vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1536 -0
- vllm/_ipex_ops.py +241 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +38 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +31 -0
- vllm/assets/video.py +103 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +303 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1092 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +301 -0
- vllm/attention/backends/ipex_attn.py +396 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1444 -0
- vllm/attention/backends/pallas.py +346 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +412 -0
- vllm/attention/backends/rocm_flash_attn.py +969 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +443 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +244 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +105 -0
- vllm/attention/ops/ipex_attn.py +193 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +42 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +675 -0
- vllm/attention/ops/triton_flash_attention.py +1375 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +831 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +181 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +608 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +795 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/backends.py +715 -0
- vllm/compilation/compiler_interface.py +437 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +182 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +60 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +135 -0
- vllm/compilation/pass_manager.py +74 -0
- vllm/compilation/sequence_parallelism.py +266 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +68 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4179 -0
- vllm/connections.py +170 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2060 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/base_device_communicator.py +151 -0
- vllm/distributed/device_communicators/cpu_communicator.py +139 -0
- vllm/distributed/device_communicators/cuda_communicator.py +131 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +557 -0
- vllm/distributed/device_communicators/tpu_communicator.py +93 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1209 -0
- vllm/distributed/utils.py +366 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1724 -0
- vllm/engine/async_llm_engine.py +1261 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2150 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +183 -0
- vllm/engine/multiprocessing/client.py +745 -0
- vllm/engine/multiprocessing/engine.py +450 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +210 -0
- vllm/engine/output_processor/single_step.py +136 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +302 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1259 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +59 -0
- vllm/entrypoints/cli/openai.py +175 -0
- vllm/entrypoints/cli/serve.py +59 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1450 -0
- vllm/entrypoints/logger.py +44 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1130 -0
- vllm/entrypoints/openai/cli_args.py +296 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1806 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1210 -0
- vllm/entrypoints/openai/serving_completion.py +557 -0
- vllm/entrypoints/openai/serving_embedding.py +245 -0
- vllm/entrypoints/openai/serving_engine.py +569 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +237 -0
- vllm/entrypoints/openai/serving_score.py +439 -0
- vllm/entrypoints/openai/serving_tokenization.py +147 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +136 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +800 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +400 -0
- vllm/executor/uniproc_executor.py +141 -0
- vllm/forward_context.py +159 -0
- vllm/inputs/__init__.py +37 -0
- vllm/inputs/data.py +248 -0
- vllm/inputs/parse.py +121 -0
- vllm/inputs/preprocess.py +745 -0
- vllm/inputs/registry.py +212 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +210 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +121 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +335 -0
- vllm/lora/layers.py +1263 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +802 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand.py +293 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
- vllm/lora/ops/triton_ops/utils.py +121 -0
- vllm/lora/peft_helper.py +115 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +483 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/utils.py +161 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +83 -0
- vllm/lora/utils.py +237 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +153 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
- vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +51 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
- vllm/model_executor/layers/fused_moe/layer.py +949 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
- vllm/model_executor/layers/fused_moe/utils.py +48 -0
- vllm/model_executor/layers/layernorm.py +277 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1518 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +336 -0
- vllm/model_executor/layers/quantization/__init__.py +153 -0
- vllm/model_executor/layers/quantization/aqlm.py +374 -0
- vllm/model_executor/layers/quantization/awq.py +184 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +145 -0
- vllm/model_executor/layers/quantization/bitblas.py +459 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
- vllm/model_executor/layers/quantization/experts_int8.py +194 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
- vllm/model_executor/layers/quantization/fp8.py +832 -0
- vllm/model_executor/layers/quantization/gguf.py +408 -0
- vllm/model_executor/layers/quantization/gptq.py +276 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +137 -0
- vllm/model_executor/layers/quantization/marlin.py +259 -0
- vllm/model_executor/layers/quantization/modelopt.py +410 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
- vllm/model_executor/layers/quantization/qqq.py +273 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +385 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +102 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +127 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +400 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1598 -0
- vllm/model_executor/layers/sampler.py +1221 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
- vllm/model_executor/model_loader/__init__.py +20 -0
- vllm/model_executor/model_loader/loader.py +1542 -0
- vllm/model_executor/model_loader/neuron.py +243 -0
- vllm/model_executor/model_loader/tensorizer.py +468 -0
- vllm/model_executor/model_loader/utils.py +171 -0
- vllm/model_executor/model_loader/weight_utils.py +749 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +469 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +936 -0
- vllm/model_executor/models/bert.py +725 -0
- vllm/model_executor/models/blip.py +337 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +358 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +410 -0
- vllm/model_executor/models/commandr.py +466 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +469 -0
- vllm/model_executor/models/deepseek.py +484 -0
- vllm/model_executor/models/deepseek_mtp.py +266 -0
- vllm/model_executor/models/deepseek_v2.py +830 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +247 -0
- vllm/model_executor/models/exaone.py +548 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +508 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +423 -0
- vllm/model_executor/models/gemma2.py +423 -0
- vllm/model_executor/models/gemma3.py +531 -0
- vllm/model_executor/models/gemma3_mm.py +716 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +303 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +313 -0
- vllm/model_executor/models/gpt_bigcode.py +336 -0
- vllm/model_executor/models/gpt_j.py +337 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/granite.py +494 -0
- vllm/model_executor/models/granite_speech.py +777 -0
- vllm/model_executor/models/granitemoe.py +435 -0
- vllm/model_executor/models/granitemoeshared.py +339 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +560 -0
- vllm/model_executor/models/h2ovl.py +542 -0
- vllm/model_executor/models/idefics2_vision_model.py +387 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +569 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +476 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +945 -0
- vllm/model_executor/models/jais.py +371 -0
- vllm/model_executor/models/jamba.py +590 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +619 -0
- vllm/model_executor/models/llama4.py +530 -0
- vllm/model_executor/models/llama_eagle.py +152 -0
- vllm/model_executor/models/llama_eagle3.py +232 -0
- vllm/model_executor/models/llava.py +869 -0
- vllm/model_executor/models/llava_next.py +582 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +954 -0
- vllm/model_executor/models/mamba.py +271 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +210 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +725 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1261 -0
- vllm/model_executor/models/mistral3.py +598 -0
- vllm/model_executor/models/mixtral.py +485 -0
- vllm/model_executor/models/mixtral_quant.py +447 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +325 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +628 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nemotron.py +506 -0
- vllm/model_executor/models/nemotron_nas.py +446 -0
- vllm/model_executor/models/nvlm_d.py +212 -0
- vllm/model_executor/models/olmo.py +390 -0
- vllm/model_executor/models/olmo2.py +412 -0
- vllm/model_executor/models/olmoe.py +449 -0
- vllm/model_executor/models/opt.py +410 -0
- vllm/model_executor/models/orion.py +356 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +342 -0
- vllm/model_executor/models/phi.py +354 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +463 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1263 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +666 -0
- vllm/model_executor/models/pixtral.py +1281 -0
- vllm/model_executor/models/plamo2.py +736 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +360 -0
- vllm/model_executor/models/qwen2.py +552 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
- vllm/model_executor/models/qwen2_5_vl.py +1136 -0
- vllm/model_executor/models/qwen2_audio.py +402 -0
- vllm/model_executor/models/qwen2_moe.py +531 -0
- vllm/model_executor/models/qwen2_rm.py +130 -0
- vllm/model_executor/models/qwen2_vl.py +1409 -0
- vllm/model_executor/models/qwen3.py +319 -0
- vllm/model_executor/models/qwen3_moe.py +528 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +611 -0
- vllm/model_executor/models/roberta.py +332 -0
- vllm/model_executor/models/siglip.py +522 -0
- vllm/model_executor/models/skyworkr1v.py +949 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +349 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +442 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +714 -0
- vllm/model_executor/models/vision.py +149 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +31 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +103 -0
- vllm/multimodal/image.py +77 -0
- vllm/multimodal/inputs.py +843 -0
- vllm/multimodal/parse.py +454 -0
- vllm/multimodal/processing.py +1760 -0
- vllm/multimodal/profiling.py +274 -0
- vllm/multimodal/registry.py +321 -0
- vllm/multimodal/utils.py +386 -0
- vllm/multimodal/video.py +166 -0
- vllm/outputs.py +521 -0
- vllm/platforms/__init__.py +286 -0
- vllm/platforms/cpu.py +182 -0
- vllm/platforms/cuda.py +463 -0
- vllm/platforms/hpu.py +94 -0
- vllm/platforms/interface.py +427 -0
- vllm/platforms/neuron.py +69 -0
- vllm/platforms/rocm.py +346 -0
- vllm/platforms/tpu.py +174 -0
- vllm/platforms/xpu.py +142 -0
- vllm/plugins/__init__.py +82 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +7 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +12 -0
- vllm/reasoning/abs_reasoning_parsers.py +189 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/sampling_params.py +598 -0
- vllm/scalar_type.py +335 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1486 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +335 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +416 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
- vllm/spec_decode/spec_decode_worker.py +1324 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +19 -0
