vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2056 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import dataclasses
4
+ import gc
5
+ import inspect
6
+ import itertools
7
+ import time
8
+ import weakref
9
+ from contextlib import contextmanager
10
+ from dataclasses import dataclass
11
+ from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set,
12
+ Tuple, Type, TypeVar, Union)
13
+
14
+ import numpy as np
15
+ import torch
16
+ import torch.distributed
17
+ import torch.nn as nn
18
+ from tqdm.auto import tqdm
19
+
20
+ import vllm.envs as envs
21
+ from vllm.attention import AttentionMetadata, get_attn_backend
22
+ from vllm.attention.backends.abstract import AttentionState
23
+ from vllm.attention.backends.utils import CommonAttentionState
24
+ from vllm.config import CompilationLevel, VllmConfig
25
+ from vllm.core.scheduler import SchedulerOutputs
26
+ from vllm.distributed import get_pp_group
27
+ from vllm.distributed.kv_transfer import get_kv_transfer_group
28
+ from vllm.distributed.parallel_state import (get_tensor_model_parallel_rank,
29
+ graph_capture)
30
+ from vllm.forward_context import get_forward_context, set_forward_context
31
+ from vllm.inputs import INPUT_REGISTRY, InputRegistry
32
+ from vllm.logger import init_logger
33
+ from vllm.lora.layers import LoRAMapping
34
+ from vllm.lora.request import LoRARequest
35
+ from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
36
+ from vllm.model_executor import SamplingMetadata, SamplingMetadataCache
37
+ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
38
+ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
39
+ from vllm.model_executor.model_loader import get_model
40
+ from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
41
+ from vllm.model_executor.models import supports_lora, supports_multimodal
42
+ from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
43
+ from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
44
+ MultiModalKwargs, MultiModalPlaceholderMap,
45
+ MultiModalRegistry)
46
+ from vllm.prompt_adapter.layers import PromptAdapterMapping
47
+ from vllm.prompt_adapter.request import PromptAdapterRequest
48
+ from vllm.prompt_adapter.worker_manager import (
49
+ LRUCacheWorkerPromptAdapterManager)
50
+ from vllm.sampling_params import SamplingParams
51
+ from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
52
+ from vllm.utils import (DeviceMemoryProfiler, GiB_bytes, PyObjectCache,
53
+ async_tensor_h2d, flatten_2d_lists,
54
+ is_pin_memory_available, supports_dynamo,
55
+ weak_ref_tensor)
56
+ from vllm.worker.model_runner_base import (
57
+ InputProcessingError, ModelRunnerBase, ModelRunnerInputBase,
58
+ ModelRunnerInputBuilderBase, _add_attn_metadata_broadcastable_dict,
59
+ _add_sampling_metadata_broadcastable_dict,
60
+ _init_attn_metadata_from_tensor_dict,
61
+ _init_sampling_metadata_from_tensor_dict)
62
+
63
+ if TYPE_CHECKING:
64
+ from vllm.attention.backends.abstract import AttentionBackend
65
+
66
+ logger = init_logger(__name__)
67
+
68
+ LORA_WARMUP_RANK = 8
69
+
70
+ _NUM_WARMUP_ITERS = 2
71
+
72
+ TModelInputForGPU = TypeVar('TModelInputForGPU', bound="ModelInputForGPU")
73
+
74
+ # For now, bump up cache limits for recompilations during CUDA graph warmups.
75
+ torch._dynamo.config.cache_size_limit = 128
76
+ torch._dynamo.config.accumulated_cache_size_limit = 128
77
+
78
+
79
+ @dataclass(frozen=True)
80
+ class ModelInputForGPU(ModelRunnerInputBase):
81
+ """
82
+ This base class contains metadata needed for the base model forward pass
83
+ but not metadata for possible additional steps, e.g., sampling. Model
84
+ runners that run additional steps should subclass this method to add
85
+ additional fields.
86
+ """
87
+ input_tokens: Optional[torch.Tensor] = None
88
+ input_positions: Optional[torch.Tensor] = None
89
+ token_types: Optional[torch.Tensor] = None
90
+ seq_lens: Optional[List[int]] = None
91
+ query_lens: Optional[List[int]] = None
92
+ lora_mapping: Optional["LoRAMapping"] = None
93
+ lora_requests: Optional[Set[LoRARequest]] = None
94
+ attn_metadata: Optional["AttentionMetadata"] = None
95
+ prompt_adapter_mapping: Optional[PromptAdapterMapping] = None
96
+ prompt_adapter_requests: Optional[Set[PromptAdapterRequest]] = None
97
+ multi_modal_kwargs: Optional[BatchedTensorInputs] = None
98
+ request_ids_to_seq_ids: Optional[Dict[str, List[int]]] = None
99
+ finished_requests_ids: Optional[List[str]] = None
100
+ virtual_engine: int = 0
101
+ async_callback: Optional[Callable] = None
102
+ scheduler_outputs: Optional[SchedulerOutputs] = None
103
+ previous_hidden_states: Optional[torch.Tensor] = None
104
+
105
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
106
+ tensor_dict = {
107
+ "input_tokens": self.input_tokens,
108
+ "input_positions": self.input_positions,
109
+ "lora_requests": self.lora_requests,
110
+ "lora_mapping": self.lora_mapping,
111
+ "multi_modal_kwargs": self.multi_modal_kwargs,
112
+ "prompt_adapter_mapping": self.prompt_adapter_mapping,
113
+ "prompt_adapter_requests": self.prompt_adapter_requests,
114
+ "virtual_engine": self.virtual_engine,
115
+ "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
116
+ "finished_requests_ids": self.finished_requests_ids,
117
+ }
118
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
119
+ return tensor_dict
120
+
121
+ @classmethod
122
+ def from_broadcasted_tensor_dict(
123
+ cls: Type[TModelInputForGPU],
124
+ tensor_dict: Dict[str, Any],
125
+ attn_backend: Optional["AttentionBackend"] = None,
126
+ ) -> TModelInputForGPU:
127
+ if attn_backend is not None:
128
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
129
+ attn_backend, tensor_dict)
130
+ return cls(**tensor_dict)
131
+
132
+ # Exclude `async_callback` to be able to pickle this object
133
+ def __getstate__(self):
134
+ state = self.__dict__.copy()
135
+ del state["async_callback"]
136
+ return state
137
+
138
+ # TODO: What happens when we depickle this object?
139
+ # How can we update this callback to properly pass it to the engine?
140
+ def __setstate__(self, state):
141
+ self.__dict__.update(state)
142
+ self.__dict__.update({'async_callback': None})
143
+
144
+
145
+ @dataclass(frozen=True)
146
+ class ModelInputForGPUWithSamplingMetadata(ModelInputForGPU):
147
+ """
148
+ Used by the ModelRunner.
149
+ """
150
+ sampling_metadata: Optional["SamplingMetadata"] = None
151
+ # Used for speculative decoding. We do not broadcast it because it is only
152
+ # used by the driver worker.
153
+ is_prompt: Optional[bool] = None
154
+
155
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
156
+ tensor_dict = {
157
+ "input_tokens": self.input_tokens,
158
+ "input_positions": self.input_positions,
159
+ "lora_requests": self.lora_requests,
160
+ "lora_mapping": self.lora_mapping,
161
+ "multi_modal_kwargs": self.multi_modal_kwargs,
162
+ "prompt_adapter_mapping": self.prompt_adapter_mapping,
163
+ "prompt_adapter_requests": self.prompt_adapter_requests,
164
+ "virtual_engine": self.virtual_engine,
165
+ "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
166
+ "finished_requests_ids": self.finished_requests_ids,
167
+ }
168
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
169
+ _add_sampling_metadata_broadcastable_dict(tensor_dict,
170
+ self.sampling_metadata)
171
+ return tensor_dict
172
+
173
+ @classmethod
174
+ def from_broadcasted_tensor_dict(
175
+ cls,
176
+ tensor_dict: Dict[str, Any],
177
+ attn_backend: Optional["AttentionBackend"] = None,
178
+ ) -> "ModelInputForGPUWithSamplingMetadata":
179
+ tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
180
+ if attn_backend is not None:
181
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
182
+ attn_backend, tensor_dict)
183
+ return cls(**tensor_dict)
184
+
185
+
186
+ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
187
+ """Build ModelInputForGPU from SequenceGroupMetadata."""
188
+
189
+ # Note: ideally we would be using a dataclass(kw_only=True)
190
+ # here, so that this can be subclassed easily,
191
+ # but kw_only is not supported in python<3.10.
192
+ class InterDataForSeqGroup:
193
+ """Intermediate data for the current sequence group."""
194
+
195
+ def simple_reinit(self):
196
+ self.input_tokens[0].clear() # type: ignore
197
+ self.input_positions[0].clear() # type: ignore
198
+ self.token_types[0].clear() # type: ignore
199
+ self.mrope_input_positions = None # type: ignore
200
+ self.seq_lens[0] = 0 # type: ignore
201
+ self.orig_seq_lens[0] = 0 # type: ignore
202
+ self.query_lens[0] = 0 # type: ignore
203
+ self.context_lens[0] = 0 # type: ignore
204
+ self.curr_sliding_window_blocks[0] = 0 # type: ignore
205
+ self.lora_index_mapping.clear() # type: ignore
206
+ self.lora_prompt_mapping.clear() # type: ignore
207
+ self.lora_requests.clear() # type: ignore
208
+ self.prompt_adapter_index_mapping.clear() # type: ignore
209
+ self.prompt_adapter_prompt_mapping.clear() # type: ignore
210
+
211
+ def __init__(
212
+ self,
213
+ *,
214
+ # From sequence group metadata.
215
+ request_id: str,
216
+ seq_ids: List[int],
217
+ is_prompt: bool,
218
+ block_tables: Optional[Dict[int, List[int]]],
219
+ computed_block_nums: List[int],
220
+ n_seqs: int = 0,
221
+
222
+ # Input tokens and positions.
223
+ input_tokens: Optional[List[List[int]]] = None,
224
+ input_positions: Optional[List[List[int]]] = None,
225
+ token_types: Optional[List[List[int]]] = None,
226
+ mrope_input_positions: Optional[List[List[List[int]]]] = None,
227
+
228
+ # The sequence length (may be capped to the sliding window).
229
+ seq_lens: Optional[List[int]] = None,
230
+ # The original sequence length (before applying sliding window).
231
+ # This is used to compute slot mapping.
232
+ orig_seq_lens: Optional[List[int]] = None,
233
+ # The query length.
234
+ query_lens: Optional[List[int]] = None,
235
+ # The number of tokens that are already computed.
236
+ context_lens: Optional[List[int]] = None,
237
+ # The current sliding window block.
238
+ curr_sliding_window_blocks: Optional[List[int]] = None,
239
+
240
+ # LoRA inputs.
241
+ lora_index_mapping: Optional[List[List[int]]] = None,
242
+ lora_prompt_mapping: Optional[List[List[int]]] = None,
243
+ lora_requests: Optional[Set[LoRARequest]] = None,
244
+
245
+ # Prompt adapter inputs.
246
+ prompt_adapter_index_mapping: Optional[List[int]] = None,
247
+ prompt_adapter_prompt_mapping: Optional[List[int]] = None,
248
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
249
+
250
+ # Multi-modal inputs.
251
+ multi_modal_kwargs: Optional[MultiModalKwargs] = None,
252
+ multi_modal_placeholder_maps: Optional[Dict[
253
+ str, MultiModalPlaceholderMap]] = None,
254
+
255
+ # Whether the prefix cache is hit (prefill only).
