vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py ADDED
@@ -0,0 +1,1536 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import contextlib
4
+ import importlib
5
+ from typing import TYPE_CHECKING, Optional, Union
6
+
7
+ import torch
8
+ import torch.library
9
+
10
+ import vllm.envs as envs
11
+ from vllm.logger import init_logger
12
+ from vllm.platforms import current_platform
13
+ from vllm.scalar_type import ScalarType
14
+
15
+ logger = init_logger(__name__)
16
+
17
+ if not current_platform.is_tpu() and not current_platform.is_hpu():
18
+ try:
19
+ import vllm._C
20
+ except ImportError as e:
21
+ logger.warning("Failed to import from vllm._C with %r", e)
22
+
23
+ supports_moe_ops = False
24
+ with contextlib.suppress(ImportError):
25
+ import vllm._moe_C # noqa: F401
26
+ supports_moe_ops = True
27
+
28
+ if TYPE_CHECKING:
29
+
30
+ def register_fake(fn):
31
+ return lambda name: fn
32
+ else:
33
+ try:
34
+ from torch.library import register_fake
35
+ except ImportError:
36
+ from torch.library import impl_abstract as register_fake
37
+
38
+
39
+ # page attention ops
40
+ def paged_attention_v1(
41
+ out: torch.Tensor,
42
+ query: torch.Tensor,
43
+ key_cache: torch.Tensor,
44
+ value_cache: torch.Tensor,
45
+ num_kv_heads: int,
46
+ scale: float,
47
+ block_tables: torch.Tensor,
48
+ seq_lens: torch.Tensor,
49
+ block_size: int,
50
+ max_seq_len: int,
51
+ alibi_slopes: Optional[torch.Tensor],
52
+ kv_cache_dtype: str,
53
+ k_scale: torch.Tensor,
54
+ v_scale: torch.Tensor,
55
+ tp_rank: int = 0,
56
+ blocksparse_local_blocks: int = 0,
57
+ blocksparse_vert_stride: int = 0,
58
+ blocksparse_block_size: int = 64,
59
+ blocksparse_head_sliding_step: int = 0,
60
+ ) -> None:
61
+ torch.ops._C.paged_attention_v1(
62
+ out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
63
+ seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
64
+ k_scale, v_scale, tp_rank, blocksparse_local_blocks,
65
+ blocksparse_vert_stride, blocksparse_block_size,
66
+ blocksparse_head_sliding_step)
67
+
68
+
69
+ def paged_attention_v2(
70
+ out: torch.Tensor,
71
+ exp_sum: torch.Tensor,
72
+ max_logits: torch.Tensor,
73
+ tmp_out: torch.Tensor,
74
+ query: torch.Tensor,
75
+ key_cache: torch.Tensor,
76
+ value_cache: torch.Tensor,
77
+ num_kv_heads: int,
78
+ scale: float,
79
+ block_tables: torch.Tensor,
80
+ seq_lens: torch.Tensor,
81
+ block_size: int,
82
+ max_seq_len: int,
83
+ alibi_slopes: Optional[torch.Tensor],
84
+ kv_cache_dtype: str,
85
+ k_scale: torch.Tensor,
86
+ v_scale: torch.Tensor,
87
+ tp_rank: int = 0,
88
+ blocksparse_local_blocks: int = 0,
89
+ blocksparse_vert_stride: int = 0,
90
+ blocksparse_block_size: int = 64,
91
+ blocksparse_head_sliding_step: int = 0,
92
+ ) -> None:
93
+ torch.ops._C.paged_attention_v2(
94
+ out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
95
+ num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
96
+ alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
97
+ blocksparse_local_blocks, blocksparse_vert_stride,
98
+ blocksparse_block_size, blocksparse_head_sliding_step)
99
+
100
+
101
+ def paged_attention_rocm(
102
+ out: torch.Tensor,
103
+ exp_sum: torch.Tensor,
104
+ max_logits: torch.Tensor,
105
+ tmp_out: torch.Tensor,
106
+ query: torch.Tensor,
107
+ key_cache: torch.Tensor,
108
+ value_cache: torch.Tensor,
109
+ num_kv_heads: int,
110
+ scale: float,
111
+ block_tables: torch.Tensor,
112
+ seq_lens: torch.Tensor,
113
+ query_start_loc: Optional[torch.Tensor],
114
+ block_size: int,
115
+ max_seq_len: int,
116
+ alibi_slopes: Optional[torch.Tensor],
117
+ kv_cache_dtype: str,
118
+ k_scale: torch.Tensor,
119
+ v_scale: torch.Tensor,
120
+ ) -> None:
121
+ torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
122
+ key_cache, value_cache, num_kv_heads,
123
+ scale, block_tables, seq_lens,
124
+ query_start_loc, block_size, max_seq_len,
125
+ alibi_slopes, kv_cache_dtype, k_scale,
126
+ v_scale)
127
+
128
+
129
+ def mla_decode_kvcache_cpu(
130
+ out: torch.Tensor,
131
+ query: torch.Tensor,
132
+ kv_cache: torch.Tensor,
133
+ scale: float,
134
+ block_tables: torch.Tensor,
135
+ seq_lens: torch.Tensor,
136
+ ) -> None:
137
+ torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
138
+ block_tables, seq_lens)
139
+
140
+
141
+ # merge attn states ops
142
+ def merge_attn_states(output: torch.Tensor,
143
+ prefix_output: torch.Tensor,
144
+ prefix_lse: torch.Tensor,
145
+ suffix_output: torch.Tensor,
146
+ suffix_lse: torch.Tensor,
147
+ output_lse: Optional[torch.Tensor] = None) -> None:
148
+ torch.ops._C.merge_attn_states(output, output_lse, prefix_output,
149
+ prefix_lse, suffix_output, suffix_lse)
150
+
151
+
152
+ # pos encoding ops
153
+ def rotary_embedding(
154
+ positions: torch.Tensor,
155
+ query: torch.Tensor,
156
+ key: torch.Tensor,
157
+ head_size: int,
158
+ cos_sin_cache: torch.Tensor,
159
+ is_neox: bool,
160
+ ) -> None:
161
+ torch.ops._C.rotary_embedding(positions, query, key, head_size,
162
+ cos_sin_cache, is_neox)
163
+
164
+
165
+ def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
166
+ key: torch.Tensor, head_size: int,
167
+ cos_sin_cache: torch.Tensor, is_neox: bool,
168
+ rot_dim: int,
169
+ cos_sin_cache_offsets: torch.Tensor) -> None:
170
+ torch.ops._C.batched_rotary_embedding(positions, query, key, head_size,
171
+ cos_sin_cache, is_neox, rot_dim,
172
+ cos_sin_cache_offsets)
173
+
174
+
175
+ # layer norm ops
176
+ def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
177
+ epsilon: float) -> None:
178
+ torch.ops._C.rms_norm(out, input, weight, epsilon)
179
+
180
+
181
+ def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
182
+ weight: torch.Tensor, epsilon: float) -> None:
183
+ torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
184
+
185
+
186
+ def advance_step_flashattn(num_seqs: int, num_queries: int, block_size: int,
187
+ input_tokens: torch.Tensor,
188
+ sampled_token_ids: torch.Tensor,
189
+ input_positions: torch.Tensor,
190
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
191
+ block_tables: torch.Tensor) -> None:
192
+ """Advance a step on GPU for existing inputs for a multi-step runner"""
193
+ return torch.ops._C.advance_step_flashattn(num_seqs, num_queries,
194
+ block_size, input_tokens,
195
+ sampled_token_ids,
196
+ input_positions, seq_lens,
197
+ slot_mapping, block_tables)
198
+
199
+
200
+ def advance_step_flashinfer(num_seqs: int, num_queries: int, block_size: int,
201
+ input_tokens: torch.Tensor,
202
+ sampled_token_ids: torch.Tensor,
203
+ input_positions: torch.Tensor,
204
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
205
+ block_tables: torch.Tensor,
206
+ paged_kv_indices: torch.Tensor,
207
+ paged_kv_indptr: torch.Tensor,
208
+ paged_kv_last_page_len: torch.Tensor,
209
+ block_table_bound: torch.Tensor) -> None:
210
+
211