- vllm/transformers_utils/config.py +813 -0
- vllm/transformers_utils/configs/__init__.py +52 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +65 -0
- vllm/transformers_utils/configs/exaone.py +191 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +210 -0
- vllm/transformers_utils/processors/__init__.py +6 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +291 -0
- vllm/transformers_utils/tokenizer_base.py +146 -0
- vllm/transformers_utils/tokenizer_group.py +110 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +483 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +5 -0
- vllm/triton_utils/importing.py +53 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2692 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +783 -0
- vllm/v1/attention/backends/flashinfer.py +638 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +974 -0
- vllm/v1/attention/backends/mla/flashmla.py +149 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +221 -0
- vllm/v1/attention/backends/triton_attn.py +198 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +281 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +385 -0
- vllm/v1/core/kv_cache_utils.py +744 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +134 -0
- vllm/v1/core/sched/output.py +126 -0
- vllm/v1/core/sched/scheduler.py +838 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/specialized_manager.py +161 -0
- vllm/v1/engine/__init__.py +166 -0
- vllm/v1/engine/async_llm.py +532 -0
- vllm/v1/engine/core.py +701 -0
- vllm/v1/engine/core_client.py +942 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +285 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +82 -0
- vllm/v1/engine/output_processor.py +420 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +387 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +480 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +166 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +498 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +111 -0
- vllm/v1/request.py +178 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +118 -0
- vllm/v1/sample/tpu/sampler.py +154 -0
- vllm/v1/serial_utils.py +274 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +318 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +164 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +18 -0
- vllm/v1/stats/__init__.py +0 -0
- vllm/v1/stats/common.py +453 -0
- vllm/v1/structured_output/__init__.py +113 -0
- vllm/v1/structured_output/backend_guidance.py +215 -0
- vllm/v1/structured_output/backend_types.py +96 -0
- vllm/v1/structured_output/backend_xgrammar.py +299 -0
- vllm/v1/structured_output/request.py +84 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +249 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +677 -0
- vllm/v1/worker/gpu_model_runner.py +1776 -0
- vllm/v1/worker/gpu_worker.py +349 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1419 -0
- vllm/v1/worker/tpu_worker.py +260 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +323 -0
- vllm/worker/cpu_model_runner.py +668 -0
- vllm/worker/cpu_pooling_model_runner.py +122 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +542 -0
- vllm/worker/hpu_model_runner.py +2221 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2056 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +908 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +336 -0
- vllm/worker/neuron_worker.py +138 -0
- vllm/worker/pooling_model_runner.py +200 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +332 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +570 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +603 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
- vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
- vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
- vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py
ADDED
|
@@ -0,0 +1,1536 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
import contextlib
|
|
4
|
+
import importlib
|
|
5
|
+
from typing import TYPE_CHECKING, Optional, Union
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
import torch.library
|
|
9
|
+
|
|
10
|
+
import vllm.envs as envs
|
|
11
|
+
from vllm.logger import init_logger
|
|
12
|
+
from vllm.platforms import current_platform
|
|
13
|
+
from vllm.scalar_type import ScalarType
|
|
14
|
+
|
|
15
|
+
logger = init_logger(__name__)
|
|
16
|
+
|
|
17
|
+
if not current_platform.is_tpu() and not current_platform.is_hpu():
|
|
18
|
+
try:
|
|
19
|
+
import vllm._C
|
|
20
|
+
except ImportError as e:
|
|
21
|
+
logger.warning("Failed to import from vllm._C with %r", e)
|
|
22
|
+
|
|
23
|
+
supports_moe_ops = False
|
|
24
|
+
with contextlib.suppress(ImportError):
|
|
25
|
+
import vllm._moe_C # noqa: F401
|
|
26
|
+
supports_moe_ops = True
|
|
27
|
+
|
|
28
|
+
if TYPE_CHECKING:
|
|
29
|
+
|
|
30
|
+
def register_fake(fn):
|
|
31
|
+
return lambda name: fn
|
|
32
|
+
else:
|
|
33
|
+
try:
|
|
34
|
+
from torch.library import register_fake
|
|
35
|
+
except ImportError:
|
|
36
|
+
from torch.library import impl_abstract as register_fake
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
# page attention ops
|
|
40
|
+
def paged_attention_v1(
|
|
41
|
+
out: torch.Tensor,
|
|
42
|
+
query: torch.Tensor,
|
|
43
|
+
key_cache: torch.Tensor,
|
|
44
|
+
value_cache: torch.Tensor,
|
|
45
|
+
num_kv_heads: int,
|
|
46
|
+
scale: float,
|
|
47
|
+
block_tables: torch.Tensor,
|
|
48
|
+
seq_lens: torch.Tensor,
|
|
49
|
+
block_size: int,
|
|
50
|
+
max_seq_len: int,
|
|
51
|
+
alibi_slopes: Optional[torch.Tensor],
|
|
52
|
+
kv_cache_dtype: str,
|
|
53
|
+
k_scale: torch.Tensor,
|
|
54
|
+
v_scale: torch.Tensor,
|
|
55
|
+
tp_rank: int = 0,
|
|
56
|
+
blocksparse_local_blocks: int = 0,
|
|
57
|
+
blocksparse_vert_stride: int = 0,
|
|
58
|
+
blocksparse_block_size: int = 64,
|
|
59
|
+
blocksparse_head_sliding_step: int = 0,
|
|
60
|
+
) -> None:
|
|
61
|
+
torch.ops._C.paged_attention_v1(
|
|
62
|
+
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
|
|
63
|
+
seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
|
|
64
|
+
k_scale, v_scale, tp_rank, blocksparse_local_blocks,
|
|
65
|
+
blocksparse_vert_stride, blocksparse_block_size,
|
|
66
|
+
blocksparse_head_sliding_step)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def paged_attention_v2(
|
|
70
|
+
out: torch.Tensor,
|
|
71
|
+
exp_sum: torch.Tensor,
|
|
72
|
+
max_logits: torch.Tensor,
|
|
73
|
+
tmp_out: torch.Tensor,
|
|
74
|
+
query: torch.Tensor,
|
|
75
|
+
key_cache: torch.Tensor,
|
|
76
|
+
value_cache: torch.Tensor,
|
|
77
|
+
num_kv_heads: int,
|
|
78
|
+
scale: float,
|
|
79
|
+
block_tables: torch.Tensor,
|
|
80
|
+
seq_lens: torch.Tensor,
|
|
81
|
+
block_size: int,
|
|
82
|
+
max_seq_len: int,
|
|
83
|
+
alibi_slopes: Optional[torch.Tensor],
|
|
84
|
+
kv_cache_dtype: str,
|
|
85
|
+
k_scale: torch.Tensor,
|
|
86
|
+
v_scale: torch.Tensor,
|
|
87
|
+
tp_rank: int = 0,
|
|
88
|
+
blocksparse_local_blocks: int = 0,
|
|
89
|
+
blocksparse_vert_stride: int = 0,
|
|
90
|
+
blocksparse_block_size: int = 64,
|
|
91
|
+
blocksparse_head_sliding_step: int = 0,
|
|
92
|
+
) -> None:
|
|
93
|
+
torch.ops._C.paged_attention_v2(
|
|
94
|
+
out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
|
|
95
|
+
num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
|
|
96
|
+
alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
|
|
97
|
+
blocksparse_local_blocks, blocksparse_vert_stride,
|
|
98
|
+
blocksparse_block_size, blocksparse_head_sliding_step)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def paged_attention_rocm(
|
|
102
|
+
out: torch.Tensor,
|
|
103
|
+
exp_sum: torch.Tensor,
|
|
104
|
+
max_logits: torch.Tensor,
|
|
105
|
+
tmp_out: torch.Tensor,
|
|
106
|
+
query: torch.Tensor,
|
|
107
|
+
key_cache: torch.Tensor,
|
|
108
|
+
value_cache: torch.Tensor,
|
|
109
|
+
num_kv_heads: int,
|
|
110
|
+
scale: float,
|
|
111
|
+
block_tables: torch.Tensor,
|
|
112
|
+
seq_lens: torch.Tensor,
|
|
113
|
+
query_start_loc: Optional[torch.Tensor],
|
|
114
|
+
block_size: int,
|
|
115
|
+
max_seq_len: int,
|
|
116
|
+
alibi_slopes: Optional[torch.Tensor],
|
|
117
|
+
kv_cache_dtype: str,
|
|
118
|
+
k_scale: torch.Tensor,
|
|
119
|
+
v_scale: torch.Tensor,
|
|
120
|
+
) -> None:
|
|
121
|
+
torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
|
|
122
|
+
key_cache, value_cache, num_kv_heads,
|
|
123
|
+
scale, block_tables, seq_lens,
|
|
124
|
+
query_start_loc, block_size, max_seq_len,
|
|
125
|
+
alibi_slopes, kv_cache_dtype, k_scale,
|
|
126
|
+
v_scale)
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
def mla_decode_kvcache_cpu(
|
|
130
|
+
out: torch.Tensor,
|
|
131
|
+
query: torch.Tensor,
|
|
132
|
+
kv_cache: torch.Tensor,
|
|
133
|
+
scale: float,
|
|
134
|
+
block_tables: torch.Tensor,
|
|
135
|
+
seq_lens: torch.Tensor,
|
|
136
|
+
) -> None:
|
|
137
|
+
torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
|
|
138
|
+
block_tables, seq_lens)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
# merge attn states ops
|
|
142
|
+
def merge_attn_states(output: torch.Tensor,
|
|
143
|
+
prefix_output: torch.Tensor,
|
|
144
|
+
prefix_lse: torch.Tensor,
|
|
145
|
+
suffix_output: torch.Tensor,
|
|
146
|
+
suffix_lse: torch.Tensor,
|
|
147
|
+
output_lse: Optional[torch.Tensor] = None) -> None:
|
|
148
|
+
torch.ops._C.merge_attn_states(output, output_lse, prefix_output,
|
|
149
|
+
prefix_lse, suffix_output, suffix_lse)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
# pos encoding ops
|
|
153
|
+
def rotary_embedding(
|
|
154
|
+
positions: torch.Tensor,
|
|
155
|
+
query: torch.Tensor,
|
|
156
|
+
key: torch.Tensor,
|
|
157
|
+
head_size: int,
|
|
158
|
+
cos_sin_cache: torch.Tensor,
|
|
159
|
+
is_neox: bool,
|
|
160
|
+
) -> None:
|
|
161
|
+
torch.ops._C.rotary_embedding(positions, query, key, head_size,
|
|
162
|
+
cos_sin_cache, is_neox)
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
|
|
166
|
+
key: torch.Tensor, head_size: int,
|
|
167
|
+
cos_sin_cache: torch.Tensor, is_neox: bool,
|
|
168
|
+
rot_dim: int,
|
|
169
|
+
cos_sin_cache_offsets: torch.Tensor) -> None:
|
|
170
|
+
torch.ops._C.batched_rotary_embedding(positions, query, key, head_size,
|
|
171
|
+
cos_sin_cache, is_neox, rot_dim,
|
|
172
|
+
cos_sin_cache_offsets)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
# layer norm ops
|
|
176
|
+
def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
|
|
177
|
+
epsilon: float) -> None:
|
|
178
|
+
torch.ops._C.rms_norm(out, input, weight, epsilon)
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
|
|
182
|
+
weight: torch.Tensor, epsilon: float) -> None:
|
|
183
|
+
torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
def advance_step_flashattn(num_seqs: int, num_queries: int, block_size: int,
|
|
187
|
+
input_tokens: torch.Tensor,
|
|
188
|
+
sampled_token_ids: torch.Tensor,
|
|
189
|
+
input_positions: torch.Tensor,
|
|
190
|
+
seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
|
|
191
|
+
block_tables: torch.Tensor) -> None:
|
|
192
|
+
"""Advance a step on GPU for existing inputs for a multi-step runner"""
|
|
193
|
+
return torch.ops._C.advance_step_flashattn(num_seqs, num_queries,
|
|
194
|
+
block_size, input_tokens,
|
|
195
|
+
sampled_token_ids,
|
|
196
|
+
input_positions, seq_lens,
|
|
197
|
+
slot_mapping, block_tables)
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
def advance_step_flashinfer(num_seqs: int, num_queries: int, block_size: int,
|
|
201
|
+
input_tokens: torch.Tensor,
|
|
202
|
+
sampled_token_ids: torch.Tensor,
|
|
203
|
+
input_positions: torch.Tensor,
|
|
204
|
+
seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
|
|
205
|
+
block_tables: torch.Tensor,
|
|
206
|
+
paged_kv_indices: torch.Tensor,
|
|
207
|
+
paged_kv_indptr: torch.Tensor,
|
|
208
|
+
paged_kv_last_page_len: torch.Tensor,
|
|
209
|
+
block_table_bound: torch.Tensor) -> None:
|
|
210
|
+
|
|
211
|
+
return torch.ops._C.advance_step_flashinfer(
|
|
212
|
+
num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
|
|
213
|
+
input_positions, seq_lens, slot_mapping, block_tables,
|
|
214
|
+
paged_kv_indices, paged_kv_indptr, paged_kv_last_page_len,
|
|
215
|
+
block_table_bound)
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
# fused quant layer norm ops
|
|
219
|
+
def rms_norm_dynamic_per_token_quant(
|
|
220
|
+
input: torch.Tensor,
|
|
221
|
+
weight: torch.Tensor,
|
|
222
|
+
epsilon: float,
|
|
223
|
+
quant_dtype: torch.dtype,
|
|
224
|
+
scale_ub: Optional[torch.Tensor] = None,
|
|
225
|
+
residual: Optional[torch.Tensor] = None
|
|
226
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
227
|
+