256
+ prefix_cache_hit: bool = False,
257
+ reinit: bool = False,
258
+ reinit_use_defaults: bool = False,
259
+ encoder_seq_len: int = 0,
260
+ ):
261
+ if reinit:
262
+ assert len(self.seq_ids) == len(seq_ids) # type: ignore
263
+ for i, seq_id in enumerate(seq_ids):
264
+ self.seq_ids[i] = seq_id # type: ignore
265
+ else:
266
+ self.seq_ids = seq_ids
267
+
268
+ self.request_id = request_id
269
+ self.is_prompt = is_prompt
270
+ self.block_tables = block_tables
271
+ self.computed_block_nums = computed_block_nums
272
+ self.n_seqs = n_seqs
273
+ self.encoder_seq_len = encoder_seq_len
274
+
275
+ if reinit:
276
+ if len(self.seq_ids) == 1 and reinit_use_defaults:
277
+ self.simple_reinit()
278
+ else:
279
+ if input_tokens:
280
+ self.input_tokens = input_tokens
281
+ else:
282
+ for seq_id in range(len(self.seq_ids)):
283
+ self.input_tokens[seq_id].clear()
284
+
285
+ if input_positions:
286
+ self.input_positions = input_positions
287
+ else:
288
+ for seq_id in range(len(self.seq_ids)):
289
+ self.input_positions[seq_id].clear()
290
+
291
+ if token_types:
292
+ self.token_types = token_types
293
+ else:
294
+ for seq_id in range(len(self.seq_ids)):
295
+ self.token_types[seq_id].clear()
296
+
297
+ self.mrope_input_positions = None
298
+
299
+ if seq_lens:
300
+ self.seq_lens = seq_lens
301
+ else:
302
+ for seq_id in range(len(self.seq_ids)):
303
+ self.seq_lens[seq_id] = 0
304
+
305
+ if orig_seq_lens:
306
+ self.orig_seq_lens = orig_seq_lens
307
+ else:
308
+ for seq_id in range(len(self.seq_ids)):
309
+ self.orig_seq_lens[seq_id] = 0
310
+
311
+ if query_lens:
312
+ self.query_lens = query_lens
313
+ else:
314
+ for seq_id in range(len(self.seq_ids)):
315
+ self.query_lens[seq_id] = 0
316
+
317
+ if context_lens:
318
+ self.context_lens = context_lens
319
+ else:
320
+ for seq_id in range(len(self.seq_ids)):
321
+ self.context_lens[seq_id] = 0
322
+
323
+ if curr_sliding_window_blocks:
324
+ self.curr_sliding_window_blocks = \
325
+ curr_sliding_window_blocks
326
+ else:
327
+ for seq_id in range(len(self.seq_ids)):
328
+ self.curr_sliding_window_blocks[seq_id] = 0
329
+
330
+ if lora_index_mapping:
331
+ self.lora_index_mapping = lora_index_mapping
332
+ else:
333
+ self.lora_index_mapping.clear()
334
+
335
+ if lora_prompt_mapping:
336
+ self.lora_prompt_mapping = lora_prompt_mapping
337
+ else:
338
+ self.lora_prompt_mapping.clear()
339
+
340
+ if lora_requests:
341
+ self.lora_requests = lora_requests
342
+ else:
343
+ self.lora_requests.clear()
344
+
345
+ if prompt_adapter_index_mapping:
346
+ self.prompt_adapter_index_mapping = \
347
+ prompt_adapter_index_mapping
348
+ else:
349
+ self.prompt_adapter_index_mapping.clear()
350
+
351
+ if prompt_adapter_prompt_mapping:
352
+ self.prompt_adapter_prompt_mapping = \
353
+ prompt_adapter_prompt_mapping
354
+ else:
355
+ self.prompt_adapter_prompt_mapping.clear()
356
+
357
+ else:
358
+ self.input_tokens = input_tokens or []
359
+ self.input_positions = input_positions or []
360
+ self.token_types = token_types or []
361
+ self.mrope_input_positions = mrope_input_positions or None
362
+ self.seq_lens = seq_lens or []
363
+ self.orig_seq_lens = orig_seq_lens or []
364
+ self.query_lens = query_lens or []
365
+ self.context_lens = context_lens or []
366
+ self.curr_sliding_window_blocks = \
367
+ curr_sliding_window_blocks or []
368
+
369
+ self.lora_index_mapping = lora_index_mapping or []
370
+ self.lora_prompt_mapping = lora_prompt_mapping or []
371
+ self.lora_requests = lora_requests or set()
372
+
373
+ self.prompt_adapter_index_mapping = (
374
+ prompt_adapter_index_mapping or [])
375
+ self.prompt_adapter_prompt_mapping = (
376
+ prompt_adapter_prompt_mapping or [])
377
+
378
+ self.prompt_adapter_request = prompt_adapter_request
379
+ self.multi_modal_kwargs = multi_modal_kwargs
380
+ self.multi_modal_placeholder_maps = multi_modal_placeholder_maps
381
+ self.prefix_cache_hit = prefix_cache_hit
382
+
383
+ self.n_seqs = len(self.seq_ids)
384
+
385
+ if not reinit:
386
+ self.__post_init__()
387
+
388
+ def __post_init__(self):
389
+ self.n_seqs = len(self.seq_ids)
390
+
391
+ self.input_tokens = [[] for _ in range(self.n_seqs)]
392
+ self.input_positions = [[] for _ in range(self.n_seqs)]
393
+ self.token_types = [[] for _ in range(self.n_seqs)]
394
+ self.mrope_input_positions = None
395
+ self.seq_lens = [0] * self.n_seqs
396
+ self.orig_seq_lens = [0] * self.n_seqs
397
+ self.query_lens = [0] * self.n_seqs
398
+ self.context_lens = [0] * self.n_seqs
399
+ self.curr_sliding_window_blocks = [0] * self.n_seqs
400
+
401
+ self.lora_index_mapping = []
402
+ self.lora_prompt_mapping = []
403
+
404
+ def gen_inter_data_builder(self, num_seqs: int):
405
+ return lambda: ModelInputForGPUBuilder.InterDataForSeqGroup(
406
+ request_id="",
407
+ seq_ids=[0] * num_seqs,
408
+ is_prompt=True,
409
+ block_tables=None,
410
+ computed_block_nums=[])
411
+
412
+ def init_cached_inter_data(self, *args, **kwargs):
413
+ assert len(args) == 0
414
+ assert "seq_ids" in kwargs
415
+ seq_ids = kwargs["seq_ids"]
416
+ num_seqs = len(seq_ids)
417
+
418
+ # The inter-data cache is per model_runner
419
+ inter_data_cache = self.runner.inter_data_cache
420
+ if num_seqs not in inter_data_cache:
421
+ inter_data_cache[num_seqs] = PyObjectCache(
422
+ self.gen_inter_data_builder(num_seqs))
423
+
424
+ obj = inter_data_cache[num_seqs].get_object()
425
+ obj.__init__(*args, **kwargs)
426
+ return obj
427
+
428
+ def reset_cached_inter_data(self):
429
+ for cache in self.runner.inter_data_cache.values():
430
+ cache.reset()
431
+
432
+ def __init__(self,
433
+ runner: "GPUModelRunnerBase",
434
+ finished_requests_ids: Optional[List[str]] = None):
435
+ super().__init__()
436
+ # Compute functions for each sequence in a sequence group.
437
+ # WARNING: The order of the functions matters!
438
+ self.per_seq_compute_fns = [
439
+ self._compute_lens,
440
+ self._compute_for_prefix_cache_hit,
441
+ self._compute_for_sliding_window,
442
+ self._compute_lora_input,
443
+ ]
444
+ # Compute functions for each sequence group.
445
+ # WARNING: The order of the functions matters!
446
+ self.per_seq_group_compute_fns = [
447
+ self._compute_prompt_adapter_input,
448
+ self._compute_multi_modal_input,
449
+ ]
450
+
451
+ self.runner = runner
452
+ self.model_input_cls = self.runner._model_input_cls
453
+ self.attn_backend = self.runner.attn_backend
454
+ self.scheduler_config = self.runner.scheduler_config
455
+ self.sliding_window = self.runner.sliding_window
456
+ self.block_size = self.runner.block_size
457
+ self.enable_lora = self.runner.lora_config is not None
458
+ self.enable_prompt_adapter = (self.runner.prompt_adapter_config
459
+ is not None)
460
+
461
+ # Attention metadata inputs.
462
+ if self.attn_backend is not None:
463
+ # spec decode (e.g. Medusa) does not have atten backend
464
+ self.attn_metadata_builder = self.attn_backend.get_builder_cls()(
465
+ weakref.proxy(self))
466
+
467
+ # Engine/Model configurations.
468
+ self.chunked_prefill_enabled = (
469
+ self.scheduler_config is not None
470
+ and self.scheduler_config.chunked_prefill_enabled)
471
+ if self.sliding_window is not None:
472
+ self.sliding_window_blocks = (
473
+ self.sliding_window + self.block_size - 1) // self.block_size
474
+ self.block_aligned_sliding_window = \
475
+ self.sliding_window_blocks * self.block_size
476
+
477
+ def prepare(self,
478
+ finished_requests_ids: Optional[List[str]] = None) -> None:
479
+ self.finished_requests_ids = finished_requests_ids
480
+
481
+ # if the current batch is decode-only.
482
+ # will be set to False if there is any non-decode request.
483
+ self.decode_only = True
484
+
485
+ # Intermediate data (data in CPU before going to GPU) for
486
+ # the current sequence group.
487
+ self.inter_data_list: List[
488
+ ModelInputForGPUBuilder.InterDataForSeqGroup] = []
489
+
490
+ self.attn_metadata_builder.prepare()
491
+
492
+ def _compute_lens(self, inter_data: InterDataForSeqGroup, seq_idx: int,
493
+ seq_group_metadata: SequenceGroupMetadata):
494
+ """Compute context length, sequence length and tokens
495
+ for the given sequence data.
496
+ """
497
+ seq_data = seq_group_metadata.seq_data[inter_data.seq_ids[seq_idx]]
498
+ token_chunk_size = seq_group_metadata.token_chunk_size
499
+
500
+ # Compute context length (the number of tokens that are
501
+ # already computed) and sequence length (total number of tokens).
502
+
503
+ seq_len = seq_data.get_len()
504
+ if inter_data.is_prompt:
505
+ context_len = seq_data.get_num_computed_tokens()
506
+ seq_len = min(seq_len, context_len + token_chunk_size)
507
+ elif self.runner.scheduler_config.is_multi_step or \
508
+ self.runner.model_config.is_encoder_decoder:
509
+ context_len = seq_len - 1
510
+ else:
511
+ context_len = seq_data.get_num_computed_tokens()
512
+
513
+ # Compute tokens.
514
+ tokens = seq_data.get_token_ids()[context_len:seq_len]
515
+ token_types = seq_group_metadata.token_type_ids
516
+
517
+ inter_data.seq_lens[seq_idx] = seq_len
518
+ inter_data.orig_seq_lens[seq_idx] = seq_len
519
+ inter_data.context_lens[seq_idx] = context_len
520
+ inter_data.input_tokens[seq_idx].extend(tokens)
521
+ inter_data.input_positions[seq_idx].extend(range(context_len, seq_len))
522
+ inter_data.token_types[seq_idx].extend(
523
+ token_types if token_types else [])
524
+ inter_data.query_lens[seq_idx] = seq_len - context_len
525
+
526
+ if seq_data.mrope_position_delta is not None:
527
+ if inter_data.mrope_input_positions is None:
528
+ inter_data.mrope_input_positions = [None] * inter_data.n_seqs
529
+
530
+ inter_data.mrope_input_positions[
531
+ seq_idx] = MRotaryEmbedding.get_next_input_positions(
532
+ seq_data.mrope_position_delta,
533
+ context_len,
534
+ seq_len,
535
+ )
536
+
537
+ def _compute_for_prefix_cache_hit(
538
+ self, inter_data: InterDataForSeqGroup, seq_idx: int,
539
+ seq_group_metadata: SequenceGroupMetadata):
540
+ """Check if hit prefix cache (i.e., some blocks are already computed).