+ return torch.ops._C.advance_step_flashinfer(
212
+ num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
213
+ input_positions, seq_lens, slot_mapping, block_tables,
214
+ paged_kv_indices, paged_kv_indptr, paged_kv_last_page_len,
215
+ block_table_bound)
216
+
217
+
218
+ # fused quant layer norm ops
219
+ def rms_norm_dynamic_per_token_quant(
220
+ input: torch.Tensor,
221
+ weight: torch.Tensor,
222
+ epsilon: float,
223
+ quant_dtype: torch.dtype,
224
+ scale_ub: Optional[torch.Tensor] = None,
225
+ residual: Optional[torch.Tensor] = None
226
+ ) -> tuple[torch.Tensor, torch.Tensor]:
227
+ output = torch.empty_like(input, dtype=quant_dtype)
228
+ scales = torch.empty((input.numel() // input.shape[-1], 1),
229
+ device=input.device,
230
+ dtype=torch.float32)
231
+
232
+ torch.ops._C.rms_norm_dynamic_per_token_quant(output, input, weight,
233
+ scales, epsilon, scale_ub,
234
+ residual)
235
+ return output, scales
236
+
237
+
238
+ # quantization ops
239
+ # awq
240
+ def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
241
+ zeros: torch.Tensor, split_k_iters: int, thx: int,
242
+ thy: int) -> torch.Tensor:
243
+ if envs.VLLM_USE_TRITON_AWQ:
244
+ from vllm.model_executor.layers.quantization.awq_triton import (
245
+ awq_dequantize_triton)
246
+ return awq_dequantize_triton(qweight, scales, zeros)
247
+ return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
248
+ thx, thy)
249
+
250
+
251
+ def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
252
+ scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
253
+ if envs.VLLM_USE_TRITON_AWQ:
254
+ from vllm.model_executor.layers.quantization.awq_triton import (
255
+ awq_gemm_triton)
256
+ return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
257
+ return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
258
+
259
+
260
+ # gptq
261
+ def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
262
+ b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
263
+ b_g_idx: torch.Tensor, use_exllama: bool,
264
+ bit: int) -> torch.Tensor:
265
+ return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
266
+ b_g_idx, use_exllama, bit)
267
+
268
+
269
+ if hasattr(torch.ops._C, "gptq_gemm"):
270
+
271
+ @register_fake("_C::gptq_gemm")
272
+ def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
273
+ b_gptq_qzeros: torch.Tensor,
274
+ b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor,
275
+ use_exllama: bool, bit: int) -> torch.Tensor:
276
+ return torch.empty((a.size(0), b_q_weight.size(1)),
277
+ dtype=a.dtype,
278
+ device=a.device)
279
+
280
+
281
+ def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
282
+ bit: int) -> None:
283
+ torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
284
+
285
+
286
+ # marlin
287
+ def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
288
+ b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int,
289
+ size_n: int, size_k: int) -> torch.Tensor:
290
+ return torch.ops._C.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m,
291
+ size_n, size_k)
292
+
293
+
294
+ # marlin_24
295
+ def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
296
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
297
+ workspace: torch.Tensor, b_q_type: ScalarType,
298
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
299
+ return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
300
+ workspace, b_q_type.id, size_m,
301
+ size_n, size_k)
302
+
303
+
304
+ if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
305
+
306
+ @register_fake("_C::gptq_marlin_24_gemm")
307
+ def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
308
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
309
+ workspace: torch.Tensor,
310
+ b_q_type: ScalarType, size_m: torch.SymInt,
311
+ size_n: torch.SymInt,
312
+ size_k: torch.SymInt) -> torch.Tensor:
313
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
314
+
315
+ @register_fake("_C::gptq_marlin_gemm")
316
+ def _gptq_marlin_gemm_fake(a: torch.Tensor,
317
+ b_q_weight: torch.Tensor,
318
+ b_scales: torch.Tensor,
319
+ b_zeros: torch.Tensor,
320
+ g_idx: torch.Tensor,
321
+ perm: torch.Tensor,
322
+ workspace: torch.Tensor,
323
+ b_q_type: ScalarType,
324
+ size_m: torch.SymInt,
325
+ size_n: torch.SymInt,
326
+ size_k: torch.SymInt,
327
+ is_k_full: bool,
328
+ has_zp: bool = False,
329
+ use_atomic_add: bool = False,
330
+ use_fp32_reduce: bool = False,
331
+ is_zp_float: bool = False) -> torch.Tensor:
332
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
333
+
334
+ @register_fake("_C::marlin_qqq_gemm")
335
+ def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
336
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
337
+ s_group: torch.Tensor, workspace: torch.Tensor,
338
+ size_m: torch.SymInt, size_n: torch.SymInt,
339
+ size_k: torch.SymInt) -> torch.Tensor:
340
+ return torch.empty((size_m, size_n),
341
+ dtype=torch.float16,
342
+ device=a.device)
343
+
344
+ @register_fake("_C::marlin_gemm")
345
+ def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
346
+ b_scales: torch.Tensor, workspace: torch.Tensor,
347
+ size_m: torch.SymInt, size_n: torch.SymInt,
348
+ size_k: torch.SymInt) -> torch.Tensor:
349
+ return torch.empty((size_m, size_n),
350
+ dtype=torch.float16,
351
+ device=a.device)
352
+
353
+ @register_fake("_C::awq_dequantize")
354
+ def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor,
355
+ zeros: torch.Tensor, split_k_iters: torch.SymInt,
356
+ thx: int, thy: int) -> torch.Tensor:
357
+ in_c = qweight.size(0)
358
+ qout_c = qweight.size(1)
359
+ out_c = qout_c * 8
360
+ return torch.empty((in_c, out_c),
361
+ dtype=scales.dtype,
362
+ device=scales.device)
363
+
364
+ @register_fake("_C::awq_gemm")
365
+ def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor,
366
+ qzeros: torch.Tensor, scales: torch.Tensor,
367
+ split_k_iters: torch.SymInt) -> torch.Tensor:
368
+ num_in_feats = input.size(0)
369
+ return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8),
370
+ dtype=input.dtype,
371
+ device=input.device).sum(0)
372
+
373
+ @register_fake("_C::aqlm_gemm")
374
+ def _aqlm_gemm_fake(input: torch.Tensor, codes: torch.Tensor,
375
+ codebooks: torch.Tensor, scales: torch.Tensor,
376
+ codebook_partition_sizes: list[int],
377
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
378
+ out_features = codes.size(0) * codebooks.size(2)
379
+ flat_input = input.reshape((-1, input.size(-1)))
380
+ flat_output = torch.empty((flat_input.size(0), out_features),
381
+ dtype=input.dtype,
382
+ device=input.device)
383
+
384
+ output_sizes = list(input.shape)
385
+ output_sizes.pop()
386
+ output_sizes.append(-1)
387
+ return flat_output.reshape(tuple(output_sizes))
388
+
389
+ @register_fake("_C::aqlm_dequant")
390
+ def _aqlm_dequant_fake(
391
+ codes: torch.Tensor, codebooks: torch.Tensor,
392
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