output = torch.empty_like(input, dtype=quant_dtype)
|
|
228
|
+
scales = torch.empty((input.numel() // input.shape[-1], 1),
|
|
229
|
+
device=input.device,
|
|
230
|
+
dtype=torch.float32)
|
|
231
|
+
|
|
232
|
+
torch.ops._C.rms_norm_dynamic_per_token_quant(output, input, weight,
|
|
233
|
+
scales, epsilon, scale_ub,
|
|
234
|
+
residual)
|
|
235
|
+
return output, scales
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
# quantization ops
|
|
239
|
+
# awq
|
|
240
|
+
def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
|
|
241
|
+
zeros: torch.Tensor, split_k_iters: int, thx: int,
|
|
242
|
+
thy: int) -> torch.Tensor:
|
|
243
|
+
if envs.VLLM_USE_TRITON_AWQ:
|
|
244
|
+
from vllm.model_executor.layers.quantization.awq_triton import (
|
|
245
|
+
awq_dequantize_triton)
|
|
246
|
+
return awq_dequantize_triton(qweight, scales, zeros)
|
|
247
|
+
return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
|
|
248
|
+
thx, thy)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
|
|
252
|
+
scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
|
|
253
|
+
if envs.VLLM_USE_TRITON_AWQ:
|
|
254
|
+
from vllm.model_executor.layers.quantization.awq_triton import (
|
|
255
|
+
awq_gemm_triton)
|
|
256
|
+
return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
|
|
257
|
+
return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
# gptq
|
|
261
|
+
def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
262
|
+
b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
|
|
263
|
+
b_g_idx: torch.Tensor, use_exllama: bool,
|
|
264
|
+
bit: int) -> torch.Tensor:
|
|
265
|
+
return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
|
|
266
|
+
b_g_idx, use_exllama, bit)
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
if hasattr(torch.ops._C, "gptq_gemm"):
|
|
270
|
+
|
|
271
|
+
@register_fake("_C::gptq_gemm")
|
|
272
|
+
def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
273
|
+
b_gptq_qzeros: torch.Tensor,
|
|
274
|
+
b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor,
|
|
275
|
+
use_exllama: bool, bit: int) -> torch.Tensor:
|
|
276
|
+
return torch.empty((a.size(0), b_q_weight.size(1)),
|
|
277
|
+
dtype=a.dtype,
|
|
278
|
+
device=a.device)
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
|
|
282
|
+
bit: int) -> None:
|
|
283
|
+
torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
|
|
284
|
+
|
|
285
|
+
|
|
286
|
+
# marlin
|
|
287
|
+
def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
288
|
+
b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int,
|
|
289
|
+
size_n: int, size_k: int) -> torch.Tensor:
|
|
290
|
+
return torch.ops._C.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m,
|
|
291
|
+
size_n, size_k)
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
# marlin_24
|
|
295
|
+
def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
296
|
+
b_meta: torch.Tensor, b_scales: torch.Tensor,
|
|
297
|
+
workspace: torch.Tensor, b_q_type: ScalarType,
|
|
298
|
+
size_m: int, size_n: int, size_k: int) -> torch.Tensor:
|
|
299
|
+
return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
|
|
300
|
+
workspace, b_q_type.id, size_m,
|
|
301
|
+
size_n, size_k)
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
|
|
305
|
+
|
|
306
|
+
@register_fake("_C::gptq_marlin_24_gemm")
|
|
307
|
+
def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
308
|
+
b_meta: torch.Tensor, b_scales: torch.Tensor,
|
|
309
|
+
workspace: torch.Tensor,
|
|
310
|
+
b_q_type: ScalarType, size_m: torch.SymInt,
|
|
311
|
+
size_n: torch.SymInt,
|
|
312
|
+
size_k: torch.SymInt) -> torch.Tensor:
|
|
313
|
+
return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
|
|
314
|
+
|
|
315
|
+
@register_fake("_C::gptq_marlin_gemm")
|
|
316
|
+
def _gptq_marlin_gemm_fake(a: torch.Tensor,
|
|
317
|
+
b_q_weight: torch.Tensor,
|
|
318
|
+
b_scales: torch.Tensor,
|
|
319
|
+
b_zeros: torch.Tensor,
|
|
320
|
+
g_idx: torch.Tensor,
|
|
321
|
+
perm: torch.Tensor,
|
|
322
|
+
workspace: torch.Tensor,
|
|
323
|
+
b_q_type: ScalarType,
|
|
324
|
+
size_m: torch.SymInt,
|
|
325
|
+
size_n: torch.SymInt,
|
|
326
|
+
size_k: torch.SymInt,
|
|
327
|
+
is_k_full: bool,
|
|
328
|
+
has_zp: bool = False,
|
|
329
|
+
use_atomic_add: bool = False,
|
|
330
|
+
use_fp32_reduce: bool = False,
|
|
331
|
+
is_zp_float: bool = False) -> torch.Tensor:
|
|
332
|
+
return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
|
|
333
|
+
|
|
334
|
+
@register_fake("_C::marlin_qqq_gemm")
|
|
335
|
+
def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
336
|
+
s_tok: torch.Tensor, s_ch: torch.Tensor,
|
|
337
|
+
s_group: torch.Tensor, workspace: torch.Tensor,
|
|
338
|
+
size_m: torch.SymInt, size_n: torch.SymInt,
|
|
339
|
+
size_k: torch.SymInt) -> torch.Tensor:
|
|
340
|
+
return torch.empty((size_m, size_n),
|
|
341
|
+
dtype=torch.float16,
|
|
342
|
+
device=a.device)
|
|
343
|
+
|
|
344
|
+
@register_fake("_C::marlin_gemm")
|
|
345
|
+
def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
346
|
+
b_scales: torch.Tensor, workspace: torch.Tensor,
|
|
347
|
+
size_m: torch.SymInt, size_n: torch.SymInt,
|
|
348
|
+
size_k: torch.SymInt) -> torch.Tensor:
|
|
349
|
+
return torch.empty((size_m, size_n),
|
|
350
|
+
dtype=torch.float16,
|
|
351
|
+
device=a.device)
|
|
352
|
+
|
|
353
|
+
@register_fake("_C::awq_dequantize")
|
|
354
|
+
def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor,
|
|
355
|
+
zeros: torch.Tensor, split_k_iters: torch.SymInt,
|
|
356
|
+
thx: int, thy: int) -> torch.Tensor:
|
|
357
|
+
in_c = qweight.size(0)
|
|
358
|
+
qout_c = qweight.size(1)
|
|
359
|
+
out_c = qout_c * 8
|
|
360
|
+
return torch.empty((in_c, out_c),
|
|
361
|
+
dtype=scales.dtype,
|
|
362
|
+
device=scales.device)
|
|
363
|
+
|
|
364
|
+
@register_fake("_C::awq_gemm")
|
|
365
|
+
def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor,
|
|
366
|
+
qzeros: torch.Tensor, scales: torch.Tensor,
|
|
367
|
+
split_k_iters: torch.SymInt) -> torch.Tensor:
|
|
368
|
+
num_in_feats = input.size(0)
|
|
369
|
+
return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8),
|
|
370
|
+
dtype=input.dtype,
|
|
371
|
+
device=input.device).sum(0)
|
|
372
|
+
|
|
373
|
+
@register_fake("_C::aqlm_gemm")
|
|
374
|
+
def _aqlm_gemm_fake(input: torch.Tensor, codes: torch.Tensor,
|
|
375
|
+
codebooks: torch.Tensor, scales: torch.Tensor,
|
|
376
|
+
codebook_partition_sizes: list[int],
|
|
377
|
+
bias: Optional[torch.Tensor]) -> torch.Tensor:
|
|
378
|
+
out_features = codes.size(0) * codebooks.size(2)
|
|
379
|
+
flat_input = input.reshape((-1, input.size(-1)))
|
|
380
|
+
flat_output = torch.empty((flat_input.size(0), out_features),
|
|
381
|
+
dtype=input.dtype,
|
|
382
|
+
device=input.device)
|
|
383
|
+
|
|
384
|
+
output_sizes = list(input.shape)
|
|
385
|
+
output_sizes.pop()
|
|
386
|
+
output_sizes.append(-1)
|
|
387
|
+
return flat_output.reshape(tuple(output_sizes))
|
|
388
|
+
|
|
389
|
+
@register_fake("_C::aqlm_dequant")
|
|
390
|
+
def _aqlm_dequant_fake(
|
|
391
|
+
codes: torch.Tensor, codebooks: torch.Tensor,
|
|
392
|
+
codebook_partition_sizes: list[int]) -> torch.Tensor:
|
|
393
|
+
in_features = codes.size(1) * 8
|
|
394
|
+
out_features = codes.size(0)
|
|
395
|
+
return torch.empty((out_features, in_features),
|
|
396
|
+
dtype=codebooks.dtype,
|
|
397
|
+
device=codebooks.device)
|
|
398
|
+
|
|
399
|
+
@register_fake("_C::fp8_marlin_gemm")
|
|
400
|
+
def _fp8_marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
401
|
+
b_scales: torch.Tensor, workspace: torch.Tensor,
|
|
402
|
+
num_bits: int, size_m: torch.SymInt,
|
|
403
|
+
size_n: torch.SymInt,
|
|
404
|
+
size_k: torch.SymInt) -> torch.Tensor:
|
|
405
|
+
return torch.empty((size_m, size_n), dtype=a.dtype, device=a.device)
|
|
406
|
+
|
|
407
|
+
@register_fake("_C::machete_mm")
|
|
408
|
+
def machete_mm_fake(
|
|
409
|
+
a: torch.Tensor,
|
|
410
|
+
# b_q Should be the tensor returned by machete_prepack_B
|
|
411
|
+
b_q: torch.Tensor,
|
|
412
|
+
b_type: ScalarType,
|
|
413
|
+
out_type: Optional[torch.dtype] = None,
|
|
414
|
+
b_group_scales: Optional[torch.Tensor] = None,
|
|
415
|
+
b_group_zeros: Optional[torch.Tensor] = None,
|
|
416
|
+
b_group_size: Optional[int] = None,
|
|
417
|
+
b_channel_scales: Optional[torch.Tensor] = None,
|
|
418
|
+
a_token_scales: Optional[torch.Tensor] = None,
|
|
419
|
+
schedule: Optional[str] = None,
|
|
420
|
+
) -> torch.Tensor:
|
|
421
|
+
m = a.size(0)
|
|
422
|
+
n = b_q.size(1)
|
|
423
|
+
return torch.empty((m, n), device=a.device, dtype=a.dtype)
|
|
424
|
+
|
|
425
|
+
@register_fake("_C::machete_prepack_B")
|
|
426
|
+
def machete_prepack_B_fake(
|
|
427
|
+
b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
|
|
428
|
+
group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
|
|
429
|
+
return torch.empty_like(b_q_weight,
|
|
430
|
+
memory_format=torch.contiguous_format)
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
|
|
434
|
+
|
|
435
|
+
@register_fake("_C::allspark_w8a16_gemm")
|
|
436
|
+
def _allspark_w8a16_gemm_fake(a: torch.Tensor, b_qweight: torch.Tensor,
|
|
437
|
+
b_scales: torch.Tensor,
|
|
438
|
+
b_qzeros: Optional[torch.Tensor],
|
|
439
|
+
n: torch.SymInt, group_size: torch.SymInt,
|
|
440
|
+
sm_count: torch.SymInt,
|
|
441
|
+
sm_version: torch.SymInt,
|
|
442
|
+
CUBLAS_M_THRESHOLD: torch.SymInt,
|
|
443
|
+
has_zp: bool,
|
|
444
|
+
n32k16_reorder: bool) -> torch.Tensor:
|
|
445
|
+
m = a.size(0)
|
|
446
|
+
return torch.empty((m, n), device=a.device, dtype=a.dtype)
|
|
447
|
+
|
|
448
|
+
|
|
449
|
+
if hasattr(torch.ops._C, "ggml_dequantize"):
|
|
450
|
+
|
|
451
|
+
@register_fake("_C::ggml_dequantize")
|
|
452
|
+
def _ggml_dequantize_fake(
|
|
453
|
+
W: torch.Tensor,
|
|
454
|
+
quant_type: int,
|
|
455
|
+
m: torch.SymInt,
|
|
456
|
+
n: torch.SymInt,
|
|
457
|
+
dtype: Optional[torch.dtype] = None) -> torch.Tensor:
|
|
458
|
+
return torch.empty((m, n), dtype=torch.float16, device=W.device)
|
|
459
|
+
|
|
460
|
+
@register_fake("_C::ggml_mul_mat_vec_a8")
|
|
461
|
+
def _ggml_mul_mat_vec_a8_fake(
|
|
462
|
+
W: torch.Tensor,
|
|
463
|
+
X: torch.Tensor,
|
|
464
|
+
quant_type: int,
|
|
465
|
+
row: torch.SymInt,
|
|
466
|
+
) -> torch.Tensor:
|
|
467
|
+
return torch.empty((1, row), dtype=X.dtype, device=W.device)
|
|
468
|
+
|
|
469
|
+
@register_fake("_C::ggml_mul_mat_a8")
|
|
470
|
+
def _ggml_mul_mat_a8_fake(
|
|
471
|
+
W: torch.Tensor,
|
|
472
|
+
X: torch.Tensor,
|
|
473
|
+
quant_type: int,
|
|
474
|
+
row: torch.SymInt,
|
|
475
|
+
) -> torch.Tensor:
|
|
476
|
+
batch = X.size(0)
|
|
477
|
+
return torch.empty((batch, row), dtype=X.dtype, device=W.device)
|
|
478
|
+
|
|
479
|
+
@register_fake("_C::ggml_moe_a8")
|
|
480
|
+
def _ggml_moe_a8_fake(
|
|
481
|
+
X: torch.Tensor,
|
|
482
|
+
W: torch.Tensor,
|
|
483
|
+
sorted_token_ids: torch.Tensor,
|
|
484
|
+
expert_ids: torch.Tensor,
|
|
485
|
+
num_tokens_post_padded: torch.Tensor,
|
|
486
|
+
quant_type: int,
|
|
487
|
+
row: torch.SymInt,
|
|
488
|
+
top_k: torch.SymInt,
|
|
489
|
+
tokens: torch.SymInt,
|
|
490
|
+
) -> torch.Tensor:
|
|
491
|
+
tokens = X.size(0)
|
|
492
|
+
return torch.empty((tokens * top_k, row),
|
|
493
|
+
dtype=torch.float16,
|
|
494
|
+
device=W.device)
|
|
495
|
+
|
|
496
|
+
|
|
497
|
+
# cutlass
|
|
498
|
+
def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
|
|
499
|
+
return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
|
|
500
|
+
|
|
501
|
+
|
|
502
|
+
def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
|
|
503
|
+
block_scale_a: torch.Tensor,
|
|
504
|
+
block_scale_b: torch.Tensor, alpha: torch.Tensor,
|
|
505
|
+
out_dtype: torch.dtype) -> torch.Tensor:
|
|
506
|
+
assert a.ndim == 2 and b.ndim == 2
|
|
507
|
+
m, n = a.shape[0], b.shape[0]
|
|
508
|
+
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
|
|
509
|
+
torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b,
|
|
510
|
+
alpha)
|
|
511
|
+
return out
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
|
|
515
|
+
return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
|
|
519
|
+
return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
|
|
520
|
+
cuda_device_capability)
|
|
521
|
+
|
|
522
|
+
|
|
523
|
+
def cutlass_scaled_mm(a: torch.Tensor,
|
|
524
|
+
b: torch.Tensor,
|
|
525
|
+
scale_a: torch.Tensor,
|
|
526
|
+
scale_b: torch.Tensor,
|
|
527
|
+
out_dtype: torch.dtype,
|
|
528
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
529
|
+
"""
|
|
530
|
+
`cutlass_scaled_mm` implements a fused version of
|
|
531
|
+
`output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
|
|
532
|
+
where scale_a * a and scale_b * b are implemented using numpy-style
|
|
533
|
+
broadcasting.