541
+ If hit, update input tokens and positions to only compute the
542
+ remaining blocks.
543
+ """
544
+ computed_block_nums = inter_data.computed_block_nums
545
+
546
+ # Note that prefix caching does not support sliding window.
547
+ prefix_cache_hit = (computed_block_nums is not None
548
+ and len(computed_block_nums) > 0
549
+ and self.sliding_window is None
550
+ and inter_data.is_prompt)
551
+ inter_data.prefix_cache_hit = prefix_cache_hit
552
+
553
+ if not prefix_cache_hit:
554
+ return
555
+
556
+ assert computed_block_nums is not None
557
+ # The cache hit prompt tokens in this sequence. Note that
558
+ # this may be larger than the sequence length if chunked
559
+ # prefill is enabled.
560
+ prefix_cache_len = len(computed_block_nums) * self.block_size
561
+ seq_group_metadata.seq_data[inter_data.seq_ids[
562
+ seq_idx]].update_num_cached_tokens(prefix_cache_len)
563
+
564
+ # The number of so far computed prompt tokens in this sequence.
565
+ context_len = inter_data.context_lens[seq_idx]
566
+ # The total number of prompt tokens in this sequence.
567
+ # When chunked prefill is enabled, this is the token number of
568
+ # computed chunks + current chunk.
569
+ seq_len = inter_data.seq_lens[seq_idx]
570
+ if prefix_cache_len <= context_len:
571
+ # We already passed the cache hit region,
572
+ # so do normal computation.
573
+ pass
574
+ elif context_len < prefix_cache_len < seq_len:
575
+ # Partial hit. Compute the missing part.
576
+ uncomputed_start = prefix_cache_len - context_len
577
+ inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
578
+ seq_idx][uncomputed_start:]
579
+ inter_data.input_positions[seq_idx] = inter_data.input_positions[
580
+ seq_idx][uncomputed_start:]
581
+ inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
582
+ uncomputed_start:]
583
+ context_len = prefix_cache_len
584
+
585
+ inter_data.context_lens[seq_idx] = context_len
586
+ inter_data.query_lens[
587
+ seq_idx] = inter_data.seq_lens[seq_idx] - context_len
588
+ elif seq_len <= prefix_cache_len:
589
+ # Full hit. Only compute the last token to avoid
590
+ # erroneous behavior. FIXME: Ideally we should directly
591
+ # mark all tokens as computed in the scheduler and do not
592
+ # schedule this sequence, so this case should not happen.
593
+ inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
594
+ seq_idx][-1:]
595
+ inter_data.input_positions[seq_idx] = inter_data.input_positions[
596
+ seq_idx][-1:]
597
+ inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
598
+ -1:]
599
+ inter_data.query_lens[seq_idx] = 1
600
+ inter_data.context_lens[seq_idx] = inter_data.seq_lens[seq_idx] - 1
601
+
602
+ def _compute_for_sliding_window(self, inter_data: InterDataForSeqGroup,
603
+ seq_idx: int,
604
+ seq_group_metadata: SequenceGroupMetadata):
605
+ """Update seq_len and curr_sliding_window_block for the given
606
+ sequence data (only required by decoding) if sliding window is enabled.
607
+ """
608
+ curr_sliding_window_block = 0
609
+ sliding_seq_len = inter_data.seq_lens[seq_idx]
610
+ if not inter_data.is_prompt and self.sliding_window is not None:
611
+ # TODO(sang): This is a hack to make sliding window work with
612
+ # paged attn. We can remove it if we make paged attn kernel
613
+ # to properly handle slinding window attn.
614
+ curr_sliding_window_block = self.sliding_window_blocks
615
+ # number of elements in last block
616
+ suff_len = inter_data.seq_lens[seq_idx] % self.block_size
617
+ sliding_seq_len = min(inter_data.seq_lens[seq_idx],
618
+ self.block_aligned_sliding_window + suff_len)
619
+ if suff_len > 0:
620
+ curr_sliding_window_block += 1
621
+
622
+ inter_data.curr_sliding_window_blocks[
623
+ seq_idx] = curr_sliding_window_block
624
+ inter_data.seq_lens[seq_idx] = sliding_seq_len
625
+
626
+ def _compute_lora_input(self, inter_data: InterDataForSeqGroup,
627
+ seq_idx: int,
628
+ seq_group_metadata: SequenceGroupMetadata):
629
+ """If LoRA is enabled, compute LoRA index and prompt mapping."""
630
+ if not self.enable_lora:
631
+ return
632
+
633
+ lora_id = seq_group_metadata.lora_int_id
634
+ if lora_id > 0:
635
+ inter_data.lora_requests.add(seq_group_metadata.lora_request)
636
+ query_len = inter_data.query_lens[seq_idx]
637
+ inter_data.lora_index_mapping.append([lora_id] * query_len)
638
+ sampling_params = seq_group_metadata.sampling_params
639
+ if sampling_params and sampling_params.prompt_logprobs is not None:
640
+ inter_data.lora_prompt_mapping.append([lora_id] * query_len)
641
+ elif not self.chunked_prefill_enabled or seq_group_metadata.do_sample:
642
+ inter_data.lora_prompt_mapping.append([lora_id])
643
+ else:
644
+ inter_data.lora_prompt_mapping.append([])
645
+
646
+ def _compute_prompt_adapter_input(
647
+ self, inter_data: InterDataForSeqGroup,
648
+ seq_group_metadata: SequenceGroupMetadata):
649
+ """If prompt adapter is enabled, compute index and prompt mapping.
650
+ """
651
+ # Note that when is_prompt=True, we expect only one sequence
652
+ # in the group.
653
+ if not self.enable_prompt_adapter:
654
+ return
655
+
656
+ prompt_adapter_id = seq_group_metadata.prompt_adapter_id
657
+ if prompt_adapter_id <= 0 or not inter_data.is_prompt:
658
+ return
659
+
660
+ # We expect only one sequence in the group when is_prompt=True.
661
+ assert inter_data.n_seqs == 1
662
+ query_len = inter_data.query_lens[0]
663
+ inter_data.prompt_adapter_request = (
664
+ seq_group_metadata.prompt_adapter_request)
665
+
666
+ num_tokens = seq_group_metadata.prompt_adapter_num_virtual_tokens
667
+ inter_data.prompt_adapter_index_mapping = [
668
+ prompt_adapter_id
669
+ ] * num_tokens + [0] * (query_len - num_tokens)
670
+ inter_data.prompt_adapter_prompt_mapping = [prompt_adapter_id] * (
671
+ query_len if seq_group_metadata.sampling_params
672
+ and seq_group_metadata.sampling_params.prompt_logprobs else 1)
673
+
674
+ def _compute_multi_modal_input(self, inter_data: InterDataForSeqGroup,
675
+ seq_group_metadata: SequenceGroupMetadata):
676
+ """If multi-modal data is given, add it to the input."""
677
+ # NOTE: mm_kwargs only includes the subset of multi-modal items that
678
+ # intersect with the current prefill positions.
679
+ positions = inter_data.input_positions[0]
680
+ mm_kwargs, placeholder_maps = MultiModalPlaceholderMap.from_seq_group(
681
+ seq_group_metadata,
682
+ range(positions[0], positions[0] + len(positions)))
683
+ if not mm_kwargs:
684
+ return
685
+
686
+ inter_data.multi_modal_kwargs = mm_kwargs
687
+ inter_data.multi_modal_placeholder_maps = placeholder_maps
688
+
689
+ # special processing for mrope position deltas.
690
+ if self.runner.model_config.uses_mrope:
691
+ image_grid_thw = mm_kwargs.get("image_grid_thw", None)
692
+ video_grid_thw = mm_kwargs.get("video_grid_thw", None)
693
+ audio_feature_lengths = mm_kwargs.get("audio_feature_lengths",
694
+ None)
695
+ assert (
696
+ image_grid_thw is not None or video_grid_thw is not None
697
+ or audio_feature_lengths is not None), (
698
+ "mrope embedding type requires multi-modal input mapper "
699
+ "returns 'image_grid_thw' or 'video_grid_thw' or "
700
+ "'audio_feature_lengths'.")
701
+
702
+ second_per_grid_ts = mm_kwargs.get("second_per_grid_ts", None)
703
+ use_audio_in_video = mm_kwargs.get("use_audio_in_video", False)
704
+ hf_config = self.runner.model_config.hf_config
705
+
706
+ inter_data.mrope_input_positions = [None] * inter_data.n_seqs
707
+ for seq_idx in range(inter_data.n_seqs):
708
+ seq_data = seq_group_metadata.seq_data[
709
+ inter_data.seq_ids[seq_idx]]
710
+ token_ids = seq_data.get_token_ids()
711
+
712
+ mrope_input_positions, mrope_position_delta = \
713
+ MRotaryEmbedding.get_input_positions(
714
+ token_ids,
715
+ hf_config=hf_config,
716
+ image_grid_thw=image_grid_thw,
717
+ video_grid_thw=video_grid_thw,
718
+ second_per_grid_ts=second_per_grid_ts,
719
+ context_len=inter_data.context_lens[seq_idx],
720
+ seq_len=inter_data.seq_lens[seq_idx],
721
+ audio_feature_lengths=audio_feature_lengths,
722
+ use_audio_in_video=use_audio_in_video,
723
+ )
724
+
725
+ seq_data.mrope_position_delta = mrope_position_delta
726
+ inter_data.mrope_input_positions[
727
+ seq_idx] = mrope_input_positions
728
+
729
+ def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
730
+ """Add a sequence group to the builder."""
731
+ seq_ids = seq_group_metadata.seq_data.keys()
732
+ n_seqs = len(seq_ids)
733
+ is_prompt = seq_group_metadata.is_prompt
734
+
735
+ if is_prompt:
736
+ assert n_seqs == 1
737
+ self.decode_only = False
738
+
739
+ encoder_seq_len = 0
740
+
741
+ if self.runner.model_config.is_encoder_decoder:
742
+ encoder_seq_len = seq_group_metadata.encoder_seq_data.get_len()
743
+
744
+ inter_data = self.init_cached_inter_data(
745
+ request_id=seq_group_metadata.request_id,
746
+ seq_ids=seq_ids,
747
+ is_prompt=is_prompt,
748
+ block_tables=seq_group_metadata.block_tables,
749
+ computed_block_nums=seq_group_metadata.computed_block_nums,
750
+ reinit=True,
751
+ reinit_use_defaults=True,
752
+ encoder_seq_len=encoder_seq_len)
753
+
754
+ self.inter_data_list.append(inter_data)
755
+
756
+ for seq_idx in range(n_seqs):
757
+ for per_seq_fn in self.per_seq_compute_fns:
758
+ per_seq_fn(inter_data, seq_idx, seq_group_metadata)
759
+ for per_seq_group_fn in self.per_seq_group_compute_fns:
760
+ per_seq_group_fn(inter_data, seq_group_metadata)
761
+
762
+ def _use_captured_graph(self,
763
+ batch_size: int,
764
+ decode_only: bool,
765
+ max_decode_seq_len: int,
766
+ max_encoder_seq_len: int = 0) -> bool:
767
+ return (decode_only and not self.runner.model_config.enforce_eager
768
+ and max_decode_seq_len <= self.runner.max_seq_len_to_capture
769
+ and max_encoder_seq_len <= self.runner.max_seq_len_to_capture
770
+ and batch_size <= self.runner.max_batchsize_to_capture)
771
+
772
+ def _get_cuda_graph_pad_size(self,
773
+ num_seqs: int,
774
+ max_decode_seq_len: int,
775
+ max_encoder_seq_len: int = 0) -> int:
776
+ """
777
+ Determine the number of padding sequences required for running in
778
+ CUDA graph mode. Returns -1 if CUDA graphs cannot be used.