393
+ in_features = codes.size(1) * 8
394
+ out_features = codes.size(0)
395
+ return torch.empty((out_features, in_features),
396
+ dtype=codebooks.dtype,
397
+ device=codebooks.device)
398
+
399
+ @register_fake("_C::fp8_marlin_gemm")
400
+ def _fp8_marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
401
+ b_scales: torch.Tensor, workspace: torch.Tensor,
402
+ num_bits: int, size_m: torch.SymInt,
403
+ size_n: torch.SymInt,
404
+ size_k: torch.SymInt) -> torch.Tensor:
405
+ return torch.empty((size_m, size_n), dtype=a.dtype, device=a.device)
406
+
407
+ @register_fake("_C::machete_mm")
408
+ def machete_mm_fake(
409
+ a: torch.Tensor,
410
+ # b_q Should be the tensor returned by machete_prepack_B
411
+ b_q: torch.Tensor,
412
+ b_type: ScalarType,
413
+ out_type: Optional[torch.dtype] = None,
414
+ b_group_scales: Optional[torch.Tensor] = None,
415
+ b_group_zeros: Optional[torch.Tensor] = None,
416
+ b_group_size: Optional[int] = None,
417
+ b_channel_scales: Optional[torch.Tensor] = None,
418
+ a_token_scales: Optional[torch.Tensor] = None,
419
+ schedule: Optional[str] = None,
420
+ ) -> torch.Tensor:
421
+ m = a.size(0)
422
+ n = b_q.size(1)
423
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
424
+
425
+ @register_fake("_C::machete_prepack_B")
426
+ def machete_prepack_B_fake(
427
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
428
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
429
+ return torch.empty_like(b_q_weight,
430
+ memory_format=torch.contiguous_format)
431
+
432
+
433
+ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
434
+
435
+ @register_fake("_C::allspark_w8a16_gemm")
436
+ def _allspark_w8a16_gemm_fake(a: torch.Tensor, b_qweight: torch.Tensor,
437
+ b_scales: torch.Tensor,
438
+ b_qzeros: Optional[torch.Tensor],
439
+ n: torch.SymInt, group_size: torch.SymInt,
440
+ sm_count: torch.SymInt,
441
+ sm_version: torch.SymInt,
442
+ CUBLAS_M_THRESHOLD: torch.SymInt,
443
+ has_zp: bool,
444
+ n32k16_reorder: bool) -> torch.Tensor:
445
+ m = a.size(0)
446
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
447
+
448
+
449
+ if hasattr(torch.ops._C, "ggml_dequantize"):
450
+
451
+ @register_fake("_C::ggml_dequantize")
452
+ def _ggml_dequantize_fake(
453
+ W: torch.Tensor,
454
+ quant_type: int,
455
+ m: torch.SymInt,
456
+ n: torch.SymInt,
457
+ dtype: Optional[torch.dtype] = None) -> torch.Tensor:
458
+ return torch.empty((m, n), dtype=torch.float16, device=W.device)
459
+
460
+ @register_fake("_C::ggml_mul_mat_vec_a8")
461
+ def _ggml_mul_mat_vec_a8_fake(
462
+ W: torch.Tensor,
463
+ X: torch.Tensor,
464
+ quant_type: int,
465
+ row: torch.SymInt,
466
+ ) -> torch.Tensor:
467
+ return torch.empty((1, row), dtype=X.dtype, device=W.device)
468
+
469
+ @register_fake("_C::ggml_mul_mat_a8")
470
+ def _ggml_mul_mat_a8_fake(
471
+ W: torch.Tensor,
472
+ X: torch.Tensor,
473
+ quant_type: int,
474
+ row: torch.SymInt,
475
+ ) -> torch.Tensor:
476
+ batch = X.size(0)
477
+ return torch.empty((batch, row), dtype=X.dtype, device=W.device)
478
+
479
+ @register_fake("_C::ggml_moe_a8")
480
+ def _ggml_moe_a8_fake(
481
+ X: torch.Tensor,
482
+ W: torch.Tensor,
483
+ sorted_token_ids: torch.Tensor,
484
+ expert_ids: torch.Tensor,
485
+ num_tokens_post_padded: torch.Tensor,
486
+ quant_type: int,
487
+ row: torch.SymInt,
488
+ top_k: torch.SymInt,
489
+ tokens: torch.SymInt,
490
+ ) -> torch.Tensor:
491
+ tokens = X.size(0)
492
+ return torch.empty((tokens * top_k, row),
493
+ dtype=torch.float16,
494
+ device=W.device)
495
+
496
+
497
+ # cutlass
498
+ def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
499
+ return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
500
+
501
+
502
+ def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
503
+ block_scale_a: torch.Tensor,
504
+ block_scale_b: torch.Tensor, alpha: torch.Tensor,
505
+ out_dtype: torch.dtype) -> torch.Tensor:
506
+ assert a.ndim == 2 and b.ndim == 2
507
+ m, n = a.shape[0], b.shape[0]
508
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
509
+ torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b,
510
+ alpha)
511
+ return out
512
+
513
+
514
+ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
515
+ return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
516
+
517
+
518
+ def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
519
+ return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
520
+ cuda_device_capability)
521
+
522
+
523
+ def cutlass_scaled_mm(a: torch.Tensor,
524
+ b: torch.Tensor,
525
+ scale_a: torch.Tensor,
526
+ scale_b: torch.Tensor,
527
+ out_dtype: torch.dtype,
528
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
529
+ """
530
+ `cutlass_scaled_mm` implements a fused version of
531
+ `output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
532
+ where scale_a * a and scale_b * b are implemented using numpy-style
533
+ broadcasting.
534
+
535
+ In order to support blockwise scaling like found in DeepSeek V3 we also
536
+ support extended "group" broadcast rules. We extend the numpy-style
537
+ broadcasting rules with the following rule:
538
+ "if the extent of a dimension in the source shape is between 1 and
539
+ corresponding extent in the target shape we repeat each element along
540
+ that dimension src_shape[dim] // target_shape[dim] times consecutively"
541
+ example if we have:
542
+ a = [[1, 2], and target_shape = (2, 4)
543
+ [3, 4]]
544
+ then we would expand a to:
545
+ a = [[1, 1, 2, 2],
546
+ [3, 3, 4, 4]]
547
+ currently we only support the case:
548
+ scale_a.shape * [1, 128] == a.shape
549
+ scale_b.shape * [128, 128] == b.shape
550
+ """
551
+ assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
552
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
553
+ assert bias is None or bias.shape[0] == b.shape[
554
+ 1] and bias.dtype == out_dtype
555
+
556
+ m = a.shape[0]
557
+ n = b.shape[1]
558
+
559
+ if current_platform.is_rocm():
560
+ triton_scaled_mm_module = importlib.import_module(
561
+ "vllm.model_executor.layers.quantization.compressed_tensors."
562
+ "triton_scaled_mm")
563
+ triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm
564
+ return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
565
+
566
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
567
+
568
+ torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
569
+
570
+ return out
571
+
572
+
573
+ def cutlass_scaled_mm_azp(a: torch.Tensor,
574
+ b: torch.Tensor,
575
+ scale_a: torch.Tensor,
576
+ scale_b: torch.Tensor,
577
+ out_dtype: torch.dtype,
578
+ azp_adj: torch.Tensor,
579
+ azp: Optional[torch.Tensor] = None,
580
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
581
+ """
582
+ :param azp_adj: In the per-tensor case, this should include the azp.
583
+ Always per-channel.
584
+ :param azp: Only set in the per-token case. Per-token if set.