|
|
534
|
+
|
|
535
|
+
In order to support blockwise scaling like found in DeepSeek V3 we also
|
|
536
|
+
support extended "group" broadcast rules. We extend the numpy-style
|
|
537
|
+
broadcasting rules with the following rule:
|
|
538
|
+
"if the extent of a dimension in the source shape is between 1 and
|
|
539
|
+
corresponding extent in the target shape we repeat each element along
|
|
540
|
+
that dimension src_shape[dim] // target_shape[dim] times consecutively"
|
|
541
|
+
example if we have:
|
|
542
|
+
a = [[1, 2], and target_shape = (2, 4)
|
|
543
|
+
[3, 4]]
|
|
544
|
+
then we would expand a to:
|
|
545
|
+
a = [[1, 1, 2, 2],
|
|
546
|
+
[3, 3, 4, 4]]
|
|
547
|
+
currently we only support the case:
|
|
548
|
+
scale_a.shape * [1, 128] == a.shape
|
|
549
|
+
scale_b.shape * [128, 128] == b.shape
|
|
550
|
+
"""
|
|
551
|
+
assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
|
|
552
|
+
assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
|
|
553
|
+
assert bias is None or bias.shape[0] == b.shape[
|
|
554
|
+
1] and bias.dtype == out_dtype
|
|
555
|
+
|
|
556
|
+
m = a.shape[0]
|
|
557
|
+
n = b.shape[1]
|
|
558
|
+
|
|
559
|
+
if current_platform.is_rocm():
|
|
560
|
+
triton_scaled_mm_module = importlib.import_module(
|
|
561
|
+
"vllm.model_executor.layers.quantization.compressed_tensors."
|
|
562
|
+
"triton_scaled_mm")
|
|
563
|
+
triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm
|
|
564
|
+
return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
|
565
|
+
|
|
566
|
+
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
|
|
567
|
+
|
|
568
|
+
torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
|
|
569
|
+
|
|
570
|
+
return out
|
|
571
|
+
|
|
572
|
+
|
|
573
|
+
def cutlass_scaled_mm_azp(a: torch.Tensor,
|
|
574
|
+
b: torch.Tensor,
|
|
575
|
+
scale_a: torch.Tensor,
|
|
576
|
+
scale_b: torch.Tensor,
|
|
577
|
+
out_dtype: torch.dtype,
|
|
578
|
+
azp_adj: torch.Tensor,
|
|
579
|
+
azp: Optional[torch.Tensor] = None,
|
|
580
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
581
|
+
"""
|
|
582
|
+
:param azp_adj: In the per-tensor case, this should include the azp.
|
|
583
|
+
Always per-channel.
|
|
584
|
+
:param azp: Only set in the per-token case. Per-token if set.
|
|
585
|
+
"""
|
|
586
|
+
assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
|
|
587
|
+
assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
|
|
588
|
+
assert bias is None or bias.numel(
|
|
589
|
+
) == b.shape[1] and bias.dtype == out_dtype
|
|
590
|
+
assert azp is None or azp.numel() == a.shape[0]
|
|
591
|
+
|
|
592
|
+
m = a.shape[0]
|
|
593
|
+
n = b.shape[1]
|
|
594
|
+
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
|
|
595
|
+
|
|
596
|
+
torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
|
|
597
|
+
azp, bias)
|
|
598
|
+
return out
|
|
599
|
+
|
|
600
|
+
|
|
601
|
+
def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
|
|
602
|
+
return torch.ops._C.cutlass_sparse_scaled_mm_supported(
|
|
603
|
+
cuda_device_capability)
|
|
604
|
+
|
|
605
|
+
|
|
606
|
+
def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
|
|
607
|
+
return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
|
|
608
|
+
|
|
609
|
+
def cutlass_sparse_compress(a: torch.Tensor) \
|
|
610
|
+
-> tuple[torch.Tensor, torch.Tensor]:
|
|
611
|
+
"""
|
|
612
|
+
Compresses a sparse matrix for use with Cutlass sparse operations.
|
|
613
|
+
|
|
614
|
+
This function takes a dense tensor and compresses it into two components:
|
|
615
|
+
non-zero elements and metadata. The compressed representation is compatible
|
|
616
|
+
with Cutlass sparse kernels.
|
|
617
|
+
|
|
618
|
+
Args:
|
|
619
|
+
a (torch.Tensor):
|
|
620
|
+
The input tensor to be compressed. Must have one of the following data types:
|
|
621
|
+
- `torch.int8`
|
|
622
|
+
- `torch.float8_e4m3fn`
|
|
623
|
+
- `torch.bfloat16`
|
|
624
|
+
- `torch.float16`
|
|
625
|
+
|
|
626
|
+
Returns:
|
|
627
|
+
tuple[torch.Tensor, torch.Tensor]:
|
|
628
|
+
A tuple containing:
|
|
629
|
+
- `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
|
|
630
|
+
- `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
|
|
631
|
+
|
|
632
|
+
Raises:
|
|
633
|
+
ValueError: If the compression operation fails.
|
|
634
|
+
|
|
635
|
+
Notes:
|
|
636
|
+
- The `a_meta` tensor has a data type of `torch.uint8`.
|
|
637
|
+
- Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
|
|
638
|
+
- The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
|
|
639
|
+
- The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
|
|
640
|
+
"""
|
|
641
|
+
assert (a.dtype in [
|
|
642
|
+
torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16
|
|
643
|
+
])
|
|
644
|
+
assert (a.is_contiguous())
|
|
645
|
+
|
|
646
|
+
# a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
|
|
647
|
+
elemsPerMetaElem = 4
|
|
648
|
+
assert (a.shape[1] % (2 * elemsPerMetaElem) == 0)
|
|
649
|
+
|
|
650
|
+
return torch.ops._C.cutlass_sparse_compress(a)
|
|
651
|
+
|
|
652
|
+
|
|
653
|
+
def cutlass_scaled_sparse_mm(
|
|
654
|
+
a: torch.Tensor,
|
|
655
|
+
bt_nzs: torch.Tensor,
|
|
656
|
+
bt_meta: torch.Tensor,
|
|
657
|
+
scale_a: torch.Tensor,
|
|
658
|
+
scale_b: torch.Tensor,
|
|
659
|
+
out_dtype: torch.dtype,
|
|
660
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
661
|
+
"""
|
|
662
|
+
Performs a scaled sparse matrix multiplication using Cutlass.
|
|
663
|
+
|
|
664
|
+
Steps:
|
|
665
|
+
1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
|
|
666
|
+
`a = torch.randn((m, k), device='cuda')`.
|
|
667
|
+
|
|
668
|
+
2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
|
|
669
|
+
`b = torch.randn((k, n), device='cuda')`.
|
|
670
|
+
|
|
671
|
+
3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
|
|
672
|
+
`b = prune_to_2_4(b, dim=0)`.
|
|
673
|
+
|
|
674
|
+
4. Compress the transposed sparse matrix `b.t()`:
|
|
675
|
+
`bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
|
|
676
|
+
|
|
677
|
+
5. Perform sparse matrix multiplication using the compressed matrix,
|
|
678
|
+
applying scaling factors for `a` and `b`, and the output data type:
|
|
679
|
+
`out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
|
|
680
|
+
|
|
681
|
+
Returns:
|
|
682
|
+
- The result of the scaled sparse matrix multiplication.
|
|
683
|
+
"""
|
|
684
|
+
assert (bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0)
|
|
685
|
+
assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
|
|
686
|
+
assert bias is None or bias.shape[0] == bt_nzs.shape[0] \
|
|
687
|
+
and bias.dtype == out_dtype
|
|
688
|
+
|
|
689
|
+
m = a.shape[0]
|
|
690
|
+
n = bt_nzs.shape[0]
|
|
691
|
+
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
|
|
692
|
+
|
|
693
|
+
torch.ops._C.cutlass_scaled_sparse_mm(out, a, bt_nzs, bt_meta, scale_a,
|
|
694
|
+
scale_b, bias)
|
|
695
|
+
|
|
696
|
+
return out
|
|
697
|
+
|
|
698
|
+
|
|
699
|
+
def get_cutlass_moe_mm_data(
|
|
700
|
+
topk_ids: torch.Tensor, expert_offsets: torch.Tensor,
|
|
701
|
+
problem_sizes1: torch.Tensor, problem_sizes2: torch.Tensor,
|
|
702
|
+
input_permutation: torch.Tensor, output_permutation: torch.Tensor,
|
|
703
|
+
num_experts: int, n: int, k: int):
|
|
704
|
+
"""
|
|
705
|
+
Prepare data necessary to perform CUTLASS grouped matrix multiplications
|
|
706
|
+
used in CUTLASS-based fused MoE.