779
+
780
+ In the multi-step + chunked-prefill case, only the first step
781
+ has Prefills (if any). The rest of the steps are guaranteed to be all
782
+ decodes. In this case, we set up the padding as if all the sequences
783
+ are decodes so we may run all steps except the first step in CUDA graph
784
+ mode. The padding is accounted for in the multi-step `advance_step`
785
+ family of functions.
786
+
787
+ Args:
788
+ num_seqs (int): Number of sequences scheduled to run.
789
+ max_decode_seq_len (int): Greatest of all the decode sequence
790
+ lengths. Used only in checking the viablility of using
791
+ CUDA graphs.
792
+ max_encoder_seq_len (int, optional): Greatest of all the encode
793
+ sequence lengths. Defaults to 0. Used only in checking the
794
+ viability of using CUDA graphs.
795
+ Returns:
796
+ int: Returns the determined number of padding sequences. If
797
+ CUDA graphs is not viable, returns -1.
798
+ """
799
+ is_mscp: bool = self.runner.scheduler_config.is_multi_step and \
800
+ self.runner.scheduler_config.chunked_prefill_enabled
801
+ decode_only = self.decode_only or is_mscp
802
+ if not decode_only:
803
+ # Early exit so we can treat num_seqs as the batch_size below.
804
+ return -1
805
+
806
+ # batch_size out of this function refers to the number of input
807
+ # tokens being scheduled. This conflation of num_seqs as batch_size
808
+ # is valid as this is a decode-only case.
809
+ batch_size = num_seqs
810
+ if not self._use_captured_graph(batch_size, decode_only,
811
+ max_decode_seq_len,
812
+ max_encoder_seq_len):
813
+ return -1
814
+
815
+ graph_batch_size = self.runner.vllm_config.pad_for_cudagraph(
816
+ batch_size)
817
+ assert graph_batch_size >= batch_size
818
+ return graph_batch_size - batch_size
819
+
820
+ def build(self) -> ModelInputForGPU:
821
+ """Finalize the builder intermediate data and
822
+ create on-device tensors.
823
+ """
824
+ # Combine and flatten intermediate data.
825
+ input_tokens = []
826
+ token_types = []
827
+ for inter_data in self.inter_data_list:
828
+ for cur_input_tokens in inter_data.input_tokens:
829
+ input_tokens.extend(cur_input_tokens)
830
+ for cur_token_types in inter_data.token_types:
831
+ token_types.extend(cur_token_types)
832
+
833
+ if not input_tokens:
834
+ # This may happen when all prefill requests hit
835
+ # prefix caching and there is no decode request.
836
+ return self.model_input_cls()
837
+
838
+ mrope_input_positions: Optional[List[List[int]]] = None
839
+ if any(inter_data.mrope_input_positions is not None
840
+ for inter_data in self.inter_data_list):
841
+ mrope_input_positions = [[] for _ in range(3)]
842
+ for idx in range(3):
843
+ for inter_data in self.inter_data_list:
844
+ msections = inter_data.mrope_input_positions
845
+ if msections is None:
846
+ for _seq_input_positions in inter_data.input_positions:
847
+ mrope_input_positions[idx].extend(
848
+ _seq_input_positions)
849
+ else:
850
+ for _seq_mrope_input_positions in msections:
851
+ mrope_input_positions[idx].extend(
852
+ _seq_mrope_input_positions[idx])
853
+ input_positions = None
854
+ else:
855
+ input_positions = []
856
+ for inter_data in self.inter_data_list:
857
+ for cur_input_positions in inter_data.input_positions:
858
+ input_positions.extend(cur_input_positions)
859
+
860
+ seq_lens = []
861
+ query_lens = []
862
+ max_decode_seq_len = 0
863
+ max_encoder_seq_len = 0
864
+ for inter_data in self.inter_data_list:
865
+ seq_lens.extend(inter_data.seq_lens)
866
+ query_lens.extend(inter_data.query_lens)
867
+ if not inter_data.is_prompt:
868
+ max_decode_seq_len = max(max_decode_seq_len,
869
+ max(inter_data.seq_lens))
870
+ if self.runner.model_config.is_encoder_decoder:
871
+ max_encoder_seq_len = max(max_encoder_seq_len,
872
+ inter_data.encoder_seq_len)
873
+
874
+ # Mapping from request IDs to sequence IDs. Used for Jamba models
875
+ # that manages the cache by itself.
876
+ request_ids_to_seq_ids = {
877
+ data.request_id: data.seq_ids
878
+ for data in self.inter_data_list
879
+ }
880
+
881
+ cuda_graph_pad_size = self._get_cuda_graph_pad_size(
882
+ num_seqs=len(seq_lens),
883
+ max_decode_seq_len=max_decode_seq_len,
884
+ max_encoder_seq_len=max_encoder_seq_len)
885
+
886
+ batch_size = len(input_tokens)
887
+ if cuda_graph_pad_size != -1:
888
+ # If cuda graph can be used, pad tensors accordingly.
889
+ # See `capture_model` API for more details.
890
+ # vLLM uses cuda graph only for decoding requests.
891
+ batch_size += cuda_graph_pad_size
892
+
893
+ # Tokens and positions.
894
+ if cuda_graph_pad_size:
895
+ input_tokens.extend(itertools.repeat(0, cuda_graph_pad_size))
896
+ assert self.runner.device is not None
897
+ input_tokens_tensor = async_tensor_h2d(input_tokens, torch.long,
898
+ self.runner.device,
899
+ self.runner.pin_memory)
900
+
901
+ token_types_tensor = async_tensor_h2d(token_types, torch.long,
902
+ self.runner.device,
903
+ self.runner.pin_memory) \
904
+ if token_types else None
905
+
906
+ if mrope_input_positions is not None:
907
+ for idx in range(3):
908
+ mrope_input_positions[idx].extend(
909
+ itertools.repeat(0, cuda_graph_pad_size))
910
+ input_positions_tensor = async_tensor_h2d(mrope_input_positions,
911
+ torch.long,
912
+ self.runner.device,
913
+ self.runner.pin_memory)
914
+ else:
915
+ input_positions.extend(itertools.repeat(0, cuda_graph_pad_size))
916
+ input_positions_tensor = async_tensor_h2d(input_positions,
917
+ torch.long,
918
+ self.runner.device,
919
+ self.runner.pin_memory)
920
+ # Sequence and query lengths.
921
+ if cuda_graph_pad_size:
922
+ seq_lens.extend(itertools.repeat(1, cuda_graph_pad_size))
923
+
924
+ # Attention metadata.
925
+ attn_metadata = self.attn_metadata_builder.build(
926
+ seq_lens, query_lens, cuda_graph_pad_size, batch_size)
927
+
928
+ # LoRA data.
929
+ lora_requests = set()
930
+ lora_mapping = None
931
+ if self.enable_lora:
932
+ lora_requests = set(r for data in self.inter_data_list
933
+ for r in data.lora_requests)
934
+ lora_index_mapping = flatten_2d_lists([
935
+ flatten_2d_lists(inter_data.lora_index_mapping)
936
+ for inter_data in self.inter_data_list
937
+ ])
938
+ if cuda_graph_pad_size:
939
+ lora_index_mapping.extend(
940
+ itertools.repeat(0, cuda_graph_pad_size))
941
+ lora_prompt_mapping = flatten_2d_lists([
942
+ flatten_2d_lists(inter_data.lora_prompt_mapping)
943
+ for inter_data in self.inter_data_list
944
+ ])
945
+
946
+ lora_mapping = LoRAMapping(
947
+ **dict(index_mapping=lora_index_mapping,
948
+ prompt_mapping=lora_prompt_mapping,
949
+ is_prefill=not self.decode_only))
950
+
951
+ # Prompt adapter data.
952
+ prompt_adapter_requests: Set[PromptAdapterRequest] = set()
953
+ prompt_adapter_mapping = None
954
+ if self.enable_prompt_adapter:
955
+ prompt_adapter_requests = set(
956
+ data.prompt_adapter_request for data in self.inter_data_list
957
+ if data.prompt_adapter_request is not None)
958
+ prompt_adapter_index_mapping = flatten_2d_lists([
959
+ inter_data.prompt_adapter_index_mapping
960
+ for inter_data in self.inter_data_list
961
+ ])
962
+ if cuda_graph_pad_size:
963
+ prompt_adapter_index_mapping.extend(
964
+ itertools.repeat(0, cuda_graph_pad_size))
965
+ prompt_adapter_prompt_mapping = flatten_2d_lists([
966
+ inter_data.prompt_adapter_prompt_mapping
967
+ for inter_data in self.inter_data_list
968
+ ])
969
+ prompt_adapter_mapping = PromptAdapterMapping(
970
+ prompt_adapter_index_mapping,
971
+ prompt_adapter_prompt_mapping,
972
+ )
973
+
974
+ # Multi-modal data.
975
+ multi_modal_kwargs_list = [
976
+ data.multi_modal_kwargs for data in self.inter_data_list
977
+ if data.multi_modal_kwargs is not None
978
+ ]
979
+ multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
980
+
981
+ return self.model_input_cls(
982
+ input_tokens=input_tokens_tensor,
983
+ input_positions=input_positions_tensor,
984
+ token_types=token_types_tensor,
985
+ attn_metadata=attn_metadata,
986
+ seq_lens=seq_lens,
987
+ query_lens=query_lens,
988
+ lora_mapping=lora_mapping,
989
+ lora_requests=lora_requests,
990
+ multi_modal_kwargs=multi_modal_kwargs,
991
+ request_ids_to_seq_ids=request_ids_to_seq_ids,
992
+ finished_requests_ids=self.finished_requests_ids,
993
+ prompt_adapter_mapping=prompt_adapter_mapping,
994
+ prompt_adapter_requests=prompt_adapter_requests)
995
+
996
+
997
+ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
998
+ """
999
+ Helper class for shared methods between GPU model runners.
1000
+ """
1001
+ _model_input_cls: Type[TModelInputForGPU]
1002
+ _builder_cls: Type[ModelInputForGPUBuilder]
1003
+ builder: ModelInputForGPUBuilder
1004
+
1005
+ def __init__(
1006
+ self,
1007
+ vllm_config: VllmConfig,
1008
+ kv_cache_dtype: Optional[str] = "auto",
1009
+ is_driver_worker: bool = False,
1010
+ return_hidden_states: bool = False,
1011
+ input_registry: InputRegistry = INPUT_REGISTRY,
1012
+ mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
1013
+ ):
1014
+
1015
+ ModelRunnerBase.__init__(self, vllm_config)
1016
+ model_config = self.model_config
1017
+ cache_config = self.cache_config
1018
+
1019
+ self.is_driver_worker = is_driver_worker
1020
+ self.return_hidden_states = return_hidden_states
1021
+
1022
+ self.device = self.device_config.device
1023
+ self.pin_memory = is_pin_memory_available()
1024
+
1025
+ self.kv_cache_dtype = kv_cache_dtype
1026
+ self.sliding_window = model_config.get_sliding_window()
1027
+ self.block_size = cache_config.block_size
1028
+ self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture
1029
+ self.max_batchsize_to_capture = \
1030
+ self.vllm_config.compilation_config.max_capture_size
1031
+
1032
+ self.graph_runners: List[Dict[int, CUDAGraphRunner]] = [
1033
+ {} for _ in range(self.parallel_config.pipeline_parallel_size)
1034
+ ]
1035
+ self.graph_memory_pool: Optional[Tuple[
1036
+ int, int]] = None # Set during graph capture.