585
+ """
586
+ assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
587
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
588
+ assert bias is None or bias.numel(
589
+ ) == b.shape[1] and bias.dtype == out_dtype
590
+ assert azp is None or azp.numel() == a.shape[0]
591
+
592
+ m = a.shape[0]
593
+ n = b.shape[1]
594
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
595
+
596
+ torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
597
+ azp, bias)
598
+ return out
599
+
600
+
601
+ def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
602
+ return torch.ops._C.cutlass_sparse_scaled_mm_supported(
603
+ cuda_device_capability)
604
+
605
+
606
+ def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
607
+ return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
608
+
609
+ def cutlass_sparse_compress(a: torch.Tensor) \
610
+ -> tuple[torch.Tensor, torch.Tensor]:
611
+ """
612
+ Compresses a sparse matrix for use with Cutlass sparse operations.
613
+
614
+ This function takes a dense tensor and compresses it into two components:
615
+ non-zero elements and metadata. The compressed representation is compatible
616
+ with Cutlass sparse kernels.
617
+
618
+ Args:
619
+ a (torch.Tensor):
620
+ The input tensor to be compressed. Must have one of the following data types:
621
+ - `torch.int8`
622
+ - `torch.float8_e4m3fn`
623
+ - `torch.bfloat16`
624
+ - `torch.float16`
625
+
626
+ Returns:
627
+ tuple[torch.Tensor, torch.Tensor]:
628
+ A tuple containing:
629
+ - `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
630
+ - `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
631
+
632
+ Raises:
633
+ ValueError: If the compression operation fails.
634
+
635
+ Notes:
636
+ - The `a_meta` tensor has a data type of `torch.uint8`.
637
+ - Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
638
+ - The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
639
+ - The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
640
+ """
641
+ assert (a.dtype in [
642
+ torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16
643
+ ])
644
+ assert (a.is_contiguous())
645
+
646
+ # a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
647
+ elemsPerMetaElem = 4
648
+ assert (a.shape[1] % (2 * elemsPerMetaElem) == 0)
649
+
650
+ return torch.ops._C.cutlass_sparse_compress(a)
651
+
652
+
653
+ def cutlass_scaled_sparse_mm(
654
+ a: torch.Tensor,
655
+ bt_nzs: torch.Tensor,
656
+ bt_meta: torch.Tensor,
657
+ scale_a: torch.Tensor,
658
+ scale_b: torch.Tensor,
659
+ out_dtype: torch.dtype,
660
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
661
+ """
662
+ Performs a scaled sparse matrix multiplication using Cutlass.
663
+
664
+ Steps:
665
+ 1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
666
+ `a = torch.randn((m, k), device='cuda')`.
667
+
668
+ 2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
669
+ `b = torch.randn((k, n), device='cuda')`.
670
+
671
+ 3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
672
+ `b = prune_to_2_4(b, dim=0)`.
673
+
674
+ 4. Compress the transposed sparse matrix `b.t()`:
675
+ `bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
676
+
677
+ 5. Perform sparse matrix multiplication using the compressed matrix,
678
+ applying scaling factors for `a` and `b`, and the output data type:
679
+ `out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
680
+
681
+ Returns:
682
+ - The result of the scaled sparse matrix multiplication.
683
+ """
684
+ assert (bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0)
685
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
686
+ assert bias is None or bias.shape[0] == bt_nzs.shape[0] \
687
+ and bias.dtype == out_dtype
688
+
689
+ m = a.shape[0]
690
+ n = bt_nzs.shape[0]
691
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
692
+
693
+ torch.ops._C.cutlass_scaled_sparse_mm(out, a, bt_nzs, bt_meta, scale_a,
694
+ scale_b, bias)
695
+
696
+ return out
697
+
698
+
699
+ def get_cutlass_moe_mm_data(
700
+ topk_ids: torch.Tensor, expert_offsets: torch.Tensor,
701
+ problem_sizes1: torch.Tensor, problem_sizes2: torch.Tensor,
702
+ input_permutation: torch.Tensor, output_permutation: torch.Tensor,
703
+ num_experts: int, n: int, k: int):
704
+ """
705
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
706
+ used in CUTLASS-based fused MoE.
707
+
708
+ The function takes in topk_ids (token-expert mapping) and uses it to
709
+ compute:
710
+ - expert_offsets: Indices that mark at which token index each expert begins
711
+ its computation after the input is sorted with
712
+ input_permutation. The number of tokens computed with
713
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
714
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
715
+ multiplication in two grouped MMs used in
716
+ the fused MoE operation.
717
+ - input_permutation: Permutation that must be used to shuffle the input
718
+ before executing the MMs.
719
+ - output_permutation: Permutation that must be used to shuffle the output
720
+ after executing the MMs.
721
+ """
722
+ torch.ops._C.get_cutlass_moe_mm_data(topk_ids, expert_offsets,
723
+ problem_sizes1, problem_sizes2,
724
+ input_permutation, output_permutation,
725
+ num_experts, n, k)
726
+
727
+
728
+ def cutlass_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
729
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
730
+ b_scales: torch.Tensor, expert_offsets: torch.Tensor,
731
+ problem_sizes: torch.Tensor, a_strides: torch.Tensor,
732
+ b_strides: torch.Tensor, c_strides: torch.Tensor):
733
+ """
734
+ A single grouped matrix multiplication used in CUTLASS-based fused MoE.
735
+ The function executes fp8-quantized OUT = AB matrix multiplication.
736
+
737
+ - expert_offsets: Indices that mark at which token index each expert begins
738
+ its computation. The number of tokens computed with
739
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
740
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
741
+ MMs used in the fused MoE operation.
742
+ - a/b/c_strides: The data strides passed to grouped matrix multiplication.
743
+ """
744
+ torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors, a_scales,
745
+ b_scales, expert_offsets, problem_sizes,
746
+ a_strides, b_strides, c_strides)
747
+
748
+
749
+ # aqlm
750
+ def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor,
751
+ codebooks: torch.Tensor, scales: torch.Tensor,
752
+ codebook_partition_sizes: list[int],
753
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
754
+ return torch.ops._C.aqlm_gemm(input, codes, codebooks, scales,
755
+ codebook_partition_sizes, bias)
756
+
757
+
758
+ def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor,
759
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
760
+ return torch.ops._C.aqlm_dequant(codes, codebooks,
761
+ codebook_partition_sizes)
762
+
763
+
764
+ # gptq_marlin
765
+ def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
766
+ size_k: int, size_n: int,
767
+ num_bits: int) -> torch.Tensor:
768
+ return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
769
+ num_bits)
770
+
771
+
772
+ # gptq_marlin
773
+ def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
774
+ num_bits: int) -> torch.Tensor:
775
+ return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
776
+
777
+
778
+ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
779
+ size_k: int, size_n: int,
780
+ num_bits: int) -> torch.Tensor:
781