|
|
707
|
+
|
|
708
|
+
The function takes in topk_ids (token-expert mapping) and uses it to
|
|
709
|
+
compute:
|
|
710
|
+
- expert_offsets: Indices that mark at which token index each expert begins
|
|
711
|
+
its computation after the input is sorted with
|
|
712
|
+
input_permutation. The number of tokens computed with
|
|
713
|
+
expert E is expert_offsets[E + 1] - expert_offsets[E]
|
|
714
|
+
- problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
|
|
715
|
+
multiplication in two grouped MMs used in
|
|
716
|
+
the fused MoE operation.
|
|
717
|
+
- input_permutation: Permutation that must be used to shuffle the input
|
|
718
|
+
before executing the MMs.
|
|
719
|
+
- output_permutation: Permutation that must be used to shuffle the output
|
|
720
|
+
after executing the MMs.
|
|
721
|
+
"""
|
|
722
|
+
torch.ops._C.get_cutlass_moe_mm_data(topk_ids, expert_offsets,
|
|
723
|
+
problem_sizes1, problem_sizes2,
|
|
724
|
+
input_permutation, output_permutation,
|
|
725
|
+
num_experts, n, k)
|
|
726
|
+
|
|
727
|
+
|
|
728
|
+
def cutlass_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
|
|
729
|
+
b_tensors: torch.Tensor, a_scales: torch.Tensor,
|
|
730
|
+
b_scales: torch.Tensor, expert_offsets: torch.Tensor,
|
|
731
|
+
problem_sizes: torch.Tensor, a_strides: torch.Tensor,
|
|
732
|
+
b_strides: torch.Tensor, c_strides: torch.Tensor):
|
|
733
|
+
"""
|
|
734
|
+
A single grouped matrix multiplication used in CUTLASS-based fused MoE.
|
|
735
|
+
The function executes fp8-quantized OUT = AB matrix multiplication.
|
|
736
|
+
|
|
737
|
+
- expert_offsets: Indices that mark at which token index each expert begins
|
|
738
|
+
its computation. The number of tokens computed with
|
|
739
|
+
expert E is expert_offsets[E + 1] - expert_offsets[E]
|
|
740
|
+
- problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
|
|
741
|
+
MMs used in the fused MoE operation.
|
|
742
|
+
- a/b/c_strides: The data strides passed to grouped matrix multiplication.
|
|
743
|
+
"""
|
|
744
|
+
torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors, a_scales,
|
|
745
|
+
b_scales, expert_offsets, problem_sizes,
|
|
746
|
+
a_strides, b_strides, c_strides)
|
|
747
|
+
|
|
748
|
+
|
|
749
|
+
# aqlm
|
|
750
|
+
def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor,
|
|
751
|
+
codebooks: torch.Tensor, scales: torch.Tensor,
|
|
752
|
+
codebook_partition_sizes: list[int],
|
|
753
|
+
bias: Optional[torch.Tensor]) -> torch.Tensor:
|
|
754
|
+
return torch.ops._C.aqlm_gemm(input, codes, codebooks, scales,
|
|
755
|
+
codebook_partition_sizes, bias)
|
|
756
|
+
|
|
757
|
+
|
|
758
|
+
def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor,
|
|
759
|
+
codebook_partition_sizes: list[int]) -> torch.Tensor:
|
|
760
|
+
return torch.ops._C.aqlm_dequant(codes, codebooks,
|
|
761
|
+
codebook_partition_sizes)
|
|
762
|
+
|
|
763
|
+
|
|
764
|
+
# gptq_marlin
|
|
765
|
+
def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
|
|
766
|
+
size_k: int, size_n: int,
|
|
767
|
+
num_bits: int) -> torch.Tensor:
|
|
768
|
+
return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
|
|
769
|
+
num_bits)
|
|
770
|
+
|
|
771
|
+
|
|
772
|
+
# gptq_marlin
|
|
773
|
+
def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
|
|
774
|
+
num_bits: int) -> torch.Tensor:
|
|
775
|
+
return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
|
|
776
|
+
|
|
777
|
+
|
|
778
|
+
def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
|
|
779
|
+
size_k: int, size_n: int,
|
|
780
|
+
num_bits: int) -> torch.Tensor:
|
|
781
|
+
num_experts = b_q_weight.shape[0]
|
|
782
|
+
assert size_k % 16 == 0
|
|
783
|
+
output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
|
|
784
|
+
device=b_q_weight.device,
|
|
785
|
+
dtype=b_q_weight.dtype)
|
|
786
|
+
for e in range(num_experts):
|
|
787
|
+
output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e],
|
|
788
|
+
size_k, size_n, num_bits)
|
|
789
|
+
return output
|
|
790
|
+
|
|
791
|
+
|
|
792
|
+
def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
|
|
793
|
+
size_k: int, size_n: int,
|
|
794
|
+
num_bits: int) -> torch.Tensor:
|
|
795
|
+
num_experts = b_q_weight.shape[0]
|
|
796
|
+
assert size_k % 16 == 0
|
|
797
|
+
output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
|
|
798
|
+
device=b_q_weight.device,
|
|
799
|
+
dtype=b_q_weight.dtype)
|
|
800
|
+
for e in range(num_experts):
|
|
801
|
+
output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
|
|
802
|
+
size_n, num_bits)
|
|
803
|
+
return output
|
|
804
|
+
|
|
805
|
+
|
|
806
|
+
def gptq_marlin_gemm(a: torch.Tensor,
|
|
807
|
+
b_q_weight: torch.Tensor,
|
|
808
|
+
b_scales: torch.Tensor,
|
|
809
|
+
b_zeros: torch.Tensor,
|
|
810
|
+
g_idx: torch.Tensor,
|
|
811
|
+
perm: torch.Tensor,
|
|
812
|
+
workspace: torch.Tensor,
|
|
813
|
+
b_q_type: ScalarType,
|
|
814
|
+
size_m: int,
|
|
815
|
+
size_n: int,
|
|
816
|
+
size_k: int,
|
|
817
|
+
is_k_full: bool,
|
|
818
|
+
has_zp: bool = False,
|
|
819
|
+
use_atomic_add: bool = False,
|
|
820
|
+
use_fp32_reduce: bool = False,
|
|
821
|
+
is_zp_float: bool = False) -> torch.Tensor:
|
|
822
|
+
return torch.ops._C.gptq_marlin_gemm(a, b_q_weight, b_scales, b_zeros,
|
|
823
|
+
g_idx, perm, workspace, b_q_type.id,
|
|
824
|
+
size_m, size_n, size_k, is_k_full,
|
|
825
|
+
has_zp, use_atomic_add,
|
|
826
|
+
use_fp32_reduce, is_zp_float)
|
|
827
|
+
|
|
828
|
+
|
|
829
|
+
# fp8 marlin
|
|
830
|
+
def fp8_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
831
|
+
b_scales: torch.Tensor, workspace: torch.Tensor,
|
|
832
|
+
num_bits: int, size_m: int, size_n: int,
|
|
833
|
+
size_k: int) -> torch.Tensor:
|
|
834
|
+
return torch.ops._C.fp8_marlin_gemm(a, b_q_weight, b_scales, workspace,
|
|
835
|
+
num_bits, size_m, size_n, size_k)
|
|
836
|
+
|
|
837
|
+
|
|
838
|
+
# machete
|
|
839
|
+
def machete_supported_schedules(
|
|
840
|
+
a_type: torch.dtype,
|
|
841
|
+
b_type: ScalarType,
|
|
842
|
+
group_scales_type: Optional[torch.dtype],
|
|
843
|
+
group_zeros_type: Optional[torch.dtype] = None,
|
|
844
|
+
channel_scales_type: Optional[torch.dtype] = None,
|
|
845
|
+
token_scales_type: Optional[torch.dtype] = None,
|
|
846
|
+
out_type: Optional[torch.dtype] = None) -> list[str]:
|
|
847
|
+
return torch.ops._C.machete_supported_schedules(
|
|
848
|
+
a_type, b_type.id, group_scales_type, group_zeros_type,
|
|
849
|
+
channel_scales_type, token_scales_type, out_type)
|
|
850
|
+
|
|
851
|
+
|
|
852
|
+
def machete_mm(
|
|
853
|
+
a: torch.Tensor,
|
|
854
|
+
# b_q Should be the tensor returned by machete_prepack_B
|
|
855
|
+
b_q: torch.Tensor,
|
|
856
|
+
b_type: ScalarType,
|
|
857
|
+
out_type: Optional[torch.dtype] = None,
|
|
858
|
+
b_group_scales: Optional[torch.Tensor] = None,
|
|
859
|
+
b_group_zeros: Optional[torch.Tensor] = None,
|
|
860
|
+
b_group_size: Optional[int] = None,
|
|
861
|
+
b_channel_scales: Optional[torch.Tensor] = None,
|
|
862
|
+
a_token_scales: Optional[torch.Tensor] = None,
|
|
863
|
+
schedule: Optional[str] = None) -> torch.Tensor:
|
|
864
|
+
return torch.ops._C.machete_mm(a, b_q, b_type.id, out_type, b_group_scales,
|
|
865
|
+
b_group_zeros, b_group_size,
|
|
866
|
+
b_channel_scales, a_token_scales, schedule)
|
|
867
|
+
|
|
868
|
+
|
|
869
|
+
def machete_prepack_B(
|
|
870
|
+
b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
|
|
871
|
+
group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
|
|
872
|
+
return torch.ops._C.machete_prepack_B(b_q_weight, a_type, b_type.id,
|
|
873
|
+
group_scales_type)
|
|
874
|
+
|
|
875
|
+
|
|
876
|
+
if hasattr(torch.ops._C, "permute_cols"):
|
|
877
|
+
|
|
878
|
+
@register_fake("_C::permute_cols")
|
|
879
|
+
def _permute_cols_fake(a: torch.Tensor,
|
|
880
|
+
perm: torch.Tensor) -> torch.Tensor:
|
|
881
|
+
return torch.empty_like(a)
|
|
882
|
+
|
|
883
|
+
|
|
884
|
+
def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
|
|
885
|
+
return torch.ops._C.permute_cols(a, perm)
|
|
886
|
+
|
|
887
|
+
|
|
888
|
+
# fp4
|
|
889
|
+
def scaled_fp4_quant(
|
|
890
|
+
input: torch.Tensor,
|
|
891
|
+
input_global_scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
892
|
+
"""
|
|
893
|
+
Quantize input tensor to FP4 and return quantized tensor and scale.
|
|
894
|
+
|
|
895
|
+
This function quantizes the last dimension of the given tensor `input`. For
|
|
896
|
+
every 16 consecutive elements, a single dynamically computed scaling factor
|
|
897
|
+
is shared. This scaling factor is quantized using the `input_global_scale`
|
|
898
|
+
and is stored in a swizzled layout (see
|
|
899
|
+
https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
|
|
900
|
+
|
|
901
|
+
Args:
|
|
902
|
+
input: The input tensor to be quantized to FP4
|
|
903
|
+
input_global_scale: A scalar scaling factor for the entire tensor.
|
|
904
|
+
|
|
905
|
+
Returns:
|
|
906
|
+
tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
|
|
907
|
+
two values are packed into a uint8 and float8_e4m3 scaling factors
|
|
908
|
+
in the sizzled layout.
|
|
909
|
+
"""
|
|
910
|
+
assert not current_platform.is_rocm()
|
|
911
|
+
assert input.ndim >= 1, (
|
|
912
|
+
f'input.ndim needs to be >= 1, but got {input.ndim}.')
|
|
913
|
+
other_dims = 1 if input.ndim == 1 else -1
|
|
914
|
+
input = input.reshape(other_dims, input.shape[-1])
|
|
915
|
+
m, n = input.shape
|
|
916
|
+
block_size = 16
|
|
917
|
+
device = input.device
|
|
918
|
+
|
|
919
|
+
assert n % block_size == 0, (
|
|
920
|
+
f'last dim has to be multiple of 16, but got {n}.')