1037
+
1038
+ self.has_inner_state = model_config.has_inner_state
1039
+
1040
+ self.in_profile_run = False
1041
+
1042
+ # When using CUDA graph, the input block tables must be padded to
1043
+ # max_seq_len_to_capture. However, creating the block table in
1044
+ # Python can be expensive. To optimize this, we cache the block table
1045
+ # in numpy and only copy the actual input content at every iteration.
1046
+ # The shape of the cached block table will be
1047
+ # (max batch size to capture, max seq len to capture / block size).
1048
+ self.graph_block_tables = np.zeros(
1049
+ (self.max_batchsize_to_capture, self.get_max_block_per_batch()),
1050
+ dtype=np.int32)
1051
+
1052
+ # Attention-free but stateful models like Mamba need a placeholder attn
1053
+ # backend, as the attention metadata is needed to manage internal state.
1054
+ # However we must bypass attention selection altogether for some models
1055
+ # used for speculative decoding to avoid a divide-by-zero in
1056
+ # model_config.get_head_size()
1057
+ num_attn_heads = self.model_config.get_num_attention_heads(
1058
+ self.parallel_config)
1059
+ needs_attn_backend = (num_attn_heads != 0
1060
+ or self.model_config.is_attention_free)
1061
+
1062
+ self.attn_backend = get_attn_backend(
1063
+ self.model_config.get_head_size(),
1064
+ self.model_config.dtype,
1065
+ self.kv_cache_dtype,
1066
+ self.block_size,
1067
+ self.model_config.is_attention_free,
1068
+ use_mla=self.model_config.use_mla,
1069
+ ) if needs_attn_backend else None
1070
+ if self.attn_backend:
1071
+ self.attn_state = self.attn_backend.get_state_cls()(
1072
+ weakref.proxy(self))
1073
+ else:
1074
+ self.attn_state = CommonAttentionState(weakref.proxy(self))
1075
+
1076
+ # Multi-modal data support
1077
+ self.input_registry = input_registry
1078
+ self.mm_registry = mm_registry
1079
+
1080
+ # Lazy initialization
1081
+ self.model: nn.Module # Set after load_model
1082
+ # Set after load_model.
1083
+ self.lora_manager: Optional[LRUCacheWorkerLoRAManager] = None
1084
+ self.prompt_adapter_manager: LRUCacheWorkerPromptAdapterManager = None
1085
+ self.sampler = get_sampler()
1086
+
1087
+ set_cpu_offload_max_bytes(
1088
+ int(self.cache_config.cpu_offload_gb * 1024**3))
1089
+
1090
+ # Used to cache python objects
1091
+ self.inter_data_cache: Dict[int, PyObjectCache] = {}
1092
+
1093
+ # Using the PythonizationCache in Pipeline-Parallel clobbers the
1094
+ # SequenceGroupToSample object. In Pipeline-Parallel, we have
1095
+ # more than 1 Scheduler, resulting in a potential back-to-back
1096
+ # prepare_model_inputs() call. This clobbers the cached
1097
+ # SequenceGroupToSample objects, as we reset the cache during
1098
+ # every prepare_model_inputs() call.
1099
+ self.sampling_metadata_cache: SamplingMetadataCache = \
1100
+ SamplingMetadataCache() \
1101
+ if self.parallel_config.pipeline_parallel_size == 1 else None
1102
+
1103
+ if hasattr(self, "_builder_cls"):
1104
+ # multi-step model runner does not have `_builder_cls`
1105
+ self.builder = self._builder_cls(weakref.proxy(self))
1106
+
1107
+ def load_model(self) -> None:
1108
+ logger.info("Starting to load model %s...", self.model_config.model)
1109
+ with DeviceMemoryProfiler(self.device) as m:
1110
+ time_before_load = time.perf_counter()
1111
+ self.model = get_model(vllm_config=self.vllm_config)
1112
+ if self.lora_config:
1113
+ assert supports_lora(
1114
+ self.model
1115
+ ), f"{self.model.__class__.__name__} does not support LoRA yet."
1116
+
1117
+ if supports_multimodal(self.model):
1118
+ logger.warning(
1119
+ "Regarding multimodal models, vLLM currently "
1120
+ "only supports adding LoRA to language model.")
1121
+
1122
+ # Use get_text_config() in case of multimodal models
1123
+ text_config = self.model_config.hf_config.get_text_config()
1124
+
1125
+ self.lora_manager = LRUCacheWorkerLoRAManager(
1126
+ self.scheduler_config.max_num_seqs,
1127
+ self.scheduler_config.max_num_batched_tokens,
1128
+ self.vocab_size,
1129
+ self.lora_config,
1130
+ self.device,
1131
+ self.model.embedding_modules,
1132
+ self.model.embedding_padding_modules,
1133
+ max_position_embeddings=text_config.
1134
+ max_position_embeddings,
1135
+ )
1136
+ self.model = self.lora_manager.create_lora_manager(self.model)
1137
+ time_after_load = time.perf_counter()
1138
+
1139
+ self.model_memory_usage = m.consumed_memory
1140
+ logger.info("Model loading took %.4f GiB and %.6f seconds",
1141
+ self.model_memory_usage / GiB_bytes,
1142
+ time_after_load - time_before_load)
1143
+ if self.prompt_adapter_config:
1144
+ self.prompt_adapter_manager = LRUCacheWorkerPromptAdapterManager(
1145
+ self.scheduler_config.max_num_seqs,
1146
+ self.scheduler_config.max_num_batched_tokens, self.device,
1147
+ self.prompt_adapter_config)
1148
+ self.model = (
1149
+ self.prompt_adapter_manager.create_prompt_adapter_manager(
1150
+ self.model))
1151
+
1152
+ if self.vllm_config.compilation_config.level ==\
1153
+ CompilationLevel.DYNAMO_AS_IS and supports_dynamo():
1154
+ backend = self.vllm_config.compilation_config.init_backend(
1155
+ self.vllm_config)
1156
+ self.model = torch.compile(
1157
+ self.model,
1158
+ fullgraph=envs.VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE,
1159
+ backend=backend)
1160
+
1161
+ def get_model(self) -> nn.Module:
1162
+ return self.model
1163
+
1164
+ def save_sharded_state(
1165
+ self,
1166
+ path: str,
1167
+ pattern: Optional[str] = None,
1168
+ max_size: Optional[int] = None,
1169
+ ) -> None:
1170
+ from vllm.model_executor.model_loader.loader import ShardedStateLoader
1171
+ ShardedStateLoader.save_model(
1172
+ self.model,
1173
+ path,
1174
+ pattern=pattern,
1175
+ max_size=max_size,
1176
+ )
1177
+
1178
+ def save_tensorized_model(
1179
+ self,
1180
+ tensorizer_config: TensorizerConfig,
1181
+ ) -> None:
1182
+ from vllm.model_executor.model_loader.loader import TensorizerLoader
1183
+ TensorizerLoader.save_model(
1184
+ self.model,
1185
+ tensorizer_config=tensorizer_config,
1186
+ )
1187
+
1188
+ def get_max_block_per_batch(self) -> int:
1189
+ block_size = self.block_size
1190
+ return (self.max_seq_len_to_capture + block_size - 1) // block_size
1191
+
1192
+ def _prepare_model_input_tensors(
1193
+ self,
1194
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1195
+ finished_requests_ids: Optional[List[str]] = None
1196
+ ) -> TModelInputForGPU:
1197
+ """Helper method to prepare the model input based on a given sequence
1198
+ group. Prepares metadata needed for the base model forward pass but not
1199
+ metadata for possible additional steps, e.g., sampling.
1200
+
1201
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1202
+
1203
+ The result tensors and data structure also batches input in prefill
1204
+ -> decode order. For example,
1205
+
1206
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1207
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1208
+
1209
+ If cuda graph is required, this API automatically pads inputs.
1210
+ """
1211
+ self.builder.prepare(finished_requests_ids)
1212
+ for seq_group_metadata in seq_group_metadata_list:
1213
+ try:
1214
+ self.builder.add_seq_group(seq_group_metadata)
1215
+ except Exception as e:
1216
+ # Raise an exception that tracks the ID of the bad request
1217
+ raise InputProcessingError(seq_group_metadata.request_id,
1218
+ str(e)) from e
1219
+
1220
+ self.builder.reset_cached_inter_data()
1221
+
1222
+ return self.builder.build() # type: ignore
1223
+
1224
+ @contextmanager
1225
+ def set_in_profile_run(self):
1226
+ self.in_profile_run = True
1227
+ try:
1228
+ yield
1229
+ finally:
1230
+ self.in_profile_run = False
1231
+
1232
+ @torch.inference_mode()
1233
+ def profile_run(self) -> None:
1234
+ max_num_batched_tokens = \
1235
+ self.scheduler_config.max_num_batched_tokens
1236
+ max_num_seqs = self.scheduler_config.max_num_seqs
1237
+ self._dummy_run(max_num_batched_tokens, max_num_seqs)
1238
+
1239
+ def _add_dummy_loras(self, num_loras: int) -> list[LoRARequest]:
1240
+ assert num_loras > 0
1241
+ assert self.lora_manager is not None
1242
+
1243
+ dummy_lora_requests: list[LoRARequest] = []
1244
+ with self.lora_manager.dummy_lora_cache():
1245
+ for idx in range(num_loras):
1246
+ lora_id = idx + 1
1247
+ dummy_lora_request = LoRARequest(
1248
+ lora_name=f"warmup_{lora_id}",
1249
+ lora_int_id=lora_id,
1250
+ lora_path="/not/a/real/path",
1251
+ )
1252
+ self.lora_manager.add_dummy_lora(dummy_lora_request,
1253
+ rank=LORA_WARMUP_RANK)
1254
+ dummy_lora_requests.append(dummy_lora_request)
1255
+ return dummy_lora_requests
1256
+
1257
+ def _remove_dummy_loras(self):
1258
+ # Remove dummy loras.
1259
+ assert self.lora_manager is not None
1260
+ self.remove_all_loras()
1261
+
1262
+ def _dummy_run(self,
1263
+ max_num_batched_tokens: int,
1264
+ max_num_seqs: int = 1) -> None:
1265
+ with self.set_in_profile_run():
1266
+ # Enable top-k sampling to reflect the accurate memory usage.
1267
+ sampling_params = \
1268
+ SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
1269
+
1270
+ # This represents the maximum number of different requests
1271
+ # that will have unique loras, and therefore the max amount of
1272
+ # memory consumption. Create dummy lora request copies from the
1273
+ # lora request passed in, which contains a lora from the lora
1274
+ # warmup path.
1275
+ dummy_lora_requests: List[LoRARequest] = []
1276
+ dummy_lora_requests_per_seq: List[LoRARequest] = []
1277
+ if self.lora_config:
1278
+ dummy_lora_requests = self._add_dummy_loras(
1279
+ self.lora_config.max_loras)
1280
+ assert len(dummy_lora_requests) == self.lora_config.max_loras
1281
+ dummy_lora_requests_per_seq = [
1282
+ dummy_lora_requests[idx % len(dummy_lora_requests)]
1283
+ for idx in range(max_num_seqs)
1284
+ ]
1285
+
1286
+ # Profile memory usage with max_num_sequences sequences and the
1287
+ # total number of tokens equal to max_num_batched_tokens.
1288
+ seqs: List[SequenceGroupMetadata] = []
1289
+ # Additional GPU memory may be needed for multi-modal encoding,
1290
+ # which needs to be accounted for when calculating the GPU blocks
1291
+ # for vLLM blocker manager.
1292
+ # To exercise the worst scenario for GPU memory consumption,
1293
+ # the number of seqs (batch_size) is chosen to maximize the number
1294
+ # of images processed.