+ num_experts = b_q_weight.shape[0]
782
+ assert size_k % 16 == 0
783
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
784
+ device=b_q_weight.device,
785
+ dtype=b_q_weight.dtype)
786
+ for e in range(num_experts):
787
+ output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e],
788
+ size_k, size_n, num_bits)
789
+ return output
790
+
791
+
792
+ def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
793
+ size_k: int, size_n: int,
794
+ num_bits: int) -> torch.Tensor:
795
+ num_experts = b_q_weight.shape[0]
796
+ assert size_k % 16 == 0
797
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
798
+ device=b_q_weight.device,
799
+ dtype=b_q_weight.dtype)
800
+ for e in range(num_experts):
801
+ output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
802
+ size_n, num_bits)
803
+ return output
804
+
805
+
806
+ def gptq_marlin_gemm(a: torch.Tensor,
807
+ b_q_weight: torch.Tensor,
808
+ b_scales: torch.Tensor,
809
+ b_zeros: torch.Tensor,
810
+ g_idx: torch.Tensor,
811
+ perm: torch.Tensor,
812
+ workspace: torch.Tensor,
813
+ b_q_type: ScalarType,
814
+ size_m: int,
815
+ size_n: int,
816
+ size_k: int,
817
+ is_k_full: bool,
818
+ has_zp: bool = False,
819
+ use_atomic_add: bool = False,
820
+ use_fp32_reduce: bool = False,
821
+ is_zp_float: bool = False) -> torch.Tensor:
822
+ return torch.ops._C.gptq_marlin_gemm(a, b_q_weight, b_scales, b_zeros,
823
+ g_idx, perm, workspace, b_q_type.id,
824
+ size_m, size_n, size_k, is_k_full,
825
+ has_zp, use_atomic_add,
826
+ use_fp32_reduce, is_zp_float)
827
+
828
+
829
+ # fp8 marlin
830
+ def fp8_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
831
+ b_scales: torch.Tensor, workspace: torch.Tensor,
832
+ num_bits: int, size_m: int, size_n: int,
833
+ size_k: int) -> torch.Tensor:
834
+ return torch.ops._C.fp8_marlin_gemm(a, b_q_weight, b_scales, workspace,
835
+ num_bits, size_m, size_n, size_k)
836
+
837
+
838
+ # machete
839
+ def machete_supported_schedules(
840
+ a_type: torch.dtype,
841
+ b_type: ScalarType,
842
+ group_scales_type: Optional[torch.dtype],
843
+ group_zeros_type: Optional[torch.dtype] = None,
844
+ channel_scales_type: Optional[torch.dtype] = None,
845
+ token_scales_type: Optional[torch.dtype] = None,
846
+ out_type: Optional[torch.dtype] = None) -> list[str]:
847
+ return torch.ops._C.machete_supported_schedules(
848
+ a_type, b_type.id, group_scales_type, group_zeros_type,
849
+ channel_scales_type, token_scales_type, out_type)
850
+
851
+
852
+ def machete_mm(
853
+ a: torch.Tensor,
854
+ # b_q Should be the tensor returned by machete_prepack_B
855
+ b_q: torch.Tensor,
856
+ b_type: ScalarType,
857
+ out_type: Optional[torch.dtype] = None,
858
+ b_group_scales: Optional[torch.Tensor] = None,
859
+ b_group_zeros: Optional[torch.Tensor] = None,
860
+ b_group_size: Optional[int] = None,
861
+ b_channel_scales: Optional[torch.Tensor] = None,
862
+ a_token_scales: Optional[torch.Tensor] = None,
863
+ schedule: Optional[str] = None) -> torch.Tensor:
864
+ return torch.ops._C.machete_mm(a, b_q, b_type.id, out_type, b_group_scales,
865
+ b_group_zeros, b_group_size,
866
+ b_channel_scales, a_token_scales, schedule)
867
+
868
+
869
+ def machete_prepack_B(
870
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
871
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
872
+ return torch.ops._C.machete_prepack_B(b_q_weight, a_type, b_type.id,
873
+ group_scales_type)
874
+
875
+
876
+ if hasattr(torch.ops._C, "permute_cols"):
877
+
878
+ @register_fake("_C::permute_cols")
879
+ def _permute_cols_fake(a: torch.Tensor,
880
+ perm: torch.Tensor) -> torch.Tensor:
881
+ return torch.empty_like(a)
882
+
883
+
884
+ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
885
+ return torch.ops._C.permute_cols(a, perm)
886
+
887
+
888
+ # fp4
889
+ def scaled_fp4_quant(
890
+ input: torch.Tensor,
891
+ input_global_scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
892
+ """
893
+ Quantize input tensor to FP4 and return quantized tensor and scale.
894
+
895
+ This function quantizes the last dimension of the given tensor `input`. For
896
+ every 16 consecutive elements, a single dynamically computed scaling factor
897
+ is shared. This scaling factor is quantized using the `input_global_scale`
898
+ and is stored in a swizzled layout (see
899
+ https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
900
+
901
+ Args:
902
+ input: The input tensor to be quantized to FP4
903
+ input_global_scale: A scalar scaling factor for the entire tensor.
904
+
905
+ Returns:
906
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
907
+ two values are packed into a uint8 and float8_e4m3 scaling factors
908
+ in the sizzled layout.
909
+ """
910
+ assert not current_platform.is_rocm()
911
+ assert input.ndim >= 1, (
912
+ f'input.ndim needs to be >= 1, but got {input.ndim}.')
913
+ other_dims = 1 if input.ndim == 1 else -1
914
+ input = input.reshape(other_dims, input.shape[-1])
915
+ m, n = input.shape
916
+ block_size = 16
917
+ device = input.device
918
+
919
+ assert n % block_size == 0, (
920
+ f'last dim has to be multiple of 16, but got {n}.')
921
+ assert input.dtype in (torch.float16, torch.bfloat16), (
922
+ f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
923
+
924
+ # Two fp4 values will be packed into an uint8.
925
+ output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
926
+
927
+ # We use the rounded values to store the swizzled values. Due to the
928
+ # requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
929
+ # So, we first pad the scales to multiples of 128 and 4. Then, the scales
930
+ # (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
931
+ # https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
932
+ round_up = lambda x, y: (x + y - 1) // y * y
933
+ rounded_m = round_up(m, 128)
934
+ scale_n = n // block_size
935
+ rounded_n = round_up(scale_n, 4)
936
+ output_scale = torch.empty((rounded_m, rounded_n // 4),
937
+ device=device,
938
+ dtype=torch.int32)
939
+
940
+ torch.ops._C.scaled_fp4_quant(output, input, output_scale,
941
+ input_global_scale)
942
+ output_scale = output_scale.view(torch.float8_e4m3fn)
943
+ return output, output_scale
944
+
945
+
946
+ # fp8
947
+ def scaled_fp8_quant(
948
+ input: torch.Tensor,
949
+ scale: Optional[torch.Tensor] = None,
950
+ num_token_padding: Optional[int] = None,
951
+ scale_ub: Optional[torch.Tensor] = None,
952
+ use_per_token_if_dynamic: bool = False,
953
+ ) -> tuple[torch.Tensor, torch.Tensor]:
954
+ """
955
+ Quantize input tensor to FP8 and return quantized tensor and scale.
956
+
957
+ This function supports both static and dynamic quantization: If you
958
+ provide the scale, it will use static scaling and if you omit it,
959
+ the scale will be determined dynamically. The function also allows
960
+ optional padding of the output tensors for downstream kernels that
961
+ will benefit from padding.
962
+
963
+ Args:
964
+ input: The input tensor to be quantized to FP8
965
+ scale: Optional scaling factor for the FP8 quantization
966
+ scale_ub: Optional upper bound for scaling factor in dynamic
967
+ per token case
968
+ num_token_padding: If specified, pad the first dimension
969
+ of the output to at least this value.
970
+ use_per_token_if_dynamic: Whether to do per_tensor or per_token
971
+ in the dynamic quantization case.
972
+
973
+ Returns:
974
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
975
+ scaling factor.