|
|
921
|
+
assert input.dtype in (torch.float16, torch.bfloat16), (
|
|
922
|
+
f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
|
|
923
|
+
|
|
924
|
+
# Two fp4 values will be packed into an uint8.
|
|
925
|
+
output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
|
|
926
|
+
|
|
927
|
+
# We use the rounded values to store the swizzled values. Due to the
|
|
928
|
+
# requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
|
|
929
|
+
# So, we first pad the scales to multiples of 128 and 4. Then, the scales
|
|
930
|
+
# (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
|
|
931
|
+
# https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
|
|
932
|
+
round_up = lambda x, y: (x + y - 1) // y * y
|
|
933
|
+
rounded_m = round_up(m, 128)
|
|
934
|
+
scale_n = n // block_size
|
|
935
|
+
rounded_n = round_up(scale_n, 4)
|
|
936
|
+
output_scale = torch.empty((rounded_m, rounded_n // 4),
|
|
937
|
+
device=device,
|
|
938
|
+
dtype=torch.int32)
|
|
939
|
+
|
|
940
|
+
torch.ops._C.scaled_fp4_quant(output, input, output_scale,
|
|
941
|
+
input_global_scale)
|
|
942
|
+
output_scale = output_scale.view(torch.float8_e4m3fn)
|
|
943
|
+
return output, output_scale
|
|
944
|
+
|
|
945
|
+
|
|
946
|
+
# fp8
|
|
947
|
+
def scaled_fp8_quant(
|
|
948
|
+
input: torch.Tensor,
|
|
949
|
+
scale: Optional[torch.Tensor] = None,
|
|
950
|
+
num_token_padding: Optional[int] = None,
|
|
951
|
+
scale_ub: Optional[torch.Tensor] = None,
|
|
952
|
+
use_per_token_if_dynamic: bool = False,
|
|
953
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
954
|
+
"""
|
|
955
|
+
Quantize input tensor to FP8 and return quantized tensor and scale.
|
|
956
|
+
|
|
957
|
+
This function supports both static and dynamic quantization: If you
|
|
958
|
+
provide the scale, it will use static scaling and if you omit it,
|
|
959
|
+
the scale will be determined dynamically. The function also allows
|
|
960
|
+
optional padding of the output tensors for downstream kernels that
|
|
961
|
+
will benefit from padding.
|
|
962
|
+
|
|
963
|
+
Args:
|
|
964
|
+
input: The input tensor to be quantized to FP8
|
|
965
|
+
scale: Optional scaling factor for the FP8 quantization
|
|
966
|
+
scale_ub: Optional upper bound for scaling factor in dynamic
|
|
967
|
+
per token case
|
|
968
|
+
num_token_padding: If specified, pad the first dimension
|
|
969
|
+
of the output to at least this value.
|
|
970
|
+
use_per_token_if_dynamic: Whether to do per_tensor or per_token
|
|
971
|
+
in the dynamic quantization case.
|
|
972
|
+
|
|
973
|
+
Returns:
|
|
974
|
+
tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
|
|
975
|
+
scaling factor.
|
|
976
|
+
"""
|
|
977
|
+
# This code assumes batch_dim and num_tokens are flattened
|
|
978
|
+
assert (input.ndim == 2)
|
|
979
|
+
shape: Union[tuple[int, int], torch.Size] = input.shape
|
|
980
|
+
# For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
|
|
981
|
+
out_dtype: torch.dtype = current_platform.fp8_dtype()
|
|
982
|
+
if num_token_padding:
|
|
983
|
+
shape = (max(num_token_padding, input.shape[0]), shape[1])
|
|
984
|
+
output = torch.empty(shape, device=input.device, dtype=out_dtype)
|
|
985
|
+
|
|
986
|
+
if scale is None:
|
|
987
|
+
if use_per_token_if_dynamic:
|
|
988
|
+
scale = torch.empty((shape[0], 1),
|
|
989
|
+
device=input.device,
|
|
990
|
+
dtype=torch.float32)
|
|
991
|
+
torch.ops._C.dynamic_per_token_scaled_fp8_quant(
|
|
992
|
+
output, input, scale, scale_ub)
|
|
993
|
+
else:
|
|
994
|
+
scale = torch.zeros(1, device=input.device, dtype=torch.float32)
|
|
995
|
+
torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
|
|
996
|
+
else:
|
|
997
|
+
# num_token_padding not implemented for this case
|
|
998
|
+
assert (scale.numel() == 1 or num_token_padding is None)
|
|
999
|
+
torch.ops._C.static_scaled_fp8_quant(output, input, scale)
|
|
1000
|
+
|
|
1001
|
+
return output, scale
|
|
1002
|
+
|
|
1003
|
+
|
|
1004
|
+
# gptq allspark
|
|
1005
|
+
def allspark_repack_weight(
|
|
1006
|
+
qweight: torch.Tensor,
|
|
1007
|
+
scale: torch.Tensor,
|
|
1008
|
+
zero_point: Optional[torch.Tensor] = None,
|
|
1009
|
+
has_zp: bool = False
|
|
1010
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
1011
|
+
"""
|
|
1012
|
+
Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
|
|
1013
|
+
for Ampere W8A16 Fused Gemm kernel
|
|
1014
|
+
|
|
1015
|
+
Args:
|
|
1016
|
+
qweight: uint8 weight tensor, original k x n format.
|
|
1017
|
+
scale: fp16/bf16 weight scale tensor, 1 x n format.
|
|
1018
|
+
zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
|
|
1019
|
+
Must be provided for asymmetric quantization.
|
|
1020
|
+
has_zp: if use symmetric quantization, has_zp = False.
|
|
1021
|
+
if use asymmetric quantization, has_zp = True.
|
|
1022
|
+
|
|
1023
|
+
Returns:
|
|
1024
|
+
tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
|
|
1025
|
+
rearranged weight, scale, and optionally zero_point.
|
|
1026
|
+
"""
|
|
1027
|
+
K = qweight.shape[0]
|
|
1028
|
+
N = qweight.shape[1]
|
|
1029
|
+
N_32align = (N + 32 - 1) // 32 * 32
|
|
1030
|
+
|
|
1031
|
+
qweight_reorder = torch.empty((N_32align, K),
|
|
1032
|
+
device=qweight.device,
|
|
1033
|
+
dtype=qweight.dtype)
|
|
1034
|
+
scale_reorder = torch.empty((1, N_32align),
|
|
1035
|
+
device=scale.device,
|
|
1036
|
+
dtype=scale.dtype)
|
|
1037
|
+
zero_point_reorder = None
|
|
1038
|
+
if has_zp:
|
|
1039
|
+
assert zero_point is not None, (
|
|
1040
|
+
"zero_point must be provided for asymmetric quantization.")
|
|
1041
|
+
zero_point_reorder = torch.empty((1, N_32align),
|
|
1042
|
+
device=zero_point.device,
|
|
1043
|
+
dtype=zero_point.dtype)
|
|
1044
|
+
|
|
1045
|
+
torch.ops._C.rearrange_kn_weight_as_n32k16_order(
|
|
1046
|
+
qweight, scale, zero_point, has_zp, qweight_reorder, scale_reorder,
|
|
1047
|
+
zero_point_reorder, K, N, N_32align)
|
|
1048
|
+
|
|
1049
|
+
return qweight_reorder, scale_reorder, zero_point_reorder
|
|
1050
|
+
|
|
1051
|
+
|
|
1052
|
+
def allspark_w8a16_gemm(a: torch.Tensor, b_qweight: torch.Tensor,
|
|
1053
|
+
b_scales: torch.Tensor,
|
|
1054
|
+
b_qzeros: Optional[torch.Tensor], n: int,
|
|
1055
|
+
group_size: int, sm_count: int, sm_version: int,
|
|
1056
|
+
CUBLAS_M_THRESHOLD: int, has_zp: bool,
|
|
1057
|
+
n32k16_reorder: bool) -> torch.Tensor:
|
|
1058
|
+
|
|
1059
|
+
return torch.ops._C.allspark_w8a16_gemm(a, b_qweight, b_scales, b_qzeros,
|
|
1060
|
+
n, group_size, sm_count,
|
|
1061
|
+
sm_version, CUBLAS_M_THRESHOLD,
|
|
1062
|
+
has_zp, n32k16_reorder)
|
|
1063
|
+
|
|
1064
|
+
|
|
1065
|
+
# int8
|
|
1066
|
+
def scaled_int8_quant(
|
|
1067
|
+
input: torch.Tensor,
|
|
1068
|
+
scale: Optional[torch.Tensor] = None,
|
|
1069
|
+
azp: Optional[torch.Tensor] = None,
|
|
1070
|
+
symmetric: bool = True
|
|
1071
|
+
) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
1072
|
+
"""
|
|
1073
|
+
Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
|
|
1074
|
+
|
|
1075
|
+
Args:
|
|
1076
|
+
input: The input tensor to be quantized to int8.
|
|
1077
|
+
scale: Optional scaling factor for the int8 quantization.
|
|
1078
|
+
When not provided, we invoke dynamic-per-token quantization.
|
|
1079
|
+
azp: Optional zero-point for the int8 quantization.
|
|
1080
|
+
Must be provided for asymmetric quantization if `scale` is provided.
|
|
1081
|
+
symmetric: Whether to use symmetric quantization (scale only, azp ignored).
|
|
1082
|
+
|
|
1083
|
+
Returns:
|
|
1084
|
+
tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
|
|
1085
|
+
"""
|
|
1086
|
+
output = torch.empty_like(input, dtype=torch.int8)
|
|
1087
|
+
if scale is not None:
|
|
1088
|
+
# static-per-tensor quantization.
|
|
1089
|
+
assert symmetric == (
|
|
1090
|
+
azp
|
|
1091
|
+
is None), "azp must only be provided for asymmetric quantization."