1295
+
1296
+ max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
1297
+ self.model_config)
1298
+ if max_mm_tokens > 0:
1299
+ max_num_seqs_orig = max_num_seqs
1300
+ max_num_seqs = min(max_num_seqs,
1301
+ max_num_batched_tokens // max_mm_tokens)
1302
+ if max_num_seqs < 1:
1303
+ expr = (f"min({max_num_seqs_orig}, "
1304
+ f"{max_num_batched_tokens} // {max_mm_tokens})")
1305
+ logger.warning(
1306
+ "Computed max_num_seqs (%s) to be less than 1. "
1307
+ "Setting it to the minimum value of 1.", expr)
1308
+ max_num_seqs = 1
1309
+
1310
+ batch_size = 0
1311
+ for group_id in range(max_num_seqs):
1312
+ seq_len = (max_num_batched_tokens // max_num_seqs +
1313
+ (group_id < max_num_batched_tokens % max_num_seqs))
1314
+ batch_size += seq_len
1315
+
1316
+ dummy_data = self.input_registry \
1317
+ .dummy_data_for_profiling(self.model_config,
1318
+ seq_len,
1319
+ self.mm_registry)
1320
+
1321
+ seq = SequenceGroupMetadata(
1322
+ request_id=str(group_id),
1323
+ is_prompt=True,
1324
+ seq_data={group_id: dummy_data.seq_data},
1325
+ sampling_params=sampling_params,
1326
+ block_tables=None,
1327
+ lora_request=dummy_lora_requests_per_seq[group_id]
1328
+ if dummy_lora_requests_per_seq else None,
1329
+ multi_modal_data=dummy_data.multi_modal_data,
1330
+ multi_modal_placeholders=dummy_data.
1331
+ multi_modal_placeholders,
1332
+ )
1333
+ seqs.append(seq)
1334
+
1335
+ # Run the model with the dummy inputs.
1336
+ num_layers = self.model_config.get_num_layers(self.parallel_config)
1337
+ # use an empty tensor instead of `None`` to force Dynamo to pass
1338
+ # it by reference, rather by specializing on the value ``None``.
1339
+ # the `dtype` argument does not matter, and we use `float32` as
1340
+ # a placeholder (it has wide hardware support).
1341
+ # it is important to create tensors inside the loop, rather than
1342
+ # multiplying the list, to avoid Dynamo from treating them as
1343
+ # tensor aliasing.
1344
+ kv_caches = [
1345
+ torch.tensor([], dtype=torch.float32, device=self.device)
1346
+ for _ in range(num_layers)
1347
+ ]
1348
+ finished_requests_ids = [seq.request_id for seq in seqs]
1349
+ model_input = self.prepare_model_input(
1350
+ seqs, finished_requests_ids=finished_requests_ids)
1351
+ intermediate_tensors = None
1352
+ if not get_pp_group().is_first_rank:
1353
+ intermediate_tensors = \
1354
+ self.model.make_empty_intermediate_tensors(
1355
+ batch_size=batch_size,
1356
+ dtype=self.model_config.dtype,
1357
+ device=self.device)
1358
+
1359
+ # Disable KV Scale Calculation for dummy data during profile run
1360
+ if model_input.attn_metadata is not None:
1361
+ model_input.attn_metadata.enable_kv_scales_calculation = False
1362
+
1363
+ self.execute_model(model_input, kv_caches, intermediate_tensors)
1364
+ torch.cuda.synchronize()
1365
+ if self.lora_config:
1366
+ self._remove_dummy_loras()
1367
+
1368
+ return
1369
+
1370
+ def remove_all_loras(self):
1371
+ if not self.lora_manager:
1372
+ raise RuntimeError("LoRA is not enabled.")
1373
+ self.lora_manager.remove_all_adapters()
1374
+
1375
+ def set_active_loras(self, lora_requests: Set[LoRARequest],
1376
+ lora_mapping: LoRAMapping) -> None:
1377
+ if not self.lora_manager:
1378
+ raise RuntimeError("LoRA is not enabled.")
1379
+ self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
1380
+
1381
+ def add_lora(self, lora_request: LoRARequest) -> bool:
1382
+ if not self.lora_manager:
1383
+ raise RuntimeError("LoRA is not enabled.")
1384
+ return self.lora_manager.add_adapter(lora_request)
1385
+
1386
+ def remove_lora(self, lora_id: int) -> bool:
1387
+ if not self.lora_manager:
1388
+ raise RuntimeError("LoRA is not enabled.")
1389
+ return self.lora_manager.remove_adapter(lora_id)
1390
+
1391
+ def pin_lora(self, lora_id: int) -> bool:
1392
+ if not self.lora_manager:
1393
+ raise RuntimeError("LoRA is not enabled.")
1394
+ return self.lora_manager.pin_adapter(lora_id)
1395
+
1396
+ def list_loras(self) -> Set[int]:
1397
+ if not self.lora_manager:
1398
+ raise RuntimeError("LoRA is not enabled.")
1399
+ return self.lora_manager.list_adapters()
1400
+
1401
+ def remove_all_prompt_adapters(self):
1402
+ if not self.prompt_adapter_manager:
1403
+ raise RuntimeError("PromptAdapter is not enabled.")
1404
+ self.prompt_adapter_manager.remove_all_adapters()
1405
+
1406
+ def set_active_prompt_adapters(
1407
+ self, prompt_adapter_requests: Set[PromptAdapterRequest],
1408
+ prompt_adapter_mapping: PromptAdapterMapping) -> None:
1409
+ if not self.prompt_adapter_manager:
1410
+ raise RuntimeError("PromptAdapter is not enabled.")
1411
+ self.prompt_adapter_manager.set_active_adapters(
1412
+ prompt_adapter_requests, prompt_adapter_mapping)
1413
+
1414
+ def add_prompt_adapter(
1415
+ self, prompt_adapter_request: PromptAdapterRequest) -> bool:
1416
+ if not self.prompt_adapter_manager:
1417
+ raise RuntimeError("PromptAdapter is not enabled.")
1418
+ return self.prompt_adapter_manager.add_adapter(prompt_adapter_request)
1419
+
1420
+ def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
1421
+ if not self.prompt_adapter_manager:
1422
+ raise RuntimeError("PromptAdapter is not enabled.")
1423
+ return self.prompt_adapter_manager.remove_adapter(prompt_adapter_id)
1424
+
1425
+ def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
1426
+ if not self.prompt_adapter_manager:
1427
+ raise RuntimeError("PromptAdapter is not enabled.")
1428
+ return self.prompt_adapter_manager.pin_adapter(prompt_adapter_id)
1429
+
1430
+ def list_prompt_adapters(self) -> Set[int]:
1431
+ if not self.prompt_adapter_manager:
1432
+ raise RuntimeError("PromptAdapter is not enabled.")
1433
+ return self.prompt_adapter_manager.list_adapters()
1434
+
1435
+ @torch.inference_mode()
1436
+ def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None:
1437
+ """Cuda graph capture a model.
1438
+
1439
+ Note that CUDA graph's performance gain is negligible if number
1440
+ of batched tokens are larger than 200. And since CUDA graph
1441
+ requires fixed sized tensors, supporting large/variable batch
1442
+ size requires high GPU memory overhead. Thus, vLLM only captures
1443
+ decoding requests. Mixed batch (chunked prefill + decoding) or
1444
+ prefill requests are not captured.
1445
+
1446
+ Since it is used for decoding-only, it assumes there's only 1 token
1447
+ per sequence in the batch.
1448
+ """
1449
+ assert not self.model_config.enforce_eager
1450
+ logger.info("Capturing cudagraphs for decoding. This may lead to "
1451
+ "unexpected consequences if the model is not static. To "
1452
+ "run the model in eager mode, set 'enforce_eager=True' or "
1453
+ "use '--enforce-eager' in the CLI. "
1454
+ "If out-of-memory error occurs during cudagraph capture,"
1455
+ " consider decreasing `gpu_memory_utilization` or "
1456
+ "switching to eager mode. You can also reduce the "
1457
+ "`max_num_seqs` as needed to decrease memory usage.")
1458
+ start_time = time.perf_counter()
1459
+ start_free_gpu_memory = torch.cuda.mem_get_info()[0]
1460
+
1461
+ # Prepare dummy inputs. These will be reused for all batch sizes.
1462
+ max_batch_size = self.max_batchsize_to_capture
1463
+ input_tokens = torch.zeros(max_batch_size,
1464
+ dtype=torch.long,
1465
+ device=self.device)
1466
+ input_positions = torch.zeros(max_batch_size,
1467
+ dtype=torch.long,
1468
+ device=self.device)
1469
+ if self.model_config.uses_mrope:
1470
+ input_positions = torch.tile(input_positions,
1471
+ (3, 1)).cuda(device=self.device)
1472
+ # Prepare dummy previous_hidden_states only if needed by the model.
1473
+ # This is used by draft models such as EAGLE.
1474
+ previous_hidden_states = None
1475
+ if "previous_hidden_states" in inspect.signature(
1476
+ self.model.forward).parameters:
1477
+ previous_hidden_states = torch.empty(
1478
+ [max_batch_size,
1479
+ self.model_config.get_hidden_size()],
1480
+ dtype=self.model_config.dtype,
1481
+ device=self.device)
1482
+
1483
+ intermediate_inputs = None
1484
+ if not get_pp_group().is_first_rank:
1485
+ intermediate_inputs = self.model.make_empty_intermediate_tensors(
1486
+ batch_size=max_batch_size,
1487
+ dtype=self.model_config.dtype,
1488
+ device=self.device)
1489
+
1490
+ dummy_lora_id: Optional[int] = None
1491
+ dummy_lora_request: LoRARequest = []
1492
+ if self.lora_config:
1493
+ # The goal is to capture the LoRA kernels in cuda graphs.
1494
+ # for this purpose, as single dummy lora is sufficient.
1495
+ dummy_lora_requests = self._add_dummy_loras(num_loras=1)
1496
+ assert len(dummy_lora_requests) == 1
1497
+ dummy_lora_request = dummy_lora_requests[0]
1498
+ dummy_lora_id = dummy_lora_request.lora_int_id
1499
+
1500
+ with self.attn_state.graph_capture(max_batch_size), graph_capture(
1501
+ self.device) as graph_capture_context:
1502
+ # NOTE: Capturing the largest batch size first may help reduce the
1503
+ # memory usage of CUDA graph.
1504
+ for virtual_engine in range(
1505
+ self.parallel_config.pipeline_parallel_size):
1506
+ # Only rank 0 should print progress bar during capture
1507
+ cudagraph_capture_sizes = (tqdm(
1508
+ self.vllm_config.compilation_config.
1509
+ cudagraph_capture_sizes,
1510
+ desc="Capturing CUDA graph shapes",
1511
+ ) if get_tensor_model_parallel_rank() == 0 else
1512
+ self.vllm_config.compilation_config.
1513
+ cudagraph_capture_sizes)
1514
+ for batch_size in cudagraph_capture_sizes:
1515
+ attn_metadata = (
1516
+ self.attn_state.graph_capture_get_metadata_for_batch(
1517
+ batch_size,
1518
+ is_encoder_decoder_model=self.model_config.