976
+ """
977
+ # This code assumes batch_dim and num_tokens are flattened
978
+ assert (input.ndim == 2)
979
+ shape: Union[tuple[int, int], torch.Size] = input.shape
980
+ # For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
981
+ out_dtype: torch.dtype = current_platform.fp8_dtype()
982
+ if num_token_padding:
983
+ shape = (max(num_token_padding, input.shape[0]), shape[1])
984
+ output = torch.empty(shape, device=input.device, dtype=out_dtype)
985
+
986
+ if scale is None:
987
+ if use_per_token_if_dynamic:
988
+ scale = torch.empty((shape[0], 1),
989
+ device=input.device,
990
+ dtype=torch.float32)
991
+ torch.ops._C.dynamic_per_token_scaled_fp8_quant(
992
+ output, input, scale, scale_ub)
993
+ else:
994
+ scale = torch.zeros(1, device=input.device, dtype=torch.float32)
995
+ torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
996
+ else:
997
+ # num_token_padding not implemented for this case
998
+ assert (scale.numel() == 1 or num_token_padding is None)
999
+ torch.ops._C.static_scaled_fp8_quant(output, input, scale)
1000
+
1001
+ return output, scale
1002
+
1003
+
1004
+ # gptq allspark
1005
+ def allspark_repack_weight(
1006
+ qweight: torch.Tensor,
1007
+ scale: torch.Tensor,
1008
+ zero_point: Optional[torch.Tensor] = None,
1009
+ has_zp: bool = False
1010
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1011
+ """
1012
+ Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
1013
+ for Ampere W8A16 Fused Gemm kernel
1014
+
1015
+ Args:
1016
+ qweight: uint8 weight tensor, original k x n format.
1017
+ scale: fp16/bf16 weight scale tensor, 1 x n format.
1018
+ zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
1019
+ Must be provided for asymmetric quantization.
1020
+ has_zp: if use symmetric quantization, has_zp = False.
1021
+ if use asymmetric quantization, has_zp = True.
1022
+
1023
+ Returns:
1024
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
1025
+ rearranged weight, scale, and optionally zero_point.
1026
+ """
1027
+ K = qweight.shape[0]
1028
+ N = qweight.shape[1]
1029
+ N_32align = (N + 32 - 1) // 32 * 32
1030
+
1031
+ qweight_reorder = torch.empty((N_32align, K),
1032
+ device=qweight.device,
1033
+ dtype=qweight.dtype)
1034
+ scale_reorder = torch.empty((1, N_32align),
1035
+ device=scale.device,
1036
+ dtype=scale.dtype)
1037
+ zero_point_reorder = None
1038
+ if has_zp:
1039
+ assert zero_point is not None, (
1040
+ "zero_point must be provided for asymmetric quantization.")
1041
+ zero_point_reorder = torch.empty((1, N_32align),
1042
+ device=zero_point.device,
1043
+ dtype=zero_point.dtype)
1044
+
1045
+ torch.ops._C.rearrange_kn_weight_as_n32k16_order(
1046
+ qweight, scale, zero_point, has_zp, qweight_reorder, scale_reorder,
1047
+ zero_point_reorder, K, N, N_32align)
1048
+
1049
+ return qweight_reorder, scale_reorder, zero_point_reorder
1050
+
1051
+
1052
+ def allspark_w8a16_gemm(a: torch.Tensor, b_qweight: torch.Tensor,
1053
+ b_scales: torch.Tensor,
1054
+ b_qzeros: Optional[torch.Tensor], n: int,
1055
+ group_size: int, sm_count: int, sm_version: int,
1056
+ CUBLAS_M_THRESHOLD: int, has_zp: bool,
1057
+ n32k16_reorder: bool) -> torch.Tensor:
1058
+
1059
+ return torch.ops._C.allspark_w8a16_gemm(a, b_qweight, b_scales, b_qzeros,
1060
+ n, group_size, sm_count,
1061
+ sm_version, CUBLAS_M_THRESHOLD,
1062
+ has_zp, n32k16_reorder)
1063
+
1064
+
1065
+ # int8
1066
+ def scaled_int8_quant(
1067
+ input: torch.Tensor,
1068
+ scale: Optional[torch.Tensor] = None,
1069
+ azp: Optional[torch.Tensor] = None,
1070
+ symmetric: bool = True
1071
+ ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
1072
+ """
1073
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1074
+
1075
+ Args:
1076
+ input: The input tensor to be quantized to int8.
1077
+ scale: Optional scaling factor for the int8 quantization.
1078
+ When not provided, we invoke dynamic-per-token quantization.
1079
+ azp: Optional zero-point for the int8 quantization.
1080
+ Must be provided for asymmetric quantization if `scale` is provided.
1081
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1082
+
1083
+ Returns:
1084
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1085
+ """
1086
+ output = torch.empty_like(input, dtype=torch.int8)
1087
+ if scale is not None:
1088
+ # static-per-tensor quantization.
1089
+ assert symmetric == (
1090
+ azp
1091
+ is None), "azp must only be provided for asymmetric quantization."
1092
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1093
+ return output, scale, azp
1094
+
1095
+ # dynamic-per-token quantization.
1096
+ input_scales = torch.empty((input.numel() // input.shape[-1], 1),
1097
+ device=input.device,
1098
+ dtype=torch.float32)
1099
+ input_azp = None if symmetric else torch.empty_like(input_scales,
1100
+ dtype=torch.int32)
1101
+ torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales,
1102
+ input_azp)
1103
+ return output, input_scales, input_azp
1104
+
1105
+
1106
+ # qqq ops
1107
+ def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
1108
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
1109
+ s_group: torch.Tensor, workspace: torch.Tensor,
1110
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
1111
+ return torch.ops._C.marlin_qqq_gemm(a, b_q_weight, s_tok, s_ch, s_group,
1112
+ workspace, size_m, size_n, size_k)
1113
+
1114
+
1115
+ # gguf
1116
+ def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
1117
+ dtype: Optional[torch.dtype]) -> torch.Tensor:
1118
+ return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
1119
+
1120
+
1121
+ def ggml_mul_mat_vec_a8(
1122
+ W: torch.Tensor,
1123
+ X: torch.Tensor,
1124
+ quant_type: int,
1125
+ row: int,
1126
+ ) -> torch.Tensor:
1127
+ return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
1128
+
1129
+
1130
+ def ggml_mul_mat_a8(
1131
+ W: torch.Tensor,
1132
+ X: torch.Tensor,
1133
+ quant_type: int,
1134
+ row: int,
1135
+ ) -> torch.Tensor:
1136
+ return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
1137
+
1138
+
1139
+ def ggml_moe_a8(
1140
+ X: torch.Tensor,
1141
+ W: torch.Tensor,
1142
+ sorted_token_ids: torch.Tensor,
1143
+ expert_ids: torch.Tensor,
1144
+ num_tokens_post_padded: torch.Tensor,
1145
+ quant_type: int,
1146
+ row: int,
1147
+ top_k: int,
1148
+ tokens: int,
1149
+ ) -> torch.Tensor:
1150
+ return torch.ops._C.ggml_moe_a8(X, W, sorted_token_ids, expert_ids,
1151
+ num_tokens_post_padded, quant_type, row,
1152
+ top_k, tokens)
1153
+
1154
+
1155
+ def ggml_moe_get_block_size(quant_type: int) -> int:
1156
+ return torch.ops._C.ggml_moe_get_block_size(quant_type)
1157
+
1158
+
1159
+ # mamba
1160
+ def causal_conv1d_fwd(x: torch.Tensor, weight: torch.Tensor,
1161
+ bias_: Optional[torch.Tensor],
1162
+ conv_states: Optional[torch.Tensor],
1163
+ query_start_loc: Optional[torch.Tensor],
1164
+ cache_indices: Optional[torch.Tensor],
