqlens_k=max_seqlens_k,
|
|
1361
|
+
causal=causal,
|
|
1362
|
+
bias=bias,
|
|
1363
|
+
output_dtype=q.dtype,
|
|
1364
|
+
cu_seqlens_q=cu_seqlens_q,
|
|
1365
|
+
cu_seqlens_k=cu_seqlens_k,
|
|
1366
|
+
q_descale=q_descale,
|
|
1367
|
+
k_descale=k_descale,
|
|
1368
|
+
v_descale=v_descale,
|
|
1369
|
+
p_scale=p_scale,
|
|
1370
|
+
o_scale=input_scale)
|
|
1371
|
+
|
|
1372
|
+
if fp8_scales is not None:
|
|
1373
|
+
q, k, v = check_and_maybe_quantize_qkv(q, k, v, fp8_scales)
|
|
1374
|
+
|
|
1375
|
+
return triton_attention_rocm(q, k, v, o, attn_metadata)
|