1519
+ is_encoder_decoder))
1520
+ # Disable KV Scale Calculation for graph capture
1521
+ attn_metadata.enable_kv_scales_calculation = False
1522
+ if self.lora_config:
1523
+ lora_mapping = LoRAMapping(
1524
+ **dict(index_mapping=[dummy_lora_id] * batch_size,
1525
+ prompt_mapping=[dummy_lora_id] * batch_size,
1526
+ is_prefill=False))
1527
+ self.set_active_loras(set([dummy_lora_request]),
1528
+ lora_mapping)
1529
+
1530
+ if self.prompt_adapter_config:
1531
+ prompt_adapter_mapping = PromptAdapterMapping(
1532
+ [-1] * batch_size,
1533
+ [-1] * batch_size,
1534
+ )
1535
+ self.set_active_prompt_adapters(
1536
+ set(), prompt_adapter_mapping)
1537
+ graph_runner = CUDAGraphRunner(
1538
+ self.model, self.attn_backend.get_name(),
1539
+ self.attn_state.graph_clone(batch_size),
1540
+ self.model_config.is_encoder_decoder)
1541
+
1542
+ capture_inputs = {
1543
+ "input_ids":
1544
+ input_tokens[:batch_size],
1545
+ "positions":
1546
+ input_positions[..., :batch_size],
1547
+ "intermediate_inputs":
1548
+ intermediate_inputs[:batch_size]
1549
+ if intermediate_inputs is not None else None,
1550
+ "kv_caches":
1551
+ kv_caches[virtual_engine],
1552
+ "attn_metadata":
1553
+ attn_metadata,
1554
+ "memory_pool":
1555
+ self.graph_memory_pool,
1556
+ "stream":
1557
+ graph_capture_context.stream
1558
+ }
1559
+ if previous_hidden_states is not None:
1560
+ capture_inputs[
1561
+ "previous_hidden_states"] = previous_hidden_states[:
1562
+ batch_size]
1563
+
1564
+ if self.has_inner_state:
1565
+ # Only used by Mamba-based models CUDA graph atm (Jamba)
1566
+ capture_inputs.update({
1567
+ "seqlen_agnostic_capture_inputs":
1568
+ self.model.get_seqlen_agnostic_capture_inputs(
1569
+ batch_size)
1570
+ })
1571
+ if self.model_config.is_encoder_decoder:
1572
+ # add the additional inputs to capture for
1573
+ # encoder-decoder models.
1574
+ self._update_inputs_to_capture_for_enc_dec_model(
1575
+ capture_inputs)
1576
+
1577
+ with set_forward_context(attn_metadata, self.vllm_config,
1578
+ virtual_engine):
1579
+ graph_runner.capture(**capture_inputs)
1580
+ self.graph_memory_pool = graph_runner.graph.pool()
1581
+ self.graph_runners[virtual_engine][batch_size] = (
1582
+ graph_runner)
1583
+
1584
+ if self.lora_config:
1585
+ self._remove_dummy_loras()
1586
+
1587
+ end_time = time.perf_counter()
1588
+ end_free_gpu_memory = torch.cuda.mem_get_info()[0]
1589
+ elapsed_time = end_time - start_time
1590
+ cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
1591
+ # This usually takes < 10 seconds.
1592
+ logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
1593
+ elapsed_time, cuda_graph_size / GiB_bytes)
1594
+
1595
+ def _update_inputs_to_capture_for_enc_dec_model(self,
1596
+ capture_inputs: Dict[str,
1597
+ Any]):
1598
+ """
1599
+ Updates the set of input tensors needed for CUDA graph capture in an
1600
+ encoder-decoder model.
1601
+
1602
+ This method modifies the provided `capture_inputs` dictionary by
1603
+ adding tensors specific to encoder-decoder specific models that
1604
+ need to be captured for CUDA Graph replay.
1605
+ """
1606
+ # During the decode phase encoder_input_ids and encoder_positions are
1607
+ # unset. Do the same thing for graph capture.
1608
+ capture_inputs["encoder_input_ids"] = torch.tensor([],
1609
+ dtype=torch.long,
1610
+ device=self.device)
1611
+ capture_inputs["encoder_positions"] = torch.tensor([],
1612
+ dtype=torch.long,
1613
+ device=self.device)
1614
+
1615
+ @property
1616
+ def vocab_size(self) -> int:
1617
+ return self.model_config.get_vocab_size()
1618
+
1619
+
1620
+ class ModelRunner(GPUModelRunnerBase[ModelInputForGPUWithSamplingMetadata]):
1621
+ """
1622
+ GPU model runner with sampling step.
1623
+ """
1624
+ _model_input_cls: Type[ModelInputForGPUWithSamplingMetadata] = (
1625
+ ModelInputForGPUWithSamplingMetadata)
1626
+ _builder_cls: Type[ModelInputForGPUBuilder] = ModelInputForGPUBuilder
1627
+
1628
+ def make_model_input_from_broadcasted_tensor_dict(
1629
+ self,
1630
+ tensor_dict: Dict[str, Any],
1631
+ ) -> ModelInputForGPUWithSamplingMetadata:
1632
+ model_input = \
1633
+ ModelInputForGPUWithSamplingMetadata.from_broadcasted_tensor_dict(
1634
+ tensor_dict,
1635
+ attn_backend=self.attn_backend,
1636
+ )
1637
+ return model_input
1638
+
1639
+ def prepare_model_input(
1640
+ self,
1641
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1642
+ virtual_engine: int = 0,
1643
+ finished_requests_ids: Optional[List[str]] = None,
1644
+ ) -> ModelInputForGPUWithSamplingMetadata:
1645
+ """Prepare the model input based on a given sequence group, including
1646
+ metadata for the sampling step.
1647
+
1648
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1649
+
1650
+ The result tensors and data structure also batches input in prefill
1651
+ -> decode order. For example,
1652
+
1653
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1654
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1655
+
1656
+ If cuda graph is required, this API automatically pads inputs.
1657
+ """
1658
+ model_input = self._prepare_model_input_tensors(
1659
+ seq_group_metadata_list, finished_requests_ids)
1660
+ if get_pp_group().is_last_rank:
1661
+ # Sampling metadata is only required for the final pp group
1662
+ generators = self.get_generators(finished_requests_ids)
1663
+ sampling_metadata = SamplingMetadata.prepare(
1664
+ seq_group_metadata_list, model_input.seq_lens,
1665
+ model_input.query_lens, self.device, self.pin_memory,
1666
+ generators, self.sampling_metadata_cache)
1667
+ else:
1668
+ sampling_metadata = None
1669
+ is_prompt = (seq_group_metadata_list[0].is_prompt
1670
+ if seq_group_metadata_list else None)
1671
+ return dataclasses.replace(model_input,
1672
+ sampling_metadata=sampling_metadata,
1673
+ is_prompt=is_prompt,
1674
+ virtual_engine=virtual_engine)
1675
+
1676
+ @torch.inference_mode()
1677
+ def execute_model(
1678
+ self,
1679
+ model_input: ModelInputForGPUWithSamplingMetadata,
1680
+ kv_caches: List[torch.Tensor],
1681
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1682
+ num_steps: int = 1,
1683
+ **kwargs,
1684
+ ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
1685
+ if num_steps > 1:
1686
+ raise ValueError("num_steps > 1 is not supported in ModelRunner")
1687
+
1688
+ if self.lora_config:
1689
+ assert model_input.lora_requests is not None
1690
+ assert model_input.lora_mapping is not None
1691
+ self.set_active_loras(model_input.lora_requests,
1692
+ model_input.lora_mapping)
1693
+
1694
+ if self.prompt_adapter_config:
1695
+ assert model_input.prompt_adapter_requests is not None
1696
+ assert model_input.prompt_adapter_mapping is not None
1697
+ self.set_active_prompt_adapters(
1698
+ model_input.prompt_adapter_requests,
1699
+ model_input.prompt_adapter_mapping)
1700
+
1701
+ self.attn_state.begin_forward(model_input)
1702
+
1703
+ # Currently cuda graph is only supported by the decode phase.
1704
+ assert model_input.attn_metadata is not None
1705
+ prefill_meta = model_input.attn_metadata.prefill_metadata
1706
+ decode_meta = model_input.attn_metadata.decode_metadata
1707
+ # TODO(andoorve): We can remove this once all
1708
+ # virtual engines share the same kv cache.
1709
+ virtual_engine = model_input.virtual_engine
1710
+ previous_hidden_states = kwargs.get("previous_hidden_states")
1711
+ if prefill_meta is None and decode_meta.use_cuda_graph:
1712
+ assert model_input.input_tokens is not None
1713
+ graph_batch_size = model_input.input_tokens.shape[0]
1714
+ model_executable = self.graph_runners[virtual_engine][
1715
+ graph_batch_size]
1716
+ if previous_hidden_states is not None:
1717
+ previous_hidden_states = torch.cat([
1718
+ previous_hidden_states,
1719
+ torch.empty([
1720
+ graph_batch_size - previous_hidden_states.shape[0],
1721
+ *previous_hidden_states.shape[1:]
1722
+ ],
1723
+ dtype=previous_hidden_states.dtype,
1724
+ device=previous_hidden_states.device)
1725
+ ])
1726
+ else:
1727
+ model_executable = self.model
1728
+
1729
+ # Receive KV cache in distributed KV cache transfer setting
1730
+ # In disagg prefill setting, it will also recv hidden states and bypass
1731
+ # model forwarding
1732
+ # In KV cache database setting, it will change the model input so that
1733
+ # we can skip prefilling on tokens that successfully received KV caches
1734
+ # NOTE: The receive operation is blocking
1735
+ bypass_model_exec = False
1736
+ if self.need_recv_kv(model_input, kv_caches):
1737
+ hidden_or_intermediate_states, bypass_model_exec, model_input = \
1738
+ get_kv_transfer_group().recv_kv_caches_and_hidden_states(
1739
+ # model is used to know which layer the current worker
1740
+ # is working on, so that we can receive KV for only those
1741
+ # layers.
1742
+ model_executable,
1743
+ model_input,
1744
+ kv_caches=kv_caches
1745
+ )
1746
+
1747
+ multi_modal_kwargs = model_input.multi_modal_kwargs or {}
1748
+ seqlen_agnostic_kwargs = {
1749
+ "finished_requests_ids": model_input.finished_requests_ids,
1750
+ "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
1751
+ } if self.has_inner_state else {}
1752
+ model_kwargs = {}
1753
+ if previous_hidden_states is not None:
1754
+ model_kwargs["previous_hidden_states"] = previous_hidden_states
1755
+ if (self.observability_config is not None
1756
+ and self.observability_config.collect_model_forward_time):
1757
+ model_forward_start = torch.cuda.Event(enable_timing=True)
1758
+ model_forward_end = torch.cuda.Event(enable_timing=True)
1759
+ model_forward_start.record()
1760
+
1761
+ if not bypass_model_exec:
1762
+ with set_forward_context(model_input.attn_metadata,
1763
+ self.vllm_config, virtual_engine):
1764
+ hidden_or_intermediate_states = model_executable(
1765
+ input_ids=model_input.input_tokens,
1766
+ positions=model_input.input_positions,
1767
+ intermediate_tensors=intermediate_tensors,
1768
+ **MultiModalKwargs.as_kwargs(multi_modal_kwargs,
1769
+ device=self.device),
1770
+ **seqlen_agnostic_kwargs,
1771
+ **model_kwargs,
1772
+ )
1773
+
1774
+ if (self.observability_config is not None
1775
+ and self.observability_config.collect_model_forward_time):
1776
+ model_forward_end.record()
1777
+
1778
+ # Sending KV cache in distributed KV cache transfer setting
1779
+ # NOTE: the send operation is non-blocking
1780
+ if self.need_send_kv(model_input, kv_caches):
1781
+ get_kv_transfer_group().send_kv_caches_and_hidden_states(
1782
+ # model_executable is used to know which layer the current
1783
+ # worker is working on, so that we can send KV for only those
1784
+ # layers.
1785
+ model_executable,
1786
+ model_input,
1787
+ kv_caches,
1788
+ hidden_or_intermediate_states,
1789
+ )
1790
+
1791
+ # Compute the logits in the last pipeline stage.