1165
+ has_initial_state: Optional[torch.Tensor],
1166
+ silu_activation: bool, pad_slot_id: int):
1167
+ torch.ops._C.causal_conv1d_fwd(x, weight, bias_, conv_states,
1168
+ query_start_loc, cache_indices,
1169
+ has_initial_state, silu_activation,
1170
+ pad_slot_id)
1171
+
1172
+
1173
+ def causal_conv1d_update(x: torch.Tensor, conv_state: torch.Tensor,
1174
+ weight: torch.Tensor, bias_: Optional[torch.Tensor],
1175
+ silu_activation: bool,
1176
+ cache_seqlens: Optional[torch.Tensor],
1177
+ conv_state_indices: Optional[torch.Tensor],
1178
+ pad_slot_id: int):
1179
+ torch.ops._C.causal_conv1d_update(x, conv_state, weight, bias_,
1180
+ silu_activation, cache_seqlens,
1181
+ conv_state_indices, pad_slot_id)
1182
+
1183
+
1184
+ def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
1185
+ B: torch.Tensor, C: torch.Tensor,
1186
+ D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
1187
+ delta_bias_: Optional[torch.Tensor],
1188
+ delta_softplus: bool,
1189
+ query_start_loc: Optional[torch.Tensor],
1190
+ cache_indices: Optional[torch.Tensor],
1191
+ has_initial_state: Optional[torch.Tensor],
1192
+ ssm_states: torch.Tensor, pad_slot_id: int):
1193
+ torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_, delta_bias_,
1194
+ delta_softplus, query_start_loc,
1195
+ cache_indices, has_initial_state,
1196
+ ssm_states, pad_slot_id)
1197
+
1198
+
1199
+ # ROCm skinny gemms
1200
+ def LLMM1(a: torch.Tensor, b: torch.Tensor,
1201
+ rows_per_block: int) -> torch.Tensor:
1202
+ return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
1203
+
1204
+
1205
+ def wvSplitK(a: torch.Tensor, b: torch.Tensor, cu_count: int) -> torch.Tensor:
1206
+ return torch.ops._rocm_C.wvSplitK(a, b, cu_count)
1207
+
1208
+
1209
+ def wvSplitKQ(a: torch.Tensor, b: torch.Tensor, out_dtype: torch.dtype,
1210
+ scale_a: torch.Tensor, scale_b: torch.Tensor,
1211
+ cu_count: int) -> torch.Tensor:
1212
+ out = torch.empty((b.shape[0], a.shape[0]),
1213
+ dtype=out_dtype,
1214
+ device=b.device)
1215
+ torch.ops._rocm_C.wvSplitKQ(a, b, out, scale_a, scale_b, cu_count)
1216
+ return out
1217
+
1218
+
1219
+ # moe
1220
+ def moe_sum(input: torch.Tensor, output: torch.Tensor):
1221
+ torch.ops._moe_C.moe_sum(input, output)
1222
+
1223
+
1224
+ def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1225
+ block_size: int, sorted_token_ids: torch.Tensor,
1226
+ experts_ids: torch.Tensor,
1227
+ num_tokens_post_pad: torch.Tensor) -> None:
1228
+ torch.ops._moe_C.moe_align_block_size(topk_ids, num_experts, block_size,
1229
+ sorted_token_ids, experts_ids,
1230
+ num_tokens_post_pad)
1231
+
1232
+
1233
+ def sgl_moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1234
+ block_size: int, sorted_token_ids: torch.Tensor,
1235
+ experts_ids: torch.Tensor,
1236
+ num_tokens_post_pad: torch.Tensor) -> None:
1237
+ torch.ops._moe_C.sgl_moe_align_block_size(topk_ids, num_experts,
1238
+ block_size, sorted_token_ids,
1239
+ experts_ids, num_tokens_post_pad)
1240
+
1241
+
1242
+ def moe_wna16_gemm(input: torch.Tensor, output: torch.Tensor,
1243
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1244
+ b_qzeros: Optional[torch.Tensor],
1245
+ topk_weights: Optional[torch.Tensor],
1246
+ sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor,
1247
+ num_tokens_post_pad: torch.Tensor, top_k: int,
1248
+ BLOCK_SIZE_M: int, BLOCK_SIZE_N: int, BLOCK_SIZE_K: int,
1249
+ bit: int) -> torch.Tensor:
1250
+ if not current_platform.is_cuda():
1251
+ raise NotImplementedError(
1252
+ "The optimized moe_wna16_gemm kernel is only "
1253
+ "available on CUDA platforms")
1254
+ torch.ops._moe_C.moe_wna16_gemm(input, output, b_qweight, b_scales,
1255
+ b_qzeros, topk_weights, sorted_token_ids,
1256
+ experts_ids, num_tokens_post_pad, top_k,
1257
+ BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
1258
+ bit)
1259
+
1260
+
1261
+ def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
1262
+ token_expert_indicies: torch.Tensor,
1263
+ gating_output: torch.Tensor) -> None:
1264
+ torch.ops._moe_C.topk_softmax(topk_weights, topk_ids,
1265
+ token_expert_indicies, gating_output)
1266
+
1267
+
1268
+ def moe_wna16_marlin_gemm(input: torch.Tensor, output: Optional[torch.Tensor],
1269
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1270
+ b_qzeros: Optional[torch.Tensor],
1271
+ g_idx: Optional[torch.Tensor],
1272
+ perm: Optional[torch.Tensor],
1273
+ workspace: torch.Tensor,
1274
+ sorted_token_ids: torch.Tensor,
1275
+ expert_ids: torch.Tensor,
1276
+ num_tokens_past_padded: torch.Tensor,
1277
+ topk_weights: torch.Tensor, moe_block_size: int,
1278
+ top_k: int, mul_topk_weights: bool, is_ep: bool,
1279
+ b_q_type: ScalarType, size_m: int, size_n: int,
1280
+ size_k: int, is_k_full: bool, use_atomic_add: bool,
1281
+ use_fp32_reduce: bool,
1282
+ is_zp_float: bool) -> torch.Tensor:
1283
+ return torch.ops._moe_C.moe_wna16_marlin_gemm(
1284
+ input, output, b_qweight, b_scales, b_qzeros, g_idx, perm, workspace,
1285
+ sorted_token_ids, expert_ids, num_tokens_past_padded, topk_weights,
1286
+ moe_block_size, top_k, mul_topk_weights, is_ep, b_q_type.id, size_m,
1287
+ size_n, size_k, is_k_full, use_atomic_add, use_fp32_reduce,
1288
+ is_zp_float)
1289
+
1290
+
1291
+ if supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
1292
+
1293
+ @register_fake("_moe_C::marlin_gemm_moe")
1294
+ def marlin_gemm_moe_fake(a: torch.Tensor, b_q_weights: torch.Tensor,
1295
+ sorted_ids: torch.Tensor,
1296
+ topk_weights: torch.Tensor,
1297
+ topk_ids: torch.Tensor, b_scales: torch.Tensor,
1298
+ b_zero_points: torch.Tensor, g_idx: torch.Tensor,
1299
+ perm: torch.Tensor, workspace: torch.Tensor,
1300
+ b_q_type: ScalarType, size_m: torch.SymInt,
1301
+ size_n: torch.SymInt, size_k: torch.SymInt,
1302
+ is_k_full: bool, num_experts: int, topk: int,
1303
+ moe_block_size: int, replicate_input: bool,
1304
+ apply_weights: bool) -> torch.Tensor:
1305
+ return torch.empty((size_m, topk, size_n),
1306
+ dtype=a.dtype,
1307
+ device=a.device)
1308
+
1309
+ @register_fake("_moe_C::moe_wna16_marlin_gemm")
1310
+ def moe_wna16_marlin_gemm_fake(input: torch.Tensor,
1311
+ output: Optional[torch.Tensor],
1312
+ b_qweight: torch.Tensor,
1313
+ b_scales: torch.Tensor,
1314
+ b_qzeros: Optional[torch.Tensor],
1315
+ g_idx: Optional[torch.Tensor],
1316
+ perm: Optional[torch.Tensor],
1317
+ workspace: torch.Tensor,
1318
+ sorted_token_ids: torch.Tensor,
1319
+ expert_ids: torch.Tensor,
1320
+ num_tokens_past_padded: torch.Tensor,
1321
+ topk_weights: torch.Tensor,
1322
+ moe_block_size: int, top_k: int,
1323
+ mul_topk_weights: bool, is_ep: bool,
1324
+ b_q_type: ScalarType, size_m: int,
1325
+ size_n: int, size_k: int, is_k_full: bool,
1326
+ use_atomic_add: bool, use_fp32_reduce: bool,
1327
+ is_zp_float: bool) -> torch.Tensor:
1328
+ return torch.empty((size_m * top_k, size_n),