|
|
1092
|
+
torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
|
|
1093
|
+
return output, scale, azp
|
|
1094
|
+
|
|
1095
|
+
# dynamic-per-token quantization.
|
|
1096
|
+
input_scales = torch.empty((input.numel() // input.shape[-1], 1),
|
|
1097
|
+
device=input.device,
|
|
1098
|
+
dtype=torch.float32)
|
|
1099
|
+
input_azp = None if symmetric else torch.empty_like(input_scales,
|
|
1100
|
+
dtype=torch.int32)
|
|
1101
|
+
torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales,
|
|
1102
|
+
input_azp)
|
|
1103
|
+
return output, input_scales, input_azp
|
|
1104
|
+
|
|
1105
|
+
|
|
1106
|
+
# qqq ops
|
|
1107
|
+
def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
|
1108
|
+
s_tok: torch.Tensor, s_ch: torch.Tensor,
|
|
1109
|
+
s_group: torch.Tensor, workspace: torch.Tensor,
|
|
1110
|
+
size_m: int, size_n: int, size_k: int) -> torch.Tensor:
|
|
1111
|
+
return torch.ops._C.marlin_qqq_gemm(a, b_q_weight, s_tok, s_ch, s_group,
|
|
1112
|
+
workspace, size_m, size_n, size_k)
|
|
1113
|
+
|
|
1114
|
+
|
|
1115
|
+
# gguf
|
|
1116
|
+
def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
|
|
1117
|
+
dtype: Optional[torch.dtype]) -> torch.Tensor:
|
|
1118
|
+
return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
|
|
1119
|
+
|
|
1120
|
+
|
|
1121
|
+
def ggml_mul_mat_vec_a8(
|
|
1122
|
+
W: torch.Tensor,
|
|
1123
|
+
X: torch.Tensor,
|
|
1124
|
+
quant_type: int,
|
|
1125
|
+
row: int,
|
|
1126
|
+
) -> torch.Tensor:
|
|
1127
|
+
return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
|
|
1128
|
+
|
|
1129
|
+
|
|
1130
|
+
def ggml_mul_mat_a8(
|
|
1131
|
+
W: torch.Tensor,
|
|
1132
|
+
X: torch.Tensor,
|
|
1133
|
+
quant_type: int,
|
|
1134
|
+
row: int,
|
|
1135
|
+
) -> torch.Tensor:
|
|
1136
|
+
return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
|
|
1137
|
+
|
|
1138
|
+
|
|
1139
|
+
def ggml_moe_a8(
|
|
1140
|
+
X: torch.Tensor,
|
|
1141
|
+
W: torch.Tensor,
|
|
1142
|
+
sorted_token_ids: torch.Tensor,
|
|
1143
|
+
expert_ids: torch.Tensor,
|
|
1144
|
+
num_tokens_post_padded: torch.Tensor,
|
|
1145
|
+
quant_type: int,
|
|
1146
|
+
row: int,
|
|
1147
|
+
top_k: int,
|
|
1148
|
+
tokens: int,
|
|
1149
|
+
) -> torch.Tensor:
|
|
1150
|
+
return torch.ops._C.ggml_moe_a8(X, W, sorted_token_ids, expert_ids,
|
|
1151
|
+
num_tokens_post_padded, quant_type, row,
|
|
1152
|
+
top_k, tokens)
|
|
1153
|
+
|
|
1154
|
+
|
|
1155
|
+
def ggml_moe_get_block_size(quant_type: int) -> int:
|
|
1156
|
+
return torch.ops._C.ggml_moe_get_block_size(quant_type)
|
|
1157
|
+
|
|
1158
|
+
|
|
1159
|
+
# mamba
|
|
1160
|
+
def causal_conv1d_fwd(x: torch.Tensor, weight: torch.Tensor,
|
|
1161
|
+
bias_: Optional[torch.Tensor],
|
|
1162
|
+
conv_states: Optional[torch.Tensor],
|
|
1163
|
+
query_start_loc: Optional[torch.Tensor],
|
|
1164
|
+
cache_indices: Optional[torch.Tensor],
|
|
1165
|
+
has_initial_state: Optional[torch.Tensor],
|
|
1166
|
+
silu_activation: bool, pad_slot_id: int):
|
|
1167
|
+
torch.ops._C.causal_conv1d_fwd(x, weight, bias_, conv_states,
|
|
1168
|
+
query_start_loc, cache_indices,
|
|
1169
|
+
has_initial_state, silu_activation,
|
|
1170
|
+
pad_slot_id)
|
|
1171
|
+
|
|
1172
|
+
|
|
1173
|
+
def causal_conv1d_update(x: torch.Tensor, conv_state: torch.Tensor,
|
|
1174
|
+
weight: torch.Tensor, bias_: Optional[torch.Tensor],
|
|
1175
|
+
silu_activation: bool,
|
|
1176
|
+
cache_seqlens: Optional[torch.Tensor],
|
|
1177
|
+
conv_state_indices: Optional[torch.Tensor],
|
|
1178
|
+
pad_slot_id: int):
|
|
1179
|
+
torch.ops._C.causal_conv1d_update(x, conv_state, weight, bias_,
|
|
1180
|
+
silu_activation, cache_seqlens,
|
|
1181
|
+
conv_state_indices, pad_slot_id)
|
|
1182
|
+
|
|
1183
|
+
|
|
1184
|
+
def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
|
|
1185
|
+
B: torch.Tensor, C: torch.Tensor,
|
|
1186
|
+
D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
|
|
1187
|
+
delta_bias_: Optional[torch.Tensor],
|
|
1188
|
+
delta_softplus: bool,
|
|
1189
|
+
query_start_loc: Optional[torch.Tensor],
|
|
1190
|
+
cache_indices: Optional[torch.Tensor],
|
|
1191
|
+
has_initial_state: Optional[torch.Tensor],
|
|
1192
|
+
ssm_states: torch.Tensor, pad_slot_id: int):
|
|
1193
|
+
torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_, delta_bias_,
|
|
1194
|
+
delta_softplus, query_start_loc,
|
|
1195
|
+
cache_indices, has_initial_state,
|
|
1196
|
+
ssm_states, pad_slot_id)
|
|
1197
|
+
|
|
1198
|
+
|
|
1199
|
+
# ROCm skinny gemms
|
|
1200
|
+
def LLMM1(a: torch.Tensor, b: torch.Tensor,
|
|
1201
|
+
rows_per_block: int) -> torch.Tensor:
|
|
1202
|
+
return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
|
|
1203
|
+
|
|
1204
|
+
|
|
1205
|
+
def wvSplitK(a: torch.Tensor, b: torch.Tensor, cu_count: int) -> torch.Tensor:
|
|
1206
|
+
return torch.ops._rocm_C.wvSplitK(a, b, cu_count)
|
|
1207
|
+
|
|
1208
|
+
|
|
1209
|
+
def wvSplitKQ(a: torch.Tensor, b: torch.Tensor, out_dtype: torch.dtype,
|
|
1210
|
+
scale_a: torch.Tensor, scale_b: torch.Tensor,
|
|
1211
|
+
cu_count: int) -> torch.Tensor:
|
|
1212
|
+
out = torch.empty((b.shape[0], a.shape[0]),
|
|
1213
|
+
dtype=out_dtype,
|
|
1214
|
+
device=b.device)
|
|
1215
|
+
torch.ops._rocm_C.wvSplitKQ(a, b, out, scale_a, scale_b, cu_count)
|
|
1216
|
+
return out
|
|
1217
|
+
|
|
1218
|
+
|
|
1219
|
+
# moe
|
|
1220
|
+
def moe_sum(input: torch.Tensor, output: torch.Tensor):
|
|
1221
|
+
torch.ops._moe_C.moe_sum(input, output)
|
|
1222
|
+
|
|
1223
|
+
|
|
1224
|
+
def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
|
|
1225
|
+
block_size: int, sorted_token_ids: torch.Tensor,
|
|
1226
|
+
experts_ids: torch.Tensor,
|
|
1227
|
+
num_tokens_post_pad: torch.Tensor) -> None:
|
|
1228
|
+
torch.ops._moe_C.moe_align_block_size(topk_ids, num_experts, block_size,
|
|
1229
|
+
sorted_token_ids, experts_ids,
|
|
1230
|
+
num_tokens_post_pad)
|
|
1231
|
+
|
|
1232
|
+
|
|
1233
|
+
def sgl_moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
|
|
1234
|
+
block_size: int, sorted_token_ids: torch.Tensor,
|
|
1235
|
+
experts_ids: torch.Tensor,
|
|
1236
|
+
num_tokens_post_pad: torch.Tensor) -> None:
|
|
1237
|
+
torch.ops._moe_C.sgl_moe_align_block_size(topk_ids, num_experts,
|
|
1238
|
+
block_size, sorted_token_ids,
|
|
1239
|
+
experts_ids, num_tokens_post_pad)
|
|
1240
|
+
|
|
1241
|
+
|
|
1242
|
+
def moe_wna16_gemm(input: torch.Tensor, output: torch.Tensor,
|
|
1243
|
+
b_qweight: torch.Tensor, b_scales: torch.Tensor,
|
|
1244
|
+
b_qzeros: Optional[torch.Tensor],
|
|
1245
|
+
topk_weights: Optional[torch.Tensor],
|
|
1246
|
+
sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor,
|
|
1247
|
+
num_tokens_post_pad: torch.Tensor, top_k: int,
|
|
1248
|
+
BLOCK_SIZE_M: int, BLOCK_SIZE_N: int, BLOCK_SIZE_K: int,
|
|
1249
|
+
bit: int) -> torch.Tensor:
|
|
1250
|
+
if not current_platform.is_cuda():
|
|
1251
|
+
raise NotImplementedError(
|
|
1252
|
+
"The optimized moe_wna16_gemm kernel is only "
|
|
1253
|
+
"available on CUDA platforms")
|
|
1254
|
+
torch.ops._moe_C.moe_wna16_gemm(input, output, b_qweight, b_scales,
|
|
1255
|
+
b_qzeros, topk_weights, sorted_token_ids,
|
|
1256
|
+
experts_ids, num_tokens_post_pad, top_k,
|
|
1257
|
+
BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
|
|
1258
|
+
bit)
|
|
1259
|
+
|
|
1260
|
+
|
|
1261
|
+
def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
|
1262
|
+
token_expert_indicies: torch.Tensor,
|
|
1263
|
+
gating_output: torch.Tensor) -> None:
|
|
1264
|
+
torch.ops._moe_C.topk_softmax(topk_weights, topk_ids,
|
|
1265
|
+
token_expert_indicies, gating_output)
|
|
1266
|
+
|
|
1267
|
+
|
|
1268
|
+
def moe_wna16_marlin_gemm(input: torch.Tensor, output: Optional[torch.Tensor],
|
|
1269
|
+
b_qweight: torch.Tensor, b_scales: torch.Tensor,
|
|
1270
|
+
b_qzeros: Optional[torch.Tensor],
|
|
1271
|
+
g_idx: Optional[torch.Tensor],
|
|
1272
|
+
perm: Optional[torch.Tensor],
|
|
1273
|
+
workspace: torch.Tensor,
|
|
1274
|
+
sorted_token_ids: torch.Tensor,
|
|
1275
|
+
expert_ids: torch.Tensor,
|
|
1276
|
+
num_tokens_past_padded: torch.Tensor,
|
|
1277
|
+
topk_weights: torch.Tensor, moe_block_size: int,
|
|
1278
|
+
top_k: int, mul_topk_weights: bool, is_ep: bool,
|
|
1279
|
+
b_q_type: ScalarType, size_m: int, size_n: int,
|
|
1280
|
+
size_k: int, is_k_full: bool, use_atomic_add: bool,
|
|
1281
|
+
use_fp32_reduce: bool,
|
|
1282
|
+
is_zp_float: bool) -> torch.Tensor:
|
|
1283
|
+
return torch.ops._moe_C.moe_wna16_marlin_gemm(
|
|
1284
|
+
input, output, b_qweight, b_scales, b_qzeros, g_idx, perm, workspace,
|
|
1285
|
+
sorted_token_ids, expert_ids, num_tokens_past_padded, topk_weights,
|
|
1286
|
+
moe_block_size, top_k, mul_topk_weights, is_ep, b_q_type.id, size_m,
|
|
1287
|
+
size_n, size_k, is_k_full, use_atomic_add, use_fp32_reduce,
|
|
1288
|
+
is_zp_float)
|
|
1289
|
+
|
|
1290
|
+
|
|
1291
|
+
if supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
|
|
1292
|
+
|
|
1293
|
+
@register_fake("_moe_C::marlin_gemm_moe")
|
|
1294
|
+
def marlin_gemm_moe_fake(a: torch.Tensor, b_q_weights: torch.Tensor,
|
|
1295
|
+
sorted_ids: torch.Tensor,
|
|
1296
|
+
topk_weights: torch.Tensor,
|
|
1297
|
+
topk_ids: torch.Tensor, b_scales: torch.Tensor,
|
|
1298
|
+
b_zero_points: torch.Tensor, g_idx: torch.Tensor,
|
|
1299
|
+
perm: torch.Tensor, workspace: torch.Tensor,
|
|
1300
|
+
b_q_type: ScalarType, size_m: torch.SymInt,
|
|
1301
|
+