1792
+ if not get_pp_group().is_last_rank:
1793
+ if (self.is_driver_worker
1794
+ and hidden_or_intermediate_states is not None
1795
+ and isinstance(hidden_or_intermediate_states,
1796
+ IntermediateTensors)
1797
+ and self.observability_config is not None
1798
+ and self.observability_config.collect_model_forward_time):
1799
+ model_forward_end.synchronize()
1800
+ model_forward_time = model_forward_start.elapsed_time(
1801
+ model_forward_end)
1802
+ orig_model_forward_time = 0.0
1803
+ if intermediate_tensors is not None:
1804
+ orig_model_forward_time = intermediate_tensors.tensors.get(
1805
+ "model_forward_time", torch.tensor(0.0)).item()
1806
+ hidden_or_intermediate_states.tensors["model_forward_time"] = (
1807
+ torch.tensor(model_forward_time + orig_model_forward_time))
1808
+ return hidden_or_intermediate_states
1809
+
1810
+ logits = self.model.compute_logits(hidden_or_intermediate_states,
1811
+ model_input.sampling_metadata)
1812
+
1813
+ if not self.is_driver_worker:
1814
+ return []
1815
+
1816
+ if model_input.async_callback is not None:
1817
+ model_input.async_callback()
1818
+
1819
+ # Sample the next token.
1820
+ output: SamplerOutput = self.sampler(
1821
+ logits=logits,
1822
+ sampling_metadata=model_input.sampling_metadata,
1823
+ )
1824
+ if (self.observability_config is not None
1825
+ and self.observability_config.collect_model_forward_time
1826
+ and output is not None):
1827
+ model_forward_end.synchronize()
1828
+ model_forward_time = model_forward_start.elapsed_time(
1829
+ model_forward_end)
1830
+ orig_model_forward_time = 0.0
1831
+ if intermediate_tensors is not None:
1832
+ orig_model_forward_time = intermediate_tensors.tensors.get(
1833
+ "model_forward_time", torch.tensor(0.0)).item()
1834
+ # If there are multiple workers, we are still tracking the latency
1835
+ # from the start time of the driver worker to the end time of the
1836
+ # driver worker. The model forward time will then end up covering
1837
+ # the communication time as well.
1838
+ output.model_forward_time = (orig_model_forward_time +
1839
+ model_forward_time)
1840
+
1841
+ if self.return_hidden_states:
1842
+ # we only need to pass hidden states of most recent token
1843
+ assert model_input.sampling_metadata is not None
1844
+ indices = model_input.sampling_metadata.selected_token_indices
1845
+ if model_input.is_prompt:
1846
+ hidden_states = hidden_or_intermediate_states.index_select(
1847
+ 0, indices)
1848
+ output.prefill_hidden_states = hidden_or_intermediate_states
1849
+ elif decode_meta.use_cuda_graph:
1850
+ hidden_states = hidden_or_intermediate_states[:len(indices)]
1851
+ else:
1852
+ hidden_states = hidden_or_intermediate_states
1853
+
1854
+ output.hidden_states = hidden_states
1855
+
1856
+ return [output]
1857
+
1858
+ def need_recv_kv(self, model_input, kv_caches) -> bool:
1859
+ """Check if we need to receive kv-cache from the other worker.
1860
+ We need to receive KV when
1861
+ 1. current vLLM instance is KV cache consumer/decode vLLM instance
1862
+ 2. this batch is not a profiling run
1863
+ 3. this batch is a prefill run
1864
+
1865
+ Args:
1866
+ model_input: input to the model executable
1867
+ kv_caches: vLLM's paged memory
1868
+ """
1869
+
1870
+ if self.vllm_config.kv_transfer_config is None:
1871
+ return False
1872
+
1873
+ prefill_meta = model_input.attn_metadata.prefill_metadata
1874
+
1875
+ # check if the current run is profiling
1876
+ is_profile_run = (kv_caches[0].numel() == 0)
1877
+ # check if the current run is prefill
1878
+ is_prefill_run = prefill_meta is not None
1879
+
1880
+ return self.vllm_config.kv_transfer_config.is_kv_consumer and (
1881
+ not is_profile_run) and is_prefill_run
1882
+
1883
+ def need_send_kv(self, model_input, kv_caches) -> bool:
1884
+ """Check if we need to send kv-cache to the other worker.
1885
+ We need to send KV when
1886
+ 1. current vLLM instance is KV cache producer/prefill vLLM instance
1887
+ 2. this batch is not a profiling run
1888
+ 3. this batch is a prefill run
1889
+
1890
+ Args:
1891
+ model_input: input to the model executable
1892
+ kv_caches: vLLM's paged memory
1893
+ """
1894
+
1895
+ if self.vllm_config.kv_transfer_config is None:
1896
+ return False
1897
+
1898
+ prefill_meta = model_input.attn_metadata.prefill_metadata
1899
+
1900
+ # check if the current run is profiling
1901
+ is_profile_run = (kv_caches[0].numel() == 0)
1902
+ # check if the current run is prefill
1903
+ is_prefill_run = prefill_meta is not None
1904
+
1905
+ return self.vllm_config.kv_transfer_config.is_kv_producer and (
1906
+ not is_profile_run) and is_prefill_run
1907
+
1908
+
1909
+ # NOTE: this is nn.Module so the profiler can properly capture/group
1910
+ # kernels calls made within the graph
1911
+ class CUDAGraphRunner(nn.Module):
1912
+
1913
+ def __init__(self, model: nn.Module, backend_name: str,
1914
+ attn_state: AttentionState, is_encoder_decoder_model: bool):
1915
+ super().__init__()
1916
+ self.model = model
1917
+ self.backend_name = backend_name
1918
+ self.attn_state = attn_state
1919
+
1920
+ self.input_buffers: Dict[str, torch.Tensor] = {}
1921
+ self.output_buffers: Dict[str, torch.Tensor] = {}
1922
+
1923
+ self._graph: Optional[torch.cuda.CUDAGraph] = None
1924
+ self._is_encoder_decoder_model = is_encoder_decoder_model
1925
+
1926
+ @property
1927
+ def graph(self):
1928
+ assert self._graph is not None
1929
+ return self._graph
1930
+
1931
+ def capture(
1932
+ self,
1933
+ input_ids: torch.Tensor,
1934
+ positions: torch.Tensor,
1935
+ intermediate_inputs: Optional[IntermediateTensors],
1936
+ kv_caches: List[torch.Tensor],
1937
+ attn_metadata: AttentionMetadata,
1938
+ memory_pool: Optional[Tuple[int, int]],
1939
+ stream: torch.cuda.Stream,
1940
+ **kwargs,
1941
+ ):
1942
+ assert self._graph is None
1943
+ # Run the model a few times without capturing the graph.
1944
+ # This is to make sure that the captured graph does not include the
1945
+ # kernel launches for initial benchmarking (e.g., Triton autotune).
1946
+ # Note one iteration is not enough for torch.compile
1947
+ for _ in range(_NUM_WARMUP_ITERS):
1948
+ self.model(
1949
+ input_ids=input_ids,
1950
+ positions=positions,
1951
+ intermediate_tensors=intermediate_inputs,
1952
+ **kwargs,
1953
+ )
1954
+ # Wait for the warm up operations to finish before proceeding with
1955
+ # Graph Capture.
1956
+ torch.cuda.synchronize()
1957
+ # Capture the graph.
1958
+ self._graph = torch.cuda.CUDAGraph()
1959
+ with torch.cuda.graph(self._graph, pool=memory_pool, stream=stream):
1960
+ output_hidden_or_intermediate_states = self.model(
1961
+ input_ids=input_ids,
1962
+ positions=positions,
1963
+ intermediate_tensors=intermediate_inputs,
1964
+ **kwargs,
1965
+ )
1966
+
1967
+ if isinstance(output_hidden_or_intermediate_states, torch.Tensor):
1968
+ hidden_or_intermediate_states = weak_ref_tensor(
1969
+ output_hidden_or_intermediate_states)
1970
+ elif isinstance(output_hidden_or_intermediate_states,
1971
+ IntermediateTensors):
1972
+ hidden_or_intermediate_states = IntermediateTensors(
1973
+ tensors={
1974
+ key: weak_ref_tensor(value)
1975
+ for key, value in
1976
+ output_hidden_or_intermediate_states.tensors.items()
1977
+ })
1978
+
1979
+ del output_hidden_or_intermediate_states
1980
+ # make sure `output_hidden_or_intermediate_states` is deleted
1981
+ # in the graph's memory pool
1982
+ gc.collect()
1983
+ torch.cuda.synchronize()
1984
+
1985
+ # Save the input and output buffers.
1986
+ self.input_buffers = {
1987
+ "input_ids":
1988
+ input_ids,
1989
+ "positions":
1990
+ positions,
1991
+ "kv_caches":
1992
+ kv_caches,
1993
+ **self.attn_state.get_graph_input_buffers(
1994
+ attn_metadata, self._is_encoder_decoder_model),
1995
+ **kwargs,
1996
+ }
1997
+ if intermediate_inputs is not None:
1998
+ self.input_buffers.update(intermediate_inputs.tensors)
1999
+ if get_pp_group().is_last_rank:
2000
+ self.output_buffers = {
2001
+ "hidden_states": hidden_or_intermediate_states
2002
+ }
2003
+ else:
2004
+ self.output_buffers = hidden_or_intermediate_states
2005
+
2006
+ def forward(
2007
+ self,
2008
+ input_ids: torch.Tensor,
2009
+ positions: torch.Tensor,
2010
+ intermediate_tensors: Optional[IntermediateTensors],
2011
+ **kwargs,
2012
+ ) -> torch.Tensor:
2013
+ attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
2014
+
2015
+ # Copy the input tensors to the input buffers.
2016
+ self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
2017
+ if positions is not None:
2018
+ # in some case like MLA, it will reuse positions in metadata
2019
+ # but truncate them to the original size
2020
+ # so the shape is not padded, we need to copy partial only
2021
+ self.input_buffers["positions"][:positions.shape[0]].copy_(
2022
+ positions, non_blocking=True)
2023
+
2024
+ if self.backend_name != "NO_ATTENTION":
2025
+ self.input_buffers["slot_mapping"].copy_(
2026
+ attn_metadata.slot_mapping, non_blocking=True)
2027
+
2028
+ self.attn_state.prepare_graph_input_buffers(
2029
+ self.input_buffers, attn_metadata, self._is_encoder_decoder_model)
2030
+
2031
+ if "seqlen_agnostic_capture_inputs" in self.input_buffers:
2032
+ self.model.copy_inputs_before_cuda_graphs(self.input_buffers,
2033
+ **kwargs)
2034
+
2035
+ if "previous_hidden_states" in self.input_buffers:
2036
+ self.input_buffers["previous_hidden_states"].copy_(
2037
+ kwargs["previous_hidden_states"], non_blocking=True)
2038
+
2039
+ if intermediate_tensors is not None:
2040
+ for key in intermediate_tensors.tensors:
2041
+ if key != "model_execute_time" and key != "model_forward_time":
2042
+ self.input_buffers[key].copy_(intermediate_tensors[key],
2043
+ non_blocking=True)
2044
+ if self._is_encoder_decoder_model:
2045
+ self.input_buffers["encoder_input_ids"].copy_(
2046
+ kwargs['encoder_input_ids'], non_blocking=True)
2047
+ self.input_buffers["encoder_positions"].copy_(
2048
+ kwargs['encoder_positions'], non_blocking=True)
2049
+
2050
+ # Run the graph.
2051
+ self.graph.replay()
2052
+ # Return the output tensor.
2053
+ if get_pp_group().is_last_rank:
2054
+ return self.output_buffers["hidden_states"]
2055
+
2056
+ return self.output_buffers