1329
+ dtype=input.dtype,
1330
+ device=input.device)
1331
+
1332
+
1333
+ def reshape_and_cache(
1334
+ key: torch.Tensor,
1335
+ value: torch.Tensor,
1336
+ key_cache: torch.Tensor,
1337
+ value_cache: torch.Tensor,
1338
+ slot_mapping: torch.Tensor,
1339
+ kv_cache_dtype: str,
1340
+ k_scale: torch.Tensor,
1341
+ v_scale: torch.Tensor,
1342
+ ) -> None:
1343
+ torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
1344
+ value_cache, slot_mapping,
1345
+ kv_cache_dtype, k_scale, v_scale)
1346
+
1347
+
1348
+ def reshape_and_cache_flash(
1349
+ key: torch.Tensor,
1350
+ value: torch.Tensor,
1351
+ key_cache: torch.Tensor,
1352
+ value_cache: torch.Tensor,
1353
+ slot_mapping: torch.Tensor,
1354
+ kv_cache_dtype: str,
1355
+ k_scale: torch.Tensor,
1356
+ v_scale: torch.Tensor,
1357
+ ) -> None:
1358
+ torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
1359
+ value_cache, slot_mapping,
1360
+ kv_cache_dtype, k_scale,
1361
+ v_scale)
1362
+
1363
+
1364
+ def concat_and_cache_mla(
1365
+ kv_c: torch.Tensor,
1366
+ k_pe: torch.Tensor,
1367
+ kv_cache: torch.Tensor,
1368
+ slot_mapping: torch.Tensor,
1369
+ kv_cache_dtype: str,
1370
+ scale: torch.Tensor,
1371
+ ) -> None:
1372
+ torch.ops._C_cache_ops.concat_and_cache_mla(kv_c, k_pe, kv_cache,
1373
+ slot_mapping, kv_cache_dtype,
1374
+ scale)
1375
+
1376
+
1377
+ def copy_blocks(key_caches: list[torch.Tensor],
1378
+ value_caches: list[torch.Tensor],
1379
+ block_mapping: torch.Tensor) -> None:
1380
+ torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
1381
+
1382
+
1383
+ def copy_blocks_mla(kv_caches: list[torch.Tensor],
1384
+ block_mapping: torch.Tensor) -> None:
1385
+ torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
1386
+
1387
+
1388
+ def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
1389
+ block_mapping: torch.Tensor) -> None:
1390
+ torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
1391
+
1392
+
1393
+ def convert_fp8(output: torch.Tensor,
1394
+ input: torch.Tensor,
1395
+ scale: float = 1.0,
1396
+ kv_dtype: str = "fp8") -> None:
1397
+ torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
1398
+
1399
+
1400
+ def gather_cache(src_cache: torch.Tensor,
1401
+ dst: torch.Tensor,
1402
+ block_table: torch.Tensor,
1403
+ cu_seq_lens: torch.Tensor,
1404
+ batch_size: int,
1405
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1406
+ torch.ops._C_cache_ops.gather_cache(src_cache, dst, block_table,
1407
+ cu_seq_lens, batch_size, seq_starts)
1408
+
1409
+
1410
+ def get_device_attribute(attribute: int, device: int) -> int:
1411
+ return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
1412
+
1413
+
1414
+ def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
1415
+ # ruff: noqa: E501
1416
+ return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
1417
+ device)
1418
+
1419
+
1420
+ # custom ar
1421
+ def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
1422
+ rank: int, fully_connected: bool) -> int:
1423
+ return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
1424
+ fully_connected)
1425
+
1426
+
1427
+ def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
1428
+ reg_buffer_sz_bytes: int) -> None:
1429
+ torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
1430
+ reg_buffer_sz_bytes)
1431
+
1432
+
1433
+ def dispose(fa: int) -> None:
1434
+ torch.ops._C_custom_ar.dispose(fa)
1435
+
1436
+
1437
+ def meta_size() -> int:
1438
+ return torch.ops._C_custom_ar.meta_size()
1439
+
1440
+
1441
+ def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
1442
+ return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
1443
+
1444
+
1445
+ def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
1446
+ return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
1447
+
1448
+
1449
+ def register_graph_buffers(fa: int, handles: list[list[int]],
1450
+ offsets: list[list[int]]) -> None:
1451
+ torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
1452
+
1453
+
1454
+ def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
1455
+ return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
1456
+
1457
+
1458
+ def open_mem_handle(mem_handle: torch.Tensor):
1459
+ return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
1460
+
1461
+
1462
+ def free_shared_buffer(ptr: int) -> None:
1463
+ torch.ops._C_custom_ar.free_shared_buffer(ptr)
1464
+
1465
+
1466
+ def get_flash_mla_metadata(
1467
+ cache_seqlens: torch.Tensor,
1468
+ num_heads_per_head_k: int,
1469
+ num_heads_k: int,
1470
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1471
+ """
1472
+ Arguments:
1473
+ cache_seqlens: (batch_size), dtype torch.int32.
1474
+ num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
1475
+ num_heads_k: num_heads_k.
1476
+
1477
+ Return:
1478
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
1479
+ num_splits: (batch_size + 1), dtype torch.int32.
1480
+ """
1481
+ return torch.ops._C.get_flash_mla_metadata(cache_seqlens,
1482
+ num_heads_per_head_k,
1483
+ num_heads_k)
1484
+
1485
+
1486
+ def flash_mla_with_kvcache(
1487
+ q: torch.Tensor,
1488
+ k_cache: torch.Tensor,
1489
+ block_table: torch.Tensor,
1490
+ cache_seqlens: torch.Tensor,
1491
+ head_dim_v: int,
1492
+ tile_scheduler_metadata: torch.Tensor,
1493
+ num_splits: torch.Tensor,
1494
+ softmax_scale: Optional[float] = None,
1495
+ causal: bool = False,
1496
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1497
+ """
1498
+ Arguments:
1499
+ q: (batch_size, seq_len_q, num_heads_q, head_dim).
1500
+ k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
1501
+ block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
1502
+ cache_seqlens: (batch_size), torch.int32.
1503
+ head_dim_v: Head_dim of v.
1504
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
1505
+ num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
1506
+ softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
1507
+ causal: bool. Whether to apply causal attention mask.
1508
+
1509
+ Return:
1510
+ out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
1511
+ softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
1512
+ """
1513
+ if softmax_scale is None:
1514
+ softmax_scale = q.shape[-1]**(-0.5)
1515
+ out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
1516
+ q,
1517
+ k_cache,
1518
+ None,
1519
+ head_dim_v,
1520
+ cache_seqlens,
1521
+ block_table,
1522
+ softmax_scale,
1523
+ causal,
1524
+ tile_scheduler_metadata,
1525
+ num_splits,
1526
+ )
1527
+ return out, softmax_lse
1528
+
1529
+
1530
+ def cutlass_mla_decode(out: torch.Tensor, q_nope: torch.Tensor,
1531
+ q_pe: torch.Tensor, kv_c_and_k_pe_cache: torch.Tensor,
1532
+ seq_lens: torch.Tensor, page_table: torch.Tensor,
1533
+ scale: float) -> torch.Tensor:
1534
+ torch.ops._C.cutlass_mla_decode(out, q_nope, q_pe, kv_c_and_k_pe_cache,
1535
+ seq_lens, page_table, scale)
1536
+ return out