size_n: torch.SymInt, size_k: torch.SymInt,
|
|
1302
|
+
is_k_full: bool, num_experts: int, topk: int,
|
|
1303
|
+
moe_block_size: int, replicate_input: bool,
|
|
1304
|
+
apply_weights: bool) -> torch.Tensor:
|
|
1305
|
+
return torch.empty((size_m, topk, size_n),
|
|
1306
|
+
dtype=a.dtype,
|
|
1307
|
+
device=a.device)
|
|
1308
|
+
|
|
1309
|
+
@register_fake("_moe_C::moe_wna16_marlin_gemm")
|
|
1310
|
+
def moe_wna16_marlin_gemm_fake(input: torch.Tensor,
|
|
1311
|
+
output: Optional[torch.Tensor],
|
|
1312
|
+
b_qweight: torch.Tensor,
|
|
1313
|
+
b_scales: torch.Tensor,
|
|
1314
|
+
b_qzeros: Optional[torch.Tensor],
|
|
1315
|
+
g_idx: Optional[torch.Tensor],
|
|
1316
|
+
perm: Optional[torch.Tensor],
|
|
1317
|
+
workspace: torch.Tensor,
|
|
1318
|
+
sorted_token_ids: torch.Tensor,
|
|
1319
|
+
expert_ids: torch.Tensor,
|
|
1320
|
+
num_tokens_past_padded: torch.Tensor,
|
|
1321
|
+
topk_weights: torch.Tensor,
|
|
1322
|
+
moe_block_size: int, top_k: int,
|
|
1323
|
+
mul_topk_weights: bool, is_ep: bool,
|
|
1324
|
+
b_q_type: ScalarType, size_m: int,
|
|
1325
|
+
size_n: int, size_k: int, is_k_full: bool,
|
|
1326
|
+
use_atomic_add: bool, use_fp32_reduce: bool,
|
|
1327
|
+
is_zp_float: bool) -> torch.Tensor:
|
|
1328
|
+
return torch.empty((size_m * top_k, size_n),
|
|
1329
|
+
dtype=input.dtype,
|
|
1330
|
+
device=input.device)
|
|
1331
|
+
|
|
1332
|
+
|
|
1333
|
+
def reshape_and_cache(
|
|
1334
|
+
key: torch.Tensor,
|
|
1335
|
+
value: torch.Tensor,
|
|
1336
|
+
key_cache: torch.Tensor,
|
|
1337
|
+
value_cache: torch.Tensor,
|
|
1338
|
+
slot_mapping: torch.Tensor,
|
|
1339
|
+
kv_cache_dtype: str,
|
|
1340
|
+
k_scale: torch.Tensor,
|
|
1341
|
+
v_scale: torch.Tensor,
|
|
1342
|
+
) -> None:
|
|
1343
|
+
torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
|
|
1344
|
+
value_cache, slot_mapping,
|
|
1345
|
+
kv_cache_dtype, k_scale, v_scale)
|
|
1346
|
+
|
|
1347
|
+
|
|
1348
|
+
def reshape_and_cache_flash(
|
|
1349
|
+
key: torch.Tensor,
|
|
1350
|
+
value: torch.Tensor,
|
|
1351
|
+
key_cache: torch.Tensor,
|
|
1352
|
+
value_cache: torch.Tensor,
|
|
1353
|
+
slot_mapping: torch.Tensor,
|
|
1354
|
+
kv_cache_dtype: str,
|
|
1355
|
+
k_scale: torch.Tensor,
|
|
1356
|
+
v_scale: torch.Tensor,
|
|
1357
|
+
) -> None:
|
|
1358
|
+
torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
|
|
1359
|
+
value_cache, slot_mapping,
|
|
1360
|
+
kv_cache_dtype, k_scale,
|
|
1361
|
+
v_scale)
|
|
1362
|
+
|
|
1363
|
+
|
|
1364
|
+
def concat_and_cache_mla(
|
|
1365
|
+
kv_c: torch.Tensor,
|
|
1366
|
+
k_pe: torch.Tensor,
|
|
1367
|
+
kv_cache: torch.Tensor,
|
|
1368
|
+
slot_mapping: torch.Tensor,
|
|
1369
|
+
kv_cache_dtype: str,
|
|
1370
|
+
scale: torch.Tensor,
|
|
1371
|
+
) -> None:
|
|
1372
|
+
torch.ops._C_cache_ops.concat_and_cache_mla(kv_c, k_pe, kv_cache,
|
|
1373
|
+
slot_mapping, kv_cache_dtype,
|
|
1374
|
+
scale)
|
|
1375
|
+
|
|
1376
|
+
|
|
1377
|
+
def copy_blocks(key_caches: list[torch.Tensor],
|
|
1378
|
+
value_caches: list[torch.Tensor],
|
|
1379
|
+
block_mapping: torch.Tensor) -> None:
|
|
1380
|
+
torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
|
|
1381
|
+
|
|
1382
|
+
|
|
1383
|
+
def copy_blocks_mla(kv_caches: list[torch.Tensor],
|
|
1384
|
+
block_mapping: torch.Tensor) -> None:
|
|
1385
|
+
torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
|
|
1386
|
+
|
|
1387
|
+
|
|
1388
|
+
def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
|
|
1389
|
+
block_mapping: torch.Tensor) -> None:
|
|
1390
|
+
torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
|
|
1391
|
+
|
|
1392
|
+
|
|
1393
|
+
def convert_fp8(output: torch.Tensor,
|
|
1394
|
+
input: torch.Tensor,
|
|
1395
|
+
scale: float = 1.0,
|
|
1396
|
+
kv_dtype: str = "fp8") -> None:
|
|
1397
|
+
torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
|
|
1398
|
+
|
|
1399
|
+
|
|
1400
|
+
def gather_cache(src_cache: torch.Tensor,
|
|
1401
|
+
dst: torch.Tensor,
|
|
1402
|
+
block_table: torch.Tensor,
|
|
1403
|
+
cu_seq_lens: torch.Tensor,
|
|
1404
|
+
batch_size: int,
|
|
1405
|
+
seq_starts: Optional[torch.Tensor] = None) -> None:
|
|
1406
|
+
torch.ops._C_cache_ops.gather_cache(src_cache, dst, block_table,
|
|
1407
|
+
cu_seq_lens, batch_size, seq_starts)
|
|
1408
|
+
|
|
1409
|
+
|
|
1410
|
+
def get_device_attribute(attribute: int, device: int) -> int:
|
|
1411
|
+
return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
|
|
1412
|
+
|
|
1413
|
+
|
|
1414
|
+
def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
|
|
1415
|
+
# ruff: noqa: E501
|
|
1416
|
+
return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
|
|
1417
|
+
device)
|
|
1418
|
+
|
|
1419
|
+
|
|
1420
|
+
# custom ar
|
|
1421
|
+
def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
|
|
1422
|
+
rank: int, fully_connected: bool) -> int:
|
|
1423
|
+
return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
|
|
1424
|
+
fully_connected)
|
|
1425
|
+
|
|
1426
|
+
|
|
1427
|
+
def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
|
|
1428
|
+
reg_buffer_sz_bytes: int) -> None:
|
|
1429
|
+
torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
|
|
1430
|
+
reg_buffer_sz_bytes)
|
|
1431
|
+
|
|
1432
|
+
|
|
1433
|
+
def dispose(fa: int) -> None:
|
|
1434
|
+
torch.ops._C_custom_ar.dispose(fa)
|
|
1435
|
+
|
|
1436
|
+
|
|
1437
|
+
def meta_size() -> int:
|
|
1438
|
+
return torch.ops._C_custom_ar.meta_size()
|
|
1439
|
+
|
|
1440
|
+
|
|
1441
|
+
def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
|
|
1442
|
+
return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
|
|
1443
|
+
|
|
1444
|
+
|
|
1445
|
+
def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
|
|
1446
|
+
return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
|
|
1447
|
+
|
|
1448
|
+
|
|
1449
|
+
def register_graph_buffers(fa: int, handles: list[list[int]],
|
|
1450
|
+
offsets: list[list[int]]) -> None:
|
|
1451
|
+
torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
|
|
1452
|
+
|
|
1453
|
+
|
|
1454
|
+
def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
|
|
1455
|
+
return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
|
|
1456
|
+
|
|
1457
|
+
|
|
1458
|
+
def open_mem_handle(mem_handle: torch.Tensor):
|
|
1459
|
+
return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
|
|
1460
|
+
|
|
1461
|
+
|
|
1462
|
+
def free_shared_buffer(ptr: int) -> None:
|
|
1463
|
+
torch.ops._C_custom_ar.free_shared_buffer(ptr)
|
|
1464
|
+
|
|
1465
|
+
|
|
1466
|
+
def get_flash_mla_metadata(
|
|
1467
|
+
cache_seqlens: torch.Tensor,
|
|
1468
|
+
num_heads_per_head_k: int,
|
|
1469
|
+
num_heads_k: int,
|
|
1470
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1471
|
+
"""
|
|
1472
|
+
Arguments:
|
|
1473
|
+
cache_seqlens: (batch_size), dtype torch.int32.
|
|
1474
|
+
num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
|
|
1475
|
+
num_heads_k: num_heads_k.
|
|
1476
|
+
|
|
1477
|
+
Return:
|
|
1478
|
+
tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
|
|
1479
|
+
num_splits: (batch_size + 1), dtype torch.int32.
|
|
1480
|
+
"""
|
|
1481
|
+
return torch.ops._C.get_flash_mla_metadata(cache_seqlens,
|
|
1482
|
+
num_heads_per_head_k,
|
|
1483
|
+
num_heads_k)
|
|
1484
|
+
|
|
1485
|
+
|
|
1486
|
+
def flash_mla_with_kvcache(
|
|
1487
|
+
q: torch.Tensor,
|
|
1488
|
+
k_cache: torch.Tensor,
|
|
1489
|
+
block_table: torch.Tensor,
|
|
1490
|
+
cache_seqlens: torch.Tensor,
|
|
1491
|
+
head_dim_v: int,
|
|
1492
|
+
tile_scheduler_metadata: torch.Tensor,
|
|
1493
|
+
num_splits: torch.Tensor,
|
|
1494
|
+
softmax_scale: Optional[float] = None,
|
|
1495
|
+
causal: bool = False,
|
|
1496
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1497
|
+
"""
|
|
1498
|
+
Arguments:
|
|
1499
|
+
q: (batch_size, seq_len_q, num_heads_q, head_dim).
|
|
1500
|
+
k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
|
|
1501
|
+
block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
|
|
1502
|
+
cache_seqlens: (batch_size), torch.int32.
|
|
1503
|
+
head_dim_v: Head_dim of v.
|
|
1504
|
+
tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
|
|
1505
|
+
num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
|
|
1506
|
+
softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
|
|
1507
|
+
causal: bool. Whether to apply causal attention mask.
|
|
1508
|
+
|
|
1509
|
+
Return:
|
|
1510
|
+
out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
|
|
1511
|
+
softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
|
|
1512
|
+
"""
|
|
1513
|
+
if softmax_scale is None:
|
|
1514
|
+
softmax_scale = q.shape[-1]**(-0.5)
|
|
1515
|
+
out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
|
|
1516
|
+
q,
|
|
1517
|
+
k_cache,
|
|
1518
|
+
None,
|
|
1519
|
+
head_dim_v,
|
|
1520
|
+
cache_seqlens,
|
|
1521
|
+
block_table,
|
|
1522
|
+
softmax_scale,
|
|
1523
|
+
causal,
|
|
1524
|
+
tile_scheduler_metadata,
|
|
1525
|
+
num_splits,
|
|
1526
|
+
)
|
|
1527
|
+
return out, softmax_lse
|
|
1528
|
+
|
|
1529
|
+
|
|
1530
|
+
def cutlass_mla_decode(out: torch.Tensor, q_nope: torch.Tensor,
|
|
1531
|
+
q_pe: torch.Tensor, kv_c_and_k_pe_cache: torch.Tensor,
|
|
1532
|
+
seq_lens: torch.Tensor, page_table: torch.Tensor,
|
|
1533
|
+
scale: float) -> torch.Tensor:
|
|
1534
|
+
torch.ops._C.cutlass_mla_decode(out, q_nope, q_pe, kv_c_and_k_pe_cache,
|
|
1535
|
+
seq_lens, page_table, scale)
|
|
1536
|
+
return